aboutsummaryrefslogtreecommitdiff
path: root/gdb/varobj.c
blob: 3358be4e77b48886f66301a592dad6e01d10938a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
/* Implementation of the GDB variable objects API.

   Copyright (C) 1999-2020 Free Software Foundation, Inc.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "value.h"
#include "expression.h"
#include "frame.h"
#include "language.h"
#include "gdbcmd.h"
#include "block.h"
#include "valprint.h"
#include "gdb_regex.h"

#include "varobj.h"
#include "gdbthread.h"
#include "inferior.h"
#include "varobj-iter.h"
#include "parser-defs.h"
#include "gdbarch.h"

#if HAVE_PYTHON
#include "python/python.h"
#include "python/python-internal.h"
#else
typedef int PyObject;
#endif

/* See varobj.h.  */

unsigned int varobjdebug = 0;
static void
show_varobjdebug (struct ui_file *file, int from_tty,
		  struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
}

/* String representations of gdb's format codes.  */
const char *varobj_format_string[] =
  { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };

/* True if we want to allow Python-based pretty-printing.  */
static bool pretty_printing = false;

void
varobj_enable_pretty_printing (void)
{
  pretty_printing = true;
}

/* Data structures */

/* Every root variable has one of these structures saved in its
   varobj.  */
struct varobj_root
{
  /* The expression for this parent.  */
  expression_up exp;

  /* Block for which this expression is valid.  */
  const struct block *valid_block = NULL;

  /* The frame for this expression.  This field is set iff valid_block is
     not NULL.  */
  struct frame_id frame = null_frame_id;

  /* The global thread ID that this varobj_root belongs to.  This field
     is only valid if valid_block is not NULL.
     When not 0, indicates which thread 'frame' belongs to.
     When 0, indicates that the thread list was empty when the varobj_root
     was created.  */
  int thread_id = 0;

  /* If true, the -var-update always recomputes the value in the
     current thread and frame.  Otherwise, variable object is
     always updated in the specific scope/thread/frame.  */
  bool floating = false;

  /* Flag that indicates validity: set to false when this varobj_root refers
     to symbols that do not exist anymore.  */
  bool is_valid = true;

  /* Language-related operations for this variable and its
     children.  */
  const struct lang_varobj_ops *lang_ops = NULL;

  /* The varobj for this root node.  */
  struct varobj *rootvar = NULL;

  /* Next root variable */
  struct varobj_root *next = NULL;
};

/* Dynamic part of varobj.  */

struct varobj_dynamic
{
  /* Whether the children of this varobj were requested.  This field is
     used to decide if dynamic varobj should recompute their children.
     In the event that the frontend never asked for the children, we
     can avoid that.  */
  bool children_requested = false;

  /* The pretty-printer constructor.  If NULL, then the default
     pretty-printer will be looked up.  If None, then no
     pretty-printer will be installed.  */
  PyObject *constructor = NULL;

  /* The pretty-printer that has been constructed.  If NULL, then a
     new printer object is needed, and one will be constructed.  */
  PyObject *pretty_printer = NULL;

  /* The iterator returned by the printer's 'children' method, or NULL
     if not available.  */
  struct varobj_iter *child_iter = NULL;

  /* We request one extra item from the iterator, so that we can
     report to the caller whether there are more items than we have
     already reported.  However, we don't want to install this value
     when we read it, because that will mess up future updates.  So,
     we stash it here instead.  */
  varobj_item *saved_item = NULL;
};

/* A list of varobjs */

struct vlist
{
  struct varobj *var;
  struct vlist *next;
};

/* Private function prototypes */

/* Helper functions for the above subcommands.  */

static int delete_variable (struct varobj *, bool);

static void delete_variable_1 (int *, struct varobj *, bool, bool);

static bool install_variable (struct varobj *);

static void uninstall_variable (struct varobj *);

static struct varobj *create_child (struct varobj *, int, std::string &);

static struct varobj *
create_child_with_value (struct varobj *parent, int index,
			 struct varobj_item *item);

/* Utility routines */

static enum varobj_display_formats variable_default_display (struct varobj *);

static bool update_type_if_necessary (struct varobj *var,
				      struct value *new_value);

static bool install_new_value (struct varobj *var, struct value *value,
			       bool initial);

