aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/86numaux.adb
diff options
context:
space:
mode:
authorRichard Kenner <kenner@gcc.gnu.org>2001-10-02 09:46:42 -0400
committerRichard Kenner <kenner@gcc.gnu.org>2001-10-02 09:46:42 -0400
commit84481f762f0682e5f45b2f360446e1c7e333c880 (patch)
treeec92b635579926dc15738c43b5de10e402669757 /gcc/ada/86numaux.adb
parent62a040818aae81ad8558ebbe3c8973a16e7c250f (diff)
downloadgcc-84481f762f0682e5f45b2f360446e1c7e333c880.zip
gcc-84481f762f0682e5f45b2f360446e1c7e333c880.tar.gz
gcc-84481f762f0682e5f45b2f360446e1c7e333c880.tar.bz2
New Language: Ada
From-SVN: r45952
Diffstat (limited to 'gcc/ada/86numaux.adb')
-rw-r--r--gcc/ada/86numaux.adb595
1 files changed, 595 insertions, 0 deletions
diff --git a/gcc/ada/86numaux.adb b/gcc/ada/86numaux.adb
new file mode 100644
index 0000000..f6e1f4c
--- /dev/null
+++ b/gcc/ada/86numaux.adb
@@ -0,0 +1,595 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT RUNTIME COMPONENTS --
+-- --
+-- A D A . N U M E R I C S . A U X --
+-- --
+-- B o d y --
+-- (Machine Version for x86) --
+-- --
+-- $Revision: 1.15 $
+-- --
+-- Copyright (C) 1998-2000 Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING. If not, write --
+-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
+-- MA 02111-1307, USA. --
+-- --
+-- As a special exception, if other files instantiate generics from this --
+-- unit, or you link this unit with other files to produce an executable, --
+-- this unit does not by itself cause the resulting executable to be --
+-- covered by the GNU General Public License. This exception does not --
+-- however invalidate any other reasons why the executable file might be --
+-- covered by the GNU Public License. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
+-- --
+------------------------------------------------------------------------------
+
+-- File a-numaux.adb <- 86numaux.adb
+
+-- This version of Numerics.Aux is for the IEEE Double Extended floating
+-- point format on x86.
+
+with System.Machine_Code; use System.Machine_Code;
+
+package body Ada.Numerics.Aux is
+
+ NL : constant String := ASCII.LF & ASCII.HT;
+
+ type FPU_Stack_Pointer is range 0 .. 7;
+ for FPU_Stack_Pointer'Size use 3;
+
+ type FPU_Status_Word is record
+ B : Boolean; -- FPU Busy (for 8087 compatability only)
+ ES : Boolean; -- Error Summary Status
+ SF : Boolean; -- Stack Fault
+
+ Top : FPU_Stack_Pointer;
+
+ -- Condition Code Flags
+
+ -- C2 is set by FPREM and FPREM1 to indicate incomplete reduction.
+ -- In case of successfull recorction, C0, C3 and C1 are set to the
+ -- three least significant bits of the result (resp. Q2, Q1 and Q0).
+
+ -- C2 is used by FPTAN, FSIN, FCOS, and FSINCOS to indicate that
+ -- that source operand is beyond the allowable range of
+ -- -2.0**63 .. 2.0**63.
+
+ C3 : Boolean;
+ C2 : Boolean;
+ C1 : Boolean;
+ C0 : Boolean;
+
+ -- Exception Flags
+
+ PE : Boolean; -- Precision
+ UE : Boolean; -- Underflow
+ OE : Boolean; -- Overflow
+ ZE : Boolean; -- Zero Divide
+ DE : Boolean; -- Denormalized Operand
+ IE : Boolean; -- Invalid Operation
+ end record;
+
+ for FPU_Status_Word use record
+ B at 0 range 15 .. 15;
+ C3 at 0 range 14 .. 14;
+ Top at 0 range 11 .. 13;
+ C2 at 0 range 10 .. 10;
+ C1 at 0 range 9 .. 9;
+ C0 at 0 range 8 .. 8;
+ ES at 0 range 7 .. 7;
+ SF at 0 range 6 .. 6;
+ PE at 0 range 5 .. 5;
+ UE at 0 range 4 .. 4;
+ OE at 0 range 3 .. 3;
+ ZE at 0 range 2 .. 2;
+ DE at 0 range 1 .. 1;
+ IE at 0 range 0 .. 0;
+ end record;
+
+ for FPU_Status_Word'Size use 16;
+
+ -----------------------
+ -- Local subprograms --
+ -----------------------
+
+ function Is_Nan (X : Double) return Boolean;
+ -- Return True iff X is a IEEE NaN value
+
+ function Logarithmic_Pow (X, Y : Double) return Double;
+ -- Implementation of X**Y using Exp and Log functions (binary base)
+ -- to calculate the exponentiation. This is used by Pow for values
+ -- for values of Y in the open interval (-0.25, 0.25)
+
+ function Reduce (X : Double) return Double;
+ -- Implement partial reduction of X by Pi in the x86.
