aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada
diff options
context:
space:
mode:
authorEric Botcazou <ebotcazou@adacore.com>2024-04-04 16:39:55 +0200
committerMarc Poulhiès <poulhies@adacore.com>2024-05-21 09:27:57 +0200
commitea793db568348d7fb9a6dd08d34d9c40608f6023 (patch)
treedaa32589dfd26bf56b37b493a85ad6e849d34887 /gcc/ada
parent9fbf129bade8014d1fd7ab8ecd255df7e12570f0 (diff)
downloadgcc-ea793db568348d7fb9a6dd08d34d9c40608f6023.zip
gcc-ea793db568348d7fb9a6dd08d34d9c40608f6023.tar.gz
gcc-ea793db568348d7fb9a6dd08d34d9c40608f6023.tar.bz2
ada: Streamline implementation of simple nonbinary modular operations
They are implemented by the nonbinary_modular_operation routine, which is complex and, in particular, creates signed types and types with a partial precision each time a subtraction or a multiplication resp. is generated. Both are unnecessary and a simple approach even generates better code for the subtraction on architectures with conditional moves. gcc/ada/ * gcc-interface/utils2.cc (nonbinary_modular_operation): Rewrite. Do not create signed types for subtraction, do not create types with partial precision, call fold_convert instead of convert throughout.
Diffstat (limited to 'gcc/ada')
-rw-r--r--gcc/ada/gcc-interface/utils2.cc91
1 files changed, 28 insertions, 63 deletions
diff --git a/gcc/ada/gcc-interface/utils2.cc b/gcc/ada/gcc-interface/utils2.cc
index 8fb86ab..4b7e273 100644
--- a/gcc/ada/gcc-interface/utils2.cc
+++ b/gcc/ada/gcc-interface/utils2.cc
@@ -535,85 +535,50 @@ compare_fat_pointers (location_t loc, tree result_type, tree p1, tree p2)
}
/* Compute the result of applying OP_CODE to LHS and RHS, where both are of
- type TYPE. We know that TYPE is a modular type with a nonbinary
- modulus. */
+ TYPE. We know that TYPE is a modular type with a nonbinary modulus. */
static tree
nonbinary_modular_operation (enum tree_code op_code, tree type, tree lhs,
tree rhs)
{
tree modulus = TYPE_MODULUS (type);
- unsigned int needed_precision = tree_floor_log2 (modulus) + 1;
- unsigned int precision;
- bool unsignedp = true;
- tree op_type = type;
- tree result;
+ unsigned precision = tree_floor_log2 (modulus) + 1;
+ tree op_type, result;
- /* If this is an addition of a constant, convert it to a subtraction
- of a constant since we can do that faster. */
- if (op_code == PLUS_EXPR && TREE_CODE (rhs) == INTEGER_CST)
- {
- rhs = fold_build2 (MINUS_EXPR, type, modulus, rhs);
- op_code = MINUS_EXPR;
- }
-
- /* For the logical operations, we only need PRECISION bits. For
- addition and subtraction, we need one more and for multiplication we
- need twice as many. But we never want to make a size smaller than
- our size. */
+ /* For the logical operations, we only need PRECISION bits. For addition and
+ subtraction, we need one more, and for multiplication twice as many. */
if (op_code == PLUS_EXPR || op_code == MINUS_EXPR)
- needed_precision += 1;
+ precision += 1;
else if (op_code == MULT_EXPR)
- needed_precision *= 2;
-
- precision = MAX (needed_precision, TYPE_PRECISION (op_type));
+ precision *= 2;
- /* Unsigned will do for everything but subtraction. */
- if (op_code == MINUS_EXPR)
- unsignedp = false;
-
- /* If our type is the wrong signedness or isn't wide enough, make a new
- type and convert both our operands to it. */
- if (TYPE_PRECISION (op_type) < precision
- || TYPE_UNSIGNED (op_type) != unsignedp)
+ /* If the type is not wide enough, make a new type of the needed precision
+ and convert modulus and operands to it. Use a type with full precision
+ for its mode since operations are ultimately performed in the mode. */
+ if (TYPE_PRECISION (type) < precision)
{
- /* Copy the type so we ensure it can be modified to make it modular. */
- op_type = copy_type (gnat_type_for_size (precision, unsignedp));
- modulus = convert (op_type, modulus);
- SET_TYPE_MODULUS (op_type, modulus);
- TYPE_MODULAR_P (op_type) = 1;
- lhs = convert (op_type, lhs);
- rhs = convert (op_type, rhs);
+ const scalar_int_mode m = smallest_int_mode_for_size (precision);
+ op_type = gnat_type_for_mode (m, 1);
+ modulus = fold_convert (op_type, modulus);
+ lhs = fold_convert (op_type, lhs);
+ rhs = fold_convert (op_type, rhs);
}
+ else
+ op_type = type;
/* Do the operation, then we'll fix it up. */
result = fold_build2 (op_code, op_type, lhs, rhs);
- /* For multiplication, we have no choice but to do a full modulus
- operation. However, we want to do this in the narrowest
- possible size. */
- if (op_code == MULT_EXPR)
- {
- /* Copy the type so we ensure it can be modified to make it modular. */
- tree div_type = copy_type (gnat_type_for_size (needed_precision, 1));
- modulus = convert (div_type, modulus);
- SET_TYPE_MODULUS (div_type, modulus);
- TYPE_MODULAR_P (div_type) = 1;
- result = convert (op_type,
- fold_build2 (TRUNC_MOD_EXPR, div_type,
- convert (div_type, result), modulus));
- }
+ /* Unconditionally add the modulus to the result for a subtraction, this gets
+ rid of all its peculiarities by cancelling out the addition of the binary
+ modulus in the case where the subtraction wraps around in OP_TYPE, and may
+ even generate better code on architectures with conditional moves. */
+ if (op_code == MINUS_EXPR)
+ result = fold_build2 (PLUS_EXPR, op_type, result, modulus);
- /* For subtraction, add the modulus back if we are negative. */
- else if (op_code == MINUS_EXPR)
- {
- result = gnat_protect_expr (result);
- result = fold_build3 (COND_EXPR, op_type,
- fold_build2 (LT_EXPR, boolean_type_node, result,
- build_int_cst (op_type, 0)),
- fold_build2 (PLUS_EXPR, op_type, result, modulus),
- result);
- }
+ /* For a multiplication, we have no choice but to use a modulo operation. */
+ if (op_code == MULT_EXPR)
+ result = fold_build2 (TRUNC_MOD_EXPR, op_type, result, modulus);
/* For the other operations, subtract the modulus if we are >= it. */
else
@@ -627,7 +592,7 @@ nonbinary_modular_operation (enum tree_code op_code, tree type, tree lhs,
result);
}
- return convert (type, result);
+ return fold_convert (type, result);
}
/* This page contains routines that implement the Ada semantics with regard