/* Language-specific routines.  */

static int number_of_children (const struct varobj *);

static std::string name_of_variable (const struct varobj *);

static std::string name_of_child (struct varobj *, int);

static struct value *value_of_root (struct varobj **var_handle, bool *);

static struct value *value_of_child (const struct varobj *parent, int index);

static std::string my_value_of_variable (struct varobj *var,
					 enum varobj_display_formats format);

static bool is_root_p (const struct varobj *var);

static struct varobj *varobj_add_child (struct varobj *var,
					struct varobj_item *item);

/* Private data */

/* Mappings of varobj_display_formats enums to gdb's format codes.  */
static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };

/* Header of the list of root variable objects.  */
static struct varobj_root *rootlist;

/* Prime number indicating the number of buckets in the hash table.  */
/* A prime large enough to avoid too many collisions.  */
#define VAROBJ_TABLE_SIZE 227

/* Pointer to the varobj hash table (built at run time).  */
static struct vlist **varobj_table;



/* API Implementation */
static bool
is_root_p (const struct varobj *var)
{
  return (var->root->rootvar == var);
}

#ifdef HAVE_PYTHON

/* See python-internal.h.  */
gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
: gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
{
}

#endif

/* Return the full FRAME which corresponds to the given CORE_ADDR
   or NULL if no FRAME on the chain corresponds to CORE_ADDR.  */

static struct frame_info *
find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
{
  struct frame_info *frame = NULL;

  if (frame_addr == (CORE_ADDR) 0)
    return NULL;

  for (frame = get_current_frame ();
       frame != NULL;
       frame = get_prev_frame (frame))
    {
      /* The CORE_ADDR we get as argument was parsed from a string GDB
	 output as $fp.  This output got truncated to gdbarch_addr_bit.
	 Truncate the frame base address in the same manner before
	 comparing it against our argument.  */
      CORE_ADDR frame_base = get_frame_base_address (frame);
      int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));

      if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
	frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;

      if (frame_base == frame_addr)
	return frame;
    }

  return NULL;
}

/* Creates a varobj (not its children).  */

struct varobj *
varobj_create (const char *objname,
	       const char *expression, CORE_ADDR frame, enum varobj_type type)
{
  /* Fill out a varobj structure for the (root) variable being constructed.  */
  std::unique_ptr<varobj> var (new varobj (new varobj_root));

  if (expression != NULL)
    {
      struct frame_info *fi;
      struct frame_id old_id = null_frame_id;
      const struct block *block;
      const char *p;
      struct value *value = NULL;
      CORE_ADDR pc;

      /* Parse and evaluate the expression, filling in as much of the
         variable's data as possible.  */

      if (has_stack_frames ())
	{
	  /* Allow creator to specify context of variable.  */
	  if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
	    fi = get_selected_frame (NULL);
	  else
	    /* FIXME: cagney/2002-11-23: This code should be doing a
	       lookup using the frame ID and not just the frame's
	       ``address''.  This, of course, means an interface
	       change.  However, with out that interface change ISAs,
	       such as the ia64 with its two stacks, won't work.
	       Similar goes for the case where there is a frameless
	       function.  */
	    fi = find_frame_addr_in_frame_chain (frame);
	}
      else
	fi = NULL;

      if (type == USE_SELECTED_FRAME)
	var->root->floating = true;

      pc = 0;
      block = NULL;
      if (fi != NULL)
	{
	  block = get_frame_block (fi, 0);
	  pc = get_frame_pc (fi);
	}

      p = expression;

      innermost_block_tracker tracker (INNERMOST_BLOCK_FOR_SYMBOLS
				       | INNERMOST_BLOCK_FOR_REGISTERS);
      /* Wrap the call to parse expression, so we can 
         return a sensible error.  */
      try
	{
	  var->root->exp = parse_exp_1 (&p, pc, block, 0, &tracker);
	}

      catch (const gdb_exception_error &except)
	{
	  return NULL;
	}

      /* Don't allow variables to be created for types.  */
      if (var->root->exp->elts[0].opcode == OP_TYPE
	  || var->root->exp->elts[0].opcode == OP_TYPEOF
	  || var->root->exp->elts[0].opcode == OP_DECLTYPE)
	{
	  fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
			      " as an expression.\n");
	  return NULL;
	}

      var->format = variable_default_display (var.get ());
      var->root->valid_block =
	var->root->floating ? NULL : tracker.block ();
      var->name = expression;
      /* For a root var, the name and the expr are the same.  */
      var->path_expr = expression;