+
+ -- Note that for the Sin, Cos and Tan functions completely accurate
+ -- reduction of the argument is done for arguments in the range of
+ -- -2.0**63 .. 2.0**63, using a 66-bit approximation of Pi.
+
+
+ pragma Inline (Is_Nan);
+ pragma Inline (Reduce);
+
+ ---------------------------------
+ -- Basic Elementary Functions --
+ ---------------------------------
+
+ -- This section implements a few elementary functions that are
+ -- used to build the more complex ones. This ordering enables
+ -- better inlining.
+
+ ----------
+ -- Atan --
+ ----------
+
+ function Atan (X : Double) return Double is
+ Result : Double;
+
+ begin
+ Asm (Template =>
+ "fld1" & NL
+ & "fpatan",
+ Outputs => Double'Asm_Output ("=t", Result),
+ Inputs => Double'Asm_Input ("0", X));
+
+ -- The result value is NaN iff input was invalid
+
+ if not (Result = Result) then
+ raise Argument_Error;
+ end if;
+
+ return Result;
+ end Atan;
+
+ ---------
+ -- Exp --
+ ---------
+
+ function Exp (X : Double) return Double is
+ Result : Double;
+ begin
+ Asm (Template =>
+ "fldl2e " & NL
+ & "fmulp %%st, %%st(1)" & NL -- X * log2 (E)
+ & "fld %%st(0) " & NL
+ & "frndint " & NL -- Integer (X * Log2 (E))
+ & "fsubr %%st, %%st(1)" & NL -- Fraction (X * Log2 (E))
+ & "fxch " & NL
+ & "f2xm1 " & NL -- 2**(...) - 1
+ & "fld1 " & NL
+ & "faddp %%st, %%st(1)" & NL -- 2**(Fraction (X * Log2 (E)))
+ & "fscale " & NL -- E ** X
+ & "fstp %%st(1) ",
+ Outputs => Double'Asm_Output ("=t", Result),
+ Inputs => Double'Asm_Input ("0", X));
+ return Result;
+ end Exp;
+
+ ------------
+ -- Is_Nan --
+ ------------
+
+ function Is_Nan (X : Double) return Boolean is
+ begin
+ -- The IEEE NaN values are the only ones that do not equal themselves
+
+ return not (X = X);
+ end Is_Nan;
+
+ ---------
+ -- Log --
+ ---------
+
+ function Log (X : Double) return Double is
+ Result : Double;
+
+ begin
+ Asm (Template =>
+ "fldln2 " & NL
+ & "fxch " & NL
+ & "fyl2x " & NL,
+ Outputs => Double'Asm_Output ("=t", Result),
+ Inputs => Double'Asm_Input ("0", X));
+ return Result;
+ end Log;
+
+ ------------
+ -- Reduce --
+ ------------
+
+ function Reduce (X : Double) return Double is
+ Result : Double;
+ begin
+ Asm
+ (Template =>
+ -- Partial argument reduction
+ "fldpi " & NL
+ & "fadd %%st(0), %%st" & NL
+ & "fxch %%st(1) " & NL
+ & "fprem1 " & NL
+ & "fstp %%st(1) ",
+ Outputs => Double'Asm_Output ("=t", Result),
+ Inputs => Double'Asm_Input ("0", X));
+ return Result;
+ end Reduce;
+
+ ----------
+ -- Sqrt --
+ ----------
+
+ function Sqrt (X : Double) return Double is
+ Result : Double;
+
+ begin
+ if X < 0.0 then
+ raise Argument_Error;
+ end if;
+
+ Asm (Template => "fsqrt",
+ Outputs => Double'Asm_Output ("=t", Result),
+ Inputs => Double'Asm_Input ("0", X));
+
+ return Result;
+ end Sqrt;
+
+ ---------------------------------
+ -- Other Elementary Functions --
+ ---------------------------------
+
+ -- These are built using the previously implemented basic functions
+
+ ----------
+ -- Acos --
+ ----------
+
+ function Acos (X : Double) return Double is
+ Result : Double;
+ begin
+ Result := 2.0 * Atan (Sqrt ((1.0 - X) / (1.0 + X)));
+
+ -- The result value is NaN iff input was invalid
+
+ if Is_Nan (Result) then
+ raise Argument_Error;
+ end if;
+
+ return Result;
+ end Acos;
+
+ ----------
+ -- Asin --
+ ----------
+
+ function Asin (X : Double) return Double is
+ Result : Double;
+ begin
+
+ Result := Atan (X / Sqrt ((1.0 - X) * (1.0 + X)));
+
+ -- The result value is NaN iff input was invalid
+
+ if Is_Nan (Result) then
+ raise Argument_Error;
+ end if;
+
+ return Result;
+ end Asin;
+
+ ---------
+ -- Cos --
+ ---------
+
+ function Cos (X : Double) return Double is
+ Reduced_X : Double := X;
+ Result : Double;
+ Status : FPU_Status_Word;
+
+ begin
+
+ loop
+ Asm
+ (Template =>
+ "fcos " & NL
+ & "xorl %%eax, %%eax " & NL
+ & "fnstsw %%ax ",
+ Outputs => (Double'Asm_Output ("=t", Result),
+ FPU_Status_Word'Asm_Output ("=a", Status)),
+ Inputs => Double'Asm_Input ("0", Reduced_X));
+
+ exit when not Status.C2;
+
+ -- Original argument was not in range and the result
+ -- is the unmodified argument.
