1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
|
/* CRIS v32 simulator support code
Copyright (C) 2004-2021 Free Software Foundation, Inc.
Contributed by Axis Communications.
This file is part of the GNU simulators.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* The infrastructure is based on that of i960.c. */
#define WANT_CPU_CRISV32F
#define SPECIFIC_U_EXEC_FN
#define SPECIFIC_U_SKIP4_FN
#define SPECIFIC_U_CONST16_FN
#define SPECIFIC_U_CONST32_FN
#define SPECIFIC_U_MEM_FN
#define SPECIFIC_U_MOVEM_FN
#define BASENUM 32
#define CRIS_TLS_REGISTER 2
#include "cris-tmpl.c"
#if WITH_PROFILE_MODEL_P
/* Re-use the bit position for the BZ register, since there are no stall
cycles for reading or writing it. */
#define CRIS_BZ_REGNO 16
#define CRIS_MODF_JUMP_MASK (1 << CRIS_BZ_REGNO)
/* Likewise for the WZ register, marking memory writes. */
#define CRIS_WZ_REGNO 20
#define CRIS_MODF_MEM_WRITE_MASK (1 << CRIS_WZ_REGNO)
#define CRIS_MOF_REGNO (16 + 7)
#define CRIS_ALWAYS_CONDITION 14
/* This macro must only be used in context where there's only one
dynamic cause for a penalty, except in the u-exec unit. */
#define PENALIZE1(CNT) \
do \
{ \
CPU_CRIS_MISC_PROFILE (current_cpu)->CNT++; \
model_data->prev_prev_prev_modf_regs \
= model_data->prev_prev_modf_regs; \
model_data->prev_prev_modf_regs \
= model_data->prev_modf_regs; \
model_data->prev_modf_regs = 0; \
model_data->prev_prev_prev_movem_dest_regs \
= model_data->prev_prev_movem_dest_regs; \
model_data->prev_prev_movem_dest_regs \
= model_data->prev_movem_dest_regs; \
model_data->prev_movem_dest_regs = 0; \
} \
while (0)
/* Model function for u-skip4 unit. */
int
MY (XCONCAT3 (f_model_crisv,BASENUM,
_u_skip4)) (SIM_CPU *current_cpu,
const IDESC *idesc ATTRIBUTE_UNUSED,
int unit_num ATTRIBUTE_UNUSED,
int referenced ATTRIBUTE_UNUSED)
{
/* Handle PC not being updated with pbb. FIXME: What if not pbb? */
CPU (h_pc) += 4;
return 0;
}
/* Model function for u-exec unit. */
int
MY (XCONCAT3 (f_model_crisv,BASENUM,
_u_exec)) (SIM_CPU *current_cpu,
const IDESC *idesc ATTRIBUTE_UNUSED,
int unit_num ATTRIBUTE_UNUSED,
int referenced ATTRIBUTE_UNUSED,
INT destreg_in,
INT srcreg,
INT destreg_out)
{
MODEL_CRISV32_DATA *model_data
= (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu);
UINT modf_regs
= ((destreg_out == -1 ? 0 : (1 << destreg_out))
| model_data->modf_regs);
if (srcreg != -1)
{
if (model_data->prev_movem_dest_regs & (1 << srcreg))
{
PENALIZE1 (movemdst_stall_count);
PENALIZE1 (movemdst_stall_count);
PENALIZE1 (movemdst_stall_count);
}
else if (model_data->prev_prev_movem_dest_regs & (1 << srcreg))
{
PENALIZE1 (movemdst_stall_count);
PENALIZE1 (movemdst_stall_count);
}
else if (model_data->prev_prev_prev_movem_dest_regs & (1 << srcreg))
PENALIZE1 (movemdst_stall_count);
}
if (destreg_in != -1)
{
if (model_data->prev_movem_dest_regs & (1 << destreg_in))
{
PENALIZE1 (movemdst_stall_count);
PENALIZE1 (movemdst_stall_count);
PENALIZE1 (movemdst_stall_count);
}
else if (model_data->prev_prev_movem_dest_regs & (1 << destreg_in))
{
PENALIZE1 (movemdst_stall_count);
PENALIZE1 (movemdst_stall_count);
}
else if (model_data->prev_prev_prev_movem_dest_regs & (1 << destreg_in))
PENALIZE1 (movemdst_stall_count);
}
model_data->prev_prev_prev_modf_regs
= model_data->prev_prev_modf_regs;
model_data->prev_prev_modf_regs = model_data->prev_modf_regs;
model_data->prev_modf_regs = modf_regs;
model_data->modf_regs = 0;
model_data->prev_prev_prev_movem_dest_regs
= model_data->prev_prev_movem_dest_regs;
model_data->prev_prev_movem_dest_regs = model_data->prev_movem_dest_regs;
model_data->prev_movem_dest_regs = model_data->movem_dest_regs;
model_data->movem_dest_regs = 0;
/* Handle PC not being updated with pbb. FIXME: What if not pbb? */
CPU (h_pc) += 2;
return 1;
}