      /* When the frame is different from the current frame, 
         we must select the appropriate frame before parsing
         the expression, otherwise the value will not be current.
         Since select_frame is so benign, just call it for all cases.  */
      if (var->root->valid_block)
	{
	  /* User could specify explicit FRAME-ADDR which was not found but
	     EXPRESSION is frame specific and we would not be able to evaluate
	     it correctly next time.  With VALID_BLOCK set we must also set
	     FRAME and THREAD_ID.  */
	  if (fi == NULL)
	    error (_("Failed to find the specified frame"));

	  var->root->frame = get_frame_id (fi);
	  var->root->thread_id = inferior_thread ()->global_num;
	  old_id = get_frame_id (get_selected_frame (NULL));
	  select_frame (fi);	 
	}

      /* We definitely need to catch errors here.
         If evaluate_expression succeeds we got the value we wanted.
         But if it fails, we still go on with a call to evaluate_type().  */
      try
	{
	  value = evaluate_expression (var->root->exp.get ());
	}
      catch (const gdb_exception_error &except)
	{
	  /* Error getting the value.  Try to at least get the
	     right type.  */
	  struct value *type_only_value = evaluate_type (var->root->exp.get ());

	  var->type = value_type (type_only_value);
	}

      if (value != NULL)
	{
	  int real_type_found = 0;

	  var->type = value_actual_type (value, 0, &real_type_found);
	  if (real_type_found)
	    value = value_cast (var->type, value);
	}

      /* Set language info */
      var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;

      install_new_value (var.get (), value, 1 /* Initial assignment */);

      /* Set ourselves as our root.  */
      var->root->rootvar = var.get ();

      /* Reset the selected frame.  */
      if (frame_id_p (old_id))
	select_frame (frame_find_by_id (old_id));
    }

  /* If the variable object name is null, that means this
     is a temporary variable, so don't install it.  */

  if ((var != NULL) && (objname != NULL))
    {
      var->obj_name = objname;

      /* If a varobj name is duplicated, the install will fail so
         we must cleanup.  */
      if (!install_variable (var.get ()))
	return NULL;
    }

  return var.release ();
}

/* Generates an unique name that can be used for a varobj.  */

std::string
varobj_gen_name (void)
{
  static int id = 0;

  /* Generate a name for this object.  */
  id++;
  return string_printf ("var%d", id);
}

/* Given an OBJNAME, returns the pointer to the corresponding varobj.  Call
   error if OBJNAME cannot be found.  */

struct varobj *
varobj_get_handle (const char *objname)
{
  struct vlist *cv;
  const char *chp;
  unsigned int index = 0;
  unsigned int i = 1;

  for (chp = objname; *chp; chp++)
    {
      index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
    }

  cv = *(varobj_table + index);
  while (cv != NULL && cv->var->obj_name != objname)
    cv = cv->next;

  if (cv == NULL)
    error (_("Variable object not found"));

  return cv->var;
}

/* Given the handle, return the name of the object.  */

const char *
varobj_get_objname (const struct varobj *var)
{
  return var->obj_name.c_str ();
}

/* Given the handle, return the expression represented by the
   object.  */

std::string
varobj_get_expression (const struct varobj *var)
{
  return name_of_variable (var);
}

/* See varobj.h.  */

int
varobj_delete (struct varobj *var, bool only_children)
{
  return delete_variable (var, only_children);
}

#if HAVE_PYTHON

/* Convenience function for varobj_set_visualizer.  Instantiate a
   pretty-printer for a given value.  */
static PyObject *
instantiate_pretty_printer (PyObject *constructor, struct value *value)
{
  PyObject *val_obj = NULL; 
  PyObject *printer;

  val_obj = value_to_value_object (value);
  if (! val_obj)
    return NULL;

  printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
  Py_DECREF (val_obj);
  return printer;
}

#endif

/* Set/Get variable object display format.  */

enum varobj_display_formats
varobj_set_display_format (struct varobj *var,
			   enum varobj_display_formats format)
{
  switch (format)
    {
    case FORMAT_NATURAL:
    case FORMAT_BINARY:
    case FORMAT_DECIMAL:
    case FORMAT_HEXADECIMAL:
    case FORMAT_OCTAL:
    case FORMAT_ZHEXADECIMAL:
      var->format = format;
      break;

    default:
      var->format = variable_default_display (var);
    }

  if (varobj_value_is_changeable_p (var) 
      && var->value != nullptr && !value_lazy (var->value.get ()))
    {
      var->print_value = varobj_value_get_print_value (var->value.get (),
						       var->format, var);
    }

  return var->format;
}

enum varobj_display_formats
varobj_get_display_format (const struct varobj *var)
{
  return var->format;
}

gdb::unique_xmalloc_ptr<char>
varobj_get_display_hint (const struct varobj *var)
{
  gdb::unique_xmalloc_ptr<char> result;