+
+ Reduced_X := Reduce (Result);
+ end loop;
+
+ return Result;
+ end Cos;
+
+ ---------------------
+ -- Logarithmic_Pow --
+ ---------------------
+
+ function Logarithmic_Pow (X, Y : Double) return Double is
+ Result : Double;
+
+ begin
+ Asm (Template => "" -- X : Y
+ & "fyl2x " & NL -- Y * Log2 (X)
+ & "fst %%st(1) " & NL -- Y * Log2 (X) : Y * Log2 (X)
+ & "frndint " & NL -- Int (...) : Y * Log2 (X)
+ & "fsubr %%st, %%st(1)" & NL -- Int (...) : Fract (...)
+ & "fxch " & NL -- Fract (...) : Int (...)
+ & "f2xm1 " & NL -- 2**Fract (...) - 1 : Int (...)
+ & "fld1 " & NL -- 1 : 2**Fract (...) - 1 : Int (...)
+ & "faddp %%st, %%st(1)" & NL -- 2**Fract (...) : Int (...)
+ & "fscale " & NL -- 2**(Fract (...) + Int (...))
+ & "fstp %%st(1) ",
+ Outputs => Double'Asm_Output ("=t", Result),
+ Inputs =>
+ (Double'Asm_Input ("0", X),
+ Double'Asm_Input ("u", Y)));
+
+ return Result;
+ end Logarithmic_Pow;
+
+ ---------
+ -- Pow --
+ ---------
+
+ function Pow (X, Y : Double) return Double is
+ type Mantissa_Type is mod 2**Double'Machine_Mantissa;
+ -- Modular type that can hold all bits of the mantissa of Double
+
+ -- For negative exponents, a division is done
+ -- at the end of the processing.
+
+ Negative_Y : constant Boolean := Y < 0.0;
+ Abs_Y : constant Double := abs Y;
+
+ -- During this function the following invariant is kept:
+ -- X ** (abs Y) = Base**(Exp_High + Exp_Mid + Exp_Low) * Factor
+
+ Base : Double := X;
+
+ Exp_High : Double := Double'Floor (Abs_Y);
+ Exp_Mid : Double;
+ Exp_Low : Double;
+ Exp_Int : Mantissa_Type;
+
+ Factor : Double := 1.0;
+
+ begin
+ -- Select algorithm for calculating Pow:
+ -- integer cases fall through
+
+ if Exp_High >= 2.0**Double'Machine_Mantissa then
+
+ -- In case of Y that is IEEE infinity, just raise constraint error
+
+ if Exp_High > Double'Safe_Last then
+ raise Constraint_Error;
+ end if;
+
+ -- Large values of Y are even integers and will stay integer
+ -- after division by two.
+
+ loop
+ -- Exp_Mid and Exp_Low are zero, so
+ -- X**(abs Y) = Base ** Exp_High = (Base**2) ** (Exp_High / 2)
+
+ Exp_High := Exp_High / 2.0;
+ Base := Base * Base;
+ exit when Exp_High < 2.0**Double'Machine_Mantissa;
+ end loop;
+
+ elsif Exp_High /= Abs_Y then
+ Exp_Low := Abs_Y - Exp_High;
+
+ Factor := 1.0;
+
+ if Exp_Low /= 0.0 then
+
+ -- Exp_Low now is in interval (0.0, 1.0)
+ -- Exp_Mid := Double'Floor (Exp_Low * 4.0) / 4.0;
+
+ Exp_Mid := 0.0;
+ Exp_Low := Exp_Low - Exp_Mid;
+
+ if Exp_Low >= 0.5 then
+ Factor := Sqrt (X);
+ Exp_Low := Exp_Low - 0.5; -- exact
+
+ if Exp_Low >= 0.25 then
+ Factor := Factor * Sqrt (Factor);
+ Exp_Low := Exp_Low - 0.25; -- exact
+ end if;
+
+ elsif Exp_Low >= 0.25 then
+ Factor := Sqrt (Sqrt (X));
+ Exp_Low := Exp_Low - 0.25; -- exact
+ end if;
+
+ -- Exp_Low now is in interval (0.0, 0.25)
+
+ -- This means it is safe to call Logarithmic_Pow
+ -- for the remaining part.
+
+ Factor := Factor * Logarithmic_Pow (X, Exp_Low);
+ end if;
+
+ elsif X = 0.0 then
+ return 0.0;
+ end if;
+
+ -- Exp_High is non-zero integer smaller than 2**Double'Machine_Mantissa
+
+ Exp_Int := Mantissa_Type (Exp_High);
+
+ -- Standard way for processing integer powers > 0
+
+ while Exp_Int > 1 loop
+ if (Exp_Int and 1) = 1 then
+
+ -- Base**Y = Base**(Exp_Int - 1) * Exp_Int for Exp_Int > 0
+
+ Factor := Factor * Base;
+ end if;
+
+ -- Exp_Int is even and Exp_Int > 0, so
+ -- Base**Y = (Base**2)**(Exp_Int / 2)
+
+ Base := Base * Base;
+ Exp_Int := Exp_Int / 2;
+ end loop;
+
+ -- Exp_Int = 1 or Exp_Int = 0
+
+ if Exp_Int = 1 then
+ Factor := Base * Factor;
+ end if;
+
+ if Negative_Y then
+ Factor := 1.0 / Factor;
+ end if;
+
+ return Factor;
+ end Pow;
+
+ ---------
+ -- Sin --
+ ---------
+
+ function Sin (X : Double) return Double is
+ Reduced_X : Double := X;
+ Result : Double;
+ Status : FPU_Status_Word;
+
+ begin
+
+ loop
+ Asm
+ (Template =>
+ "fsin " & NL
+ & "xorl %%eax, %%eax " & NL
+ & "fnstsw %%ax ",
+ Outputs => (Double'Asm_Output ("=t", Result),
+ FPU_Status_Word'Asm_Output ("=a", Status)),
+ Inputs => Double'Asm_Input ("0", Reduced_X));
+
+ exit when not Status.C2;
+
+ -- Original argument was not in range and the result
+ -- is the unmodified argument.
+
+ Reduced_X := Reduce (Result);
+ end loop;
+
+ return Result;
+ end Sin;
+
+ ---------
+ -- Tan --
+ ---------
+
+ function Tan (X : Double) return Double is
+ Reduced_X : Double := X;
+ Result : Double;
+ Status : FPU_Status_Word;
+
+ begin
+
+ loop
+ Asm
+ (Template =>
+ "fptan " & NL
+ & "xorl %%eax, %%eax " & NL
+ & "fnstsw %%ax " & NL
+ & "ffree %%st(0) " & NL
+ & "fincstp ",
+
+ Outputs => (Double'Asm_Output ("=t", Result),
+ FPU_Status_Word'Asm_Output ("=a", Status)),
+ Inputs => Double'Asm_Input ("0", Reduced_X));
+
+ exit when not Status.C2;
+
+ -- Original argument was not in range and the result
+ -- is the unmodified argument.
+
+ Reduced_X := Reduce (Result);
+ end loop;
+
+ return Result;
+ end Tan;
+
+ ----------
+ -- Sinh --
+ ----------
+
+ function Sinh (X : Double) return Double is
+ begin
+ -- Mathematically Sinh (x) is defined to be (Exp (X) - Exp (-X)) / 2.0
+
+ if abs X < 25.0 then
+ return (Exp (X) - Exp (-X)) / 2.0;
+
+ else
+ return Exp (X) / 2.0;
+ end if;
+
+ end Sinh;
+
+ ----------
+ -- Cosh --
+ ----------
+
+ function Cosh (X : Double) return Double is
+ begin
+ -- Mathematically Cosh (X) is defined to be (Exp (X) + Exp (-X)) / 2.0
+
+ if abs X < 22.0 then
+ return (Exp (X) + Exp (-X)) / 2.0;
+
+ else
+ return Exp (X) / 2.0;
+ end if;
+
+ end Cosh;
+
+ ----------
+ -- Tanh --
+ ----------
+
+ function Tanh (X : Double) return Double is
+ begin
+ -- Return the Hyperbolic Tangent of x
+ --
+ -- x -x
+ -- e - e Sinh (X)
+ -- Tanh (X) is defined to be ----------- = --------
+ -- x -x Cosh (X)
+ -- e + e
+
+ if abs X > 23.0 then
+ return Double'Copy_Sign (1.0, X);
+ end if;
+
+ return 1.0 / (1.0 + Exp (-2.0 * X)) - 1.0 / (1.0 + Exp (2.0 * X));
+
+ end Tanh;
+
+end Ada.Numerics.Aux;