/* Special case used when the destination is a special register. */
int
MY (XCONCAT3 (f_model_crisv,BASENUM,
_u_exec_to_sr)) (SIM_CPU *current_cpu,
const IDESC *idesc ATTRIBUTE_UNUSED,
int unit_num ATTRIBUTE_UNUSED,
int referenced ATTRIBUTE_UNUSED,
INT srcreg,
INT specreg)
{
int specdest;
if (specreg != -1)
specdest = specreg + 16;
else
abort ();
return MY (XCONCAT3 (f_model_crisv,BASENUM,_u_exec))
(current_cpu, NULL, 0, 0, -1, srcreg,
/* The positions for constant-zero registers BZ and WZ are recycled
for jump and memory-write markers. We must take precautions
here not to add false markers for them. It might be that the
hardware inserts stall cycles for instructions that actually try
and write those registers, but we'll burn that bridge when we
get to it; we'd have to find other free bits or make new
model_data variables. However, it's doubtful that there will
ever be a need to be cycle-correct for useless code, at least in
this particular simulator, mainly used for GCC testing. */
specdest == CRIS_BZ_REGNO || specdest == CRIS_WZ_REGNO
? -1 : specdest);
}
/* Special case for movem. */
int
MY (XCONCAT3 (f_model_crisv,BASENUM,
_u_exec_movem)) (SIM_CPU *current_cpu,
const IDESC *idesc ATTRIBUTE_UNUSED,
int unit_num ATTRIBUTE_UNUSED,
int referenced ATTRIBUTE_UNUSED,
INT srcreg,
INT destreg_out)
{
return MY (XCONCAT3 (f_model_crisv,BASENUM,_u_exec))
(current_cpu, NULL, 0, 0, -1, srcreg, destreg_out);
}
/* Model function for u-const16 unit. */
int
MY (XCONCAT3 (f_model_crisv,BASENUM,
_u_const16)) (SIM_CPU *current_cpu,
const IDESC *idesc ATTRIBUTE_UNUSED,
int unit_num ATTRIBUTE_UNUSED,
int referenced ATTRIBUTE_UNUSED)
{
MODEL_CRISV32_DATA *model_data
= (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu);
/* If the previous insn was a jump of some sort and this insn
straddles a cache-line, there's a one-cycle penalty.
FIXME: Test-cases for normal const16 and others, like branch. */
if ((model_data->prev_modf_regs & CRIS_MODF_JUMP_MASK)
&& (CPU (h_pc) & 0x1e) == 0x1e)
PENALIZE1 (jumptarget_stall_count);
/* Handle PC not being updated with pbb. FIXME: What if not pbb? */
CPU (h_pc) += 2;
return 0;
}
/* Model function for u-const32 unit. */
int
MY (XCONCAT3 (f_model_crisv,BASENUM,
_u_const32)) (SIM_CPU *current_cpu,
const IDESC *idesc ATTRIBUTE_UNUSED,
int unit_num ATTRIBUTE_UNUSED,
int referenced ATTRIBUTE_UNUSED)
{
MODEL_CRISV32_DATA *model_data
= (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu);
/* If the previous insn was a jump of some sort and this insn
straddles a cache-line, there's a one-cycle penalty. */
if ((model_data->prev_modf_regs & CRIS_MODF_JUMP_MASK)
&& (CPU (h_pc) & 0x1e) == 0x1c)
PENALIZE1 (jumptarget_stall_count);
/* Handle PC not being updated with pbb. FIXME: What if not pbb? */
CPU (h_pc) += 4;
return 0;
}
/* Model function for u-mem unit. */
int
MY (XCONCAT3 (f_model_crisv,BASENUM,
_u_mem)) (SIM_CPU *current_cpu,
const IDESC *idesc ATTRIBUTE_UNUSED,
int unit_num ATTRIBUTE_UNUSED,
int referenced ATTRIBUTE_UNUSED,
INT srcreg)
{
MODEL_CRISV32_DATA *model_data
= (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu);
if (srcreg == -1)
abort ();
/* If srcreg references a register modified in the previous cycle
through other than autoincrement, then there's a penalty: one
cycle. */
if (model_data->prev_modf_regs & (1 << srcreg))
PENALIZE1 (memsrc_stall_count);
return 0;
}
/* Model function for u-mem-r unit. */
int
MY (XCONCAT3 (f_model_crisv,BASENUM,
_u_mem_r)) (SIM_CPU *current_cpu,
const IDESC *idesc ATTRIBUTE_UNUSED,
int unit_num ATTRIBUTE_UNUSED,
int referenced ATTRIBUTE_UNUSED)
{
MODEL_CRISV32_DATA *model_data
= (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu);
/* There's a two-cycle penalty for read after a memory write in any of
the two previous cycles, known as a cache read-after-write hazard.