#if HAVE_PYTHON
  if (!gdb_python_initialized)
    return NULL;

  gdbpy_enter_varobj enter_py (var);

  if (var->dynamic->pretty_printer != NULL)
    result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
#endif

  return result;
}

/* Return true if the varobj has items after TO, false otherwise.  */

bool
varobj_has_more (const struct varobj *var, int to)
{
  if (var->children.size () > to)
    return true;

  return ((to == -1 || var->children.size () == to)
	  && (var->dynamic->saved_item != NULL));
}

/* If the variable object is bound to a specific thread, that
   is its evaluation can always be done in context of a frame
   inside that thread, returns GDB id of the thread -- which
   is always positive.  Otherwise, returns -1.  */
int
varobj_get_thread_id (const struct varobj *var)
{
  if (var->root->valid_block && var->root->thread_id > 0)
    return var->root->thread_id;
  else
    return -1;
}

void
varobj_set_frozen (struct varobj *var, bool frozen)
{
  /* When a variable is unfrozen, we don't fetch its value.
     The 'not_fetched' flag remains set, so next -var-update
     won't complain.

     We don't fetch the value, because for structures the client
     should do -var-update anyway.  It would be bad to have different
     client-size logic for structure and other types.  */
  var->frozen = frozen;
}

bool
varobj_get_frozen (const struct varobj *var)
{
  return var->frozen;
}

/* A helper function that updates the contents of FROM and TO based on the
   size of the vector CHILDREN.  If the contents of either FROM or TO are
   negative the entire range is used.  */

void
varobj_restrict_range (const std::vector<varobj *> &children,
		       int *from, int *to)
{
  int len = children.size ();

  if (*from < 0 || *to < 0)
    {
      *from = 0;
      *to = len;
    }
  else
    {
      if (*from > len)
	*from = len;
      if (*to > len)
	*to = len;
      if (*from > *to)
	*from = *to;
    }
}

/* A helper for update_dynamic_varobj_children that installs a new
   child when needed.  */

static void
install_dynamic_child (struct varobj *var,
		       std::vector<varobj *> *changed,
		       std::vector<varobj *> *type_changed,
		       std::vector<varobj *> *newobj,
		       std::vector<varobj *> *unchanged,
		       bool *cchanged,
		       int index,
		       struct varobj_item *item)
{
  if (var->children.size () < index + 1)
    {
      /* There's no child yet.  */
      struct varobj *child = varobj_add_child (var, item);

      if (newobj != NULL)
	{
	  newobj->push_back (child);
	  *cchanged = true;
	}
    }
  else
    {
      varobj *existing = var->children[index];
      bool type_updated = update_type_if_necessary (existing, item->value);

      if (type_updated)
	{
	  if (type_changed != NULL)
	    type_changed->push_back (existing);
	}
      if (install_new_value (existing, item->value, 0))
	{
	  if (!type_updated && changed != NULL)
	    changed->push_back (existing);
	}
      else if (!type_updated && unchanged != NULL)
	unchanged->push_back (existing);
    }
}

#if HAVE_PYTHON

static bool
dynamic_varobj_has_child_method (const struct varobj *var)
{
  PyObject *printer = var->dynamic->pretty_printer;

  if (!gdb_python_initialized)
    return false;

  gdbpy_enter_varobj enter_py (var);
  return PyObject_HasAttr (printer, gdbpy_children_cst);
}
#endif

/* A factory for creating dynamic varobj's iterators.  Returns an
   iterator object suitable for iterating over VAR's children.  */

static struct varobj_iter *
varobj_get_iterator (struct varobj *var)
{
#if HAVE_PYTHON
  if (var->dynamic->pretty_printer)
    return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
#endif

  gdb_assert_not_reached (_("\
requested an iterator from a non-dynamic varobj"));
}

/* Release and clear VAR's saved item, if any.  */

static void
varobj_clear_saved_item (struct varobj_dynamic *var)
{
  if (var->saved_item != NULL)
    {
      value_decref (var->saved_item->value);
      delete var->saved_item;
      var->saved_item = NULL;
    }
}

static bool
update_dynamic_varobj_children (struct varobj *var,
				std::vector<varobj *> *changed,
				std::vector<varobj *> *type_changed,
				std::vector<varobj *> *newobj,
				std::vector<varobj *> *unchanged,
				bool *cchanged,
				bool update_children,
				int from,
				int to)
{
  int i;

  *cchanged = false;

  if (update_children || var->dynamic->child_iter == NULL)
    {
      varobj_iter_delete (var->dynamic->child_iter);
      var->dynamic->child_iter = varobj_get_iterator (var);

      varobj_clear_saved_item (var->dynamic);

      i = 0;

      if (var->dynamic->child_iter == NULL)
	return false;
    }
  else
    i = var->children.size ();

  /* We ask for one extra child, so that MI can report whether there
     are more children.  */
  for (; to < 0 || i < to + 1; ++i)
    {
      varobj_item *item;

      /* See if there was a leftover from last time.  */
      if (var->dynamic->saved_item != NULL)
	{
	  item = var->dynamic->saved_item;
	  var->dynamic->saved_item = NULL;
	}
      else
	{
	  item = varobj_iter_next (var->dynamic->child_iter);
	  /* Release vitem->value so its lifetime is not bound to the
	     execution of a command.  */
	  if (item != NULL && item->value != NULL)
	    item->value = release_value (item->value).release ();
	}

      if (item == NULL)
	{
	  /* Iteration is done.  Remove iterator from VAR.  */
	  varobj_iter_delete (var->dynamic->child_iter);
	  var->dynamic->child_iter = NULL;
	  break;
	}
      /* We don't want to push the extra child on any report list.  */
      if (to < 0 || i < to)
	{
	  bool can_mention = from < 0 || i >= from;

	  install_dynamic_child (var, can_mention ? changed : NULL,
				 can_mention ? type_changed : NULL,
				 can_mention ? newobj : NULL,
				 can_mention ? unchanged : NULL,
				 can_mention ? cchanged : NULL, i,
				 item);

	  delete item;
	}
      else
	{
	  var->dynamic->saved_item = item;

	  /* We want to truncate the child list just before this
	     element.  */
	  break;
	}
    }

  if (i < var->children.size ())
    {
      *cchanged = true;
      for (int j = i; j < var->children.size (); ++j)
	varobj_delete (var->children[j], 0);

      var->children.resize (i);
    }

  /* If there are fewer children than requested, note that the list of
     children changed.  */
  if (to >= 0 && var->children.size () < to)
    *cchanged = true;

  var->num_children = var->children.size ();

  return true;
}

int
varobj_get_num_children (struct varobj *var)
{
  if (var->num_children == -1)
    {
      if (varobj_is_dynamic_p (var))
	{
	  bool dummy;

	  /* If we have a dynamic varobj, don't report -1 children.
	     So, try to fetch some children first.  */
	  update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
					  false, 0, 0);
	}
      else
	var->num_children = number_of_children (var);
    }

  return var->num_children >= 0 ? var->num_children : 0;
}

/* Creates a list of the immediate children of a variable object;
   the return code is the number of such children or -1 on error.  */

const std::vector<varobj *> &
varobj_list_children (struct varobj *var, int *from, int *to)
{
  var->dynamic->children_requested = true;

  if (varobj_is_dynamic_p (var))
    {
      bool children_changed;

      /* This, in theory, can result in the number of children changing without
	 frontend noticing.  But well, calling -var-list-children on the same
	 varobj twice is not something a sane frontend would do.  */
      update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
				      &children_changed, false, 0, *to);
      varobj_restrict_range (var->children, from, to);
      return var->children;
    }

  if (var->num_children == -1)
    var->num_children = number_of_children (var);

  /* If that failed, give up.  */
  if (var->num_children == -1)
    return var->children;

  /* If we're called when the list of children is not yet initialized,
     allocate enough elements in it.  */
  while (var->children.size () < var->num_children)
    var->children.push_back (NULL);

  for (int i = 0; i < var->num_children; i++)
    {
      if (var->children[i] == NULL)
	{
	  /* Either it's the first call to varobj_list_children for
	     this variable object, and the child was never created,
	     or it was explicitly deleted by the client.  */
	  std::string name = name_of_child (var, i);
	  var->children[i] = create_child (var, i, name);
	}
    }

  varobj_restrict_range (var->children, from, to);
  return var->children;
}

static struct varobj *
varobj_add_child (struct varobj *var, struct varobj_item *item)
{
  varobj *v = create_child_with_value (var, var->children.size (), item);

  var->children.push_back (v);

  return v;
}

/* Obtain the type of an object Variable as a string similar to the one gdb
   prints on the console.  The caller is responsible for freeing the string.
   */

std::string
varobj_get_type (struct varobj *var)
{
  /* For the "fake" variables, do not return a type.  (Its type is
     NULL, too.)
     Do not return a type for invalid variables as well.  */
  if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
    return std::string ();

  return type_to_string (var->type);
}

/* Obtain the type of an object variable.  */

struct type *
varobj_get_gdb_type (const struct varobj *var)
{
  return var->type;
}

/* Is VAR a path expression parent, i.e., can it be used to construct
   a valid path expression?  */

static bool
is_path_expr_parent (const struct varobj *var)
{
  gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
  return var->root->lang_ops->is_path_expr_parent (var);
}

/* Is VAR a path expression parent, i.e., can it be used to construct
   a valid path expression?  By default we assume any VAR can be a path
   parent.  */

bool
varobj_default_is_path_expr_parent (const struct varobj *var)
{
  return true;
}

/* Return the path expression parent for VAR.  */

const struct varobj *
varobj_get_path_expr_parent (const struct varobj *var)
{
  const struct varobj *parent = var;

  while (!is_root_p (parent) && !is_path_expr_parent (parent))
    parent = parent->parent;

  /* Computation of full rooted expression for children of dynamic
     varobjs is not supported.  */
  if (varobj_is_dynamic_p (parent))
    error (_("Invalid variable object (child of a dynamic varobj)"));

  return parent;
}

/* Return a pointer to the full rooted expression of varobj VAR.
   If it has not been computed yet, compute it.  */

const char *
varobj_get_path_expr (const struct varobj *var)
{
  if (var->path_expr.empty ())
    {
      /* For root varobjs, we initialize path_expr
	 when creating varobj, so here it should be
	 child varobj.  */
      struct varobj *mutable_var = (struct varobj *) var;
      gdb_assert (!is_root_p (var));

      mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
    }

  return var->path_expr.c_str ();
}

const struct language_defn *
varobj_get_language (const struct varobj *var)
{
  return var->root->exp->language_defn;
}

int
varobj_get_attributes (const struct varobj *var)
{
  int attributes = 0;

  if (varobj_editable_p (var))
    /* FIXME: define masks for attributes.  */
    attributes |= 0x00000001;	/* Editable */

  return attributes;
}

/* Return true if VAR is a dynamic varobj.  */

bool
varobj_is_dynamic_p (const struct varobj *var)
{
  return var->dynamic->pretty_printer != NULL;
}

std::string
varobj_get_formatted_value (struct varobj *var,
			    enum varobj_display_formats format)
{
  return my_value_of_variable (var, format);
}

std::string
varobj_get_value (struct varobj *var)
{
  return my_value_of_variable (var, var->format);
}

/* Set the value of an object variable (if it is editable) to the
   value of the given expression.  */
/* Note: Invokes functions that can call error().  */

bool
varobj_set_value (struct varobj *var, const char *expression)
{
  struct value *val = NULL; /* Initialize to keep gcc happy.  */
  /* The argument "expression" contains the variable's new value.
     We need to first construct a legal expression for this -- ugh!  */
  /* Does this cover all the bases?  */
  struct value *value = NULL; /* Initialize to keep gcc happy.  */
  int saved_input_radix = input_radix;
  const char *s = expression;

  gdb_assert (varobj_editable_p (var));

  input_radix = 10;		/* ALWAYS reset to decimal temporarily.  */
  expression_up exp = parse_exp_1 (&s, 0, 0, 0);
  try
    {
      value = evaluate_expression (exp.get ());
    }

  catch (const gdb_exception_error &except)
    {
      /* We cannot proceed without a valid expression.  */
      return false;
    }

  /* All types that are editable must also be changeable.  */
  gdb_assert (varobj_value_is_changeable_p (var));

  /* The value of a changeable variable object must not be lazy.  */
  gdb_assert (!value_lazy (var->value.get ()));

  /* Need to