This model function (the model_data member access) depends on being
executed before the u-exec unit. */
if ((model_data->prev_modf_regs & CRIS_MODF_MEM_WRITE_MASK)
|| (model_data->prev_prev_modf_regs & CRIS_MODF_MEM_WRITE_MASK))
{
PENALIZE1 (memraw_stall_count);
PENALIZE1 (memraw_stall_count);
}
return 0;
}
/* Model function for u-mem-w unit. */
int
MY (XCONCAT3 (f_model_crisv,BASENUM,
_u_mem_w)) (SIM_CPU *current_cpu,
const IDESC *idesc ATTRIBUTE_UNUSED,
int unit_num ATTRIBUTE_UNUSED,
int referenced ATTRIBUTE_UNUSED)
{
MODEL_CRISV32_DATA *model_data
= (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu);
/* Mark that memory has been written. This model function (the
model_data member access) depends on being executed after the
u-exec unit. */
model_data->prev_modf_regs |= CRIS_MODF_MEM_WRITE_MASK;
return 0;
}
/* Model function for u-movem-rtom unit. */
int
MY (XCONCAT3 (f_model_crisv,BASENUM,
_u_movem_rtom)) (SIM_CPU *current_cpu,
const IDESC *idesc ATTRIBUTE_UNUSED,
int unit_num ATTRIBUTE_UNUSED,
int referenced ATTRIBUTE_UNUSED,
/* Deliberate order. */
INT addrreg, INT limreg)
{
USI addr;
MODEL_CRISV32_DATA *model_data
= (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu);
if (limreg == -1 || addrreg == -1)
abort ();
addr = GET_H_GR (addrreg);
/* The movem-to-memory instruction must not move a register modified
in one of the previous two cycles. Enforce by adding penalty
cycles. */
if (model_data->prev_modf_regs & ((1 << (limreg + 1)) - 1))
{
PENALIZE1 (movemsrc_stall_count);
PENALIZE1 (movemsrc_stall_count);
}
else if (model_data->prev_prev_modf_regs & ((1 << (limreg + 1)) - 1))
PENALIZE1 (movemsrc_stall_count);
/* One-cycle penalty for each cache-line straddled. Use the
documented expressions. Unfortunately no penalty cycles are
eliminated by any penalty cycles above. We file these numbers
separately, since they aren't schedulable for all cases. */
if ((addr >> 5) == (((addr + 4 * (limreg + 1)) - 1) >> 5))
;
else if ((addr >> 5) == (((addr + 4 * (limreg + 1)) - 1) >> 5) - 1)
PENALIZE1 (movemaddr_stall_count);
else if ((addr >> 5) == (((addr + 4 * (limreg + 1)) - 1) >> 5) - 2)
{
PENALIZE1 (movemaddr_stall_count);
PENALIZE1 (movemaddr_stall_count);
}
else
abort ();
return 0;
}
/* Model function for u-movem-mtor unit. */
int
MY (XCONCAT3 (f_model_crisv,BASENUM,
_u_movem_mtor)) (SIM_CPU *current_cpu,
const IDESC *idesc ATTRIBUTE_UNUSED,
int unit_num ATTRIBUTE_UNUSED,
int referenced ATTRIBUTE_UNUSED,
/* Deliberate order. */
INT addrreg, INT limreg)
{
USI addr;
int nregs = limreg + 1;
MODEL_CRISV32_DATA *model_data
= (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu);
if (limreg == -1 || addrreg == -1)
abort ();
addr = GET_H_GR (addrreg);
/* One-cycle penalty for each cache-line straddled. Use the
documented expressions. One cycle is the norm; more cycles are
counted as penalties. Unfortunately no penalty cycles here
eliminate penalty cycles indicated in ->movem_dest_regs. */
if ((addr >> 5) == (((addr + 4 * nregs) - 1) >> 5) - 1)
PENALIZE1 (movemaddr_stall_count);
else if ((addr >> 5) == (((addr + 4 * nregs) - 1) >> 5) - 2)
{
PENALIZE1 (movemaddr_stall_count);
PENALIZE1 (movemaddr_stall_count);
}
model_data->modf_regs |= ((1 << nregs) - 1);
model_data->movem_dest_regs |= ((1 << nregs) - 1);
return 0;
}
/* Model function for u-branch unit.
FIXME: newpc and cc are always wrong. */
int
MY (XCONCAT3 (f_model_crisv,BASENUM,_u_branch)) (SIM_CPU *current_cpu,
const IDESC *idesc,
int unit_num, int referenced)
{
CRIS_MISC_PROFILE *profp = CPU_CRIS_MISC_PROFILE (current_cpu);
USI pc = profp->old_pc;
MODEL_CRISV32_DATA *model_data
= (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu);
int taken = profp->branch_taken;
int branch_index = (pc & (N_CRISV32_BRANCH_PREDICTORS - 1)) >> 1;
int pred_taken = (profp->branch_predictors[branch_index] & 2) != 0;
if (taken != pred_taken)
{
PENALIZE1 (branch_stall_count);
PENALIZE1 (branch_stall_count);
}
if (taken)
{
if (profp->branch_predictors[branch_index] < 3)
profp->branch_predictors[branch_index]++;
return MY (XCONCAT3 (f_model_crisv,BASENUM,_u_jump))
(current_cpu, idesc, unit_num, referenced, -1);
}
if (profp->branch_predictors[branch_index] != 0)
profp->branch_predictors[branch_index]--;
return 0;
}
/* Model function for u-jump-r unit. */
int
MY (XCONCAT3 (f_model_crisv,BASENUM,
_u_jump_r)) (SIM_CPU *current_cpu,
const IDESC *idesc ATTRIBUTE_UNUSED,
int unit_num ATTRIBUTE_UNUSED,
int referenced ATTRIBUTE_UNUSED,
int regno)
{
MODEL_CRISV32_DATA *model_data
= (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu);
if (regno == -1)
abort ();
/* For jump-to-register, the register must not have been modified the
last two cycles. Penalty: two cycles from the modifying insn. */
if ((1 << regno) & model_data->prev_modf_regs)
{
PENALIZE1 (jumpsrc_stall_count);
PENALIZE1 (jumpsrc_stall_count);
}
else if ((1 << regno) & model_data->prev_prev_modf_regs)
PENALIZE1 (jumpsrc_stall_count);
return 0;
}
/* Model function for u-jump-sr unit. */
int
MY (XCONCAT3 (f_model_crisv,BASENUM,_u_jump_sr)) (SIM_CPU *current_cpu,
const IDESC *idesc,
int unit_num, int referenced,
int sr_regno)
{
int regno;
MODEL_CRISV32_DATA *model_data
= (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu);
if (sr_regno == -1)
abort ();
regno = sr_regno + 16;
/* For jump-to-register, the register must not have been modified the
last two cycles. Penalty: two cycles from the modifying insn. */
if ((1 << regno) & model_data->prev_modf_regs)
{
PENALIZE1 (jumpsrc_stall_count);
PENALIZE1 (jumpsrc_stall_count);
}
else if ((1 << regno) & model_data->prev_prev_modf_regs)
PENALIZE1 (jumpsrc_stall_count);
return
MY (XCONCAT3 (f_model_crisv,BASENUM,_u_jump)) (current_cpu, idesc,
unit_num, referenced, -1);
}
/* Model function for u-jump unit. */
int
MY (XCONCAT3 (f_model_crisv,BASENUM,
_u_jump)) (SIM_CPU *current_cpu,
const IDESC *idesc ATTRIBUTE_UNUSED,
int unit_num ATTRIBUTE_UNUSED,
int referenced ATTRIBUTE_UNUSED,
int out_sr_regno)
{
MODEL_CRISV32_DATA *model_data
= (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu);
/* Mark that we made a jump. */
model_data->modf_regs
|= (CRIS_MODF_JUMP_MASK
| (out_sr_regno == -1 || out_sr_regno == CRIS_BZ_REGNO
? 0 : (1 << (out_sr_regno + 16))));
return 0;
}
/* Model function for u-multiply unit. */
int
MY (XCONCAT3 (f_model_crisv,BASENUM,
_u_multiply)) (SIM_CPU *current_cpu,
const IDESC *idesc ATTRIBUTE_UNUSED,
int unit_num ATTRIBUTE_UNUSED,
int referenced ATTRIBUTE_UNUSED,
int srcreg, int destreg)
{
MODEL_CRISV32_DATA *model_data
= (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu);
/* Sanity-check for cases that should never happen. */
if (srcreg == -1 || destreg == -1)
abort ();
/* This takes extra cycles when one of the inputs has been modified
through other than autoincrement in the previous cycle. Penalty:
one cycle. */
if (((1 << srcreg) | (1 << destreg)) & model_data->prev_modf_regs)
PENALIZE1 (mulsrc_stall_count);
/* We modified the multiplication destination (marked in u-exec) and
the MOF register. */
model_data->modf_regs |= (1 << CRIS_MOF_REGNO);
return 0;
}
#endif /* WITH_PROFILE_MODEL_P */
int
MY (deliver_interrupt) (SIM_CPU *current_cpu,
enum cris_interrupt_type type,
unsigned int vec)
{
unsigned32 old_ccs, shifted_ccs, new_ccs;
unsigned char entryaddr_le[4];
int was_user;
SIM_DESC sd = CPU_STATE (current_cpu);
unsigned32 entryaddr;
/* We haven't implemented other interrupt-types yet. */
if (type != CRIS_INT_INT)
abort ();
/* We're called outside of branch delay slots etc, so we don't check
for that. */
if (!GET_H_IBIT_V32 ())
return 0;
old_ccs = GET_H_SR_V32 (H_SR_CCS);
shifted_ccs = (old_ccs << 10) & ((1 << 30) - 1);
/* The M bit is handled by code below and the M bit setter function, but
we need to preserve the Q bit. */
new_ccs = shifted_ccs | (old_ccs & (unsigned32) 0x80000000UL);
was_user = GET_H_UBIT_V32 ();
/* We need to force kernel mode since the setter method doesn't allow
it. Then we can use setter methods at will, since they then
recognize that we're in kernel mode. */
CPU (h_ubit_v32) = 0;
SET_H_SR (H_SR_CCS, new_ccs);
if (was_user)
{
/* These methods require that user mode is unset. */
SET_H_SR (H_SR_USP, GET_H_GR (H_GR_SP));
SET_H_GR (H_GR_SP, GET_H_KERNEL_SP ());
}
/* ERP setting is simplified by not taking interrupts in delay-slots
or when halting. */
/* For all other exceptions than guru and NMI, store the return
address in ERP and set EXS and EXD here. */
SET_H_SR (H_SR_ERP, GET_H_PC ());
/* Simplified by not having exception types (fault indications). */
SET_H_SR_V32 (H_SR_EXS, (vec * 256));
SET_H_SR_V32 (H_SR_EDA, 0);
if (sim_core_read_buffer (sd,
current_cpu,
read_map, entryaddr_le,
GET_H_SR (H_SR_EBP) + vec * 4, 4) == 0)
{
/* Nothing to do actually; either abort or send a signal. */
sim_core_signal (sd, current_cpu, CPU_PC_GET (current_cpu), 0, 4,
GET_H_SR (H_SR_EBP) + vec * 4,
read_transfer, sim_core_unmapped_signal);
return 0;
}
entryaddr = bfd_getl32 (entryaddr_le);
SET_H_PC (entryaddr);
return 1;
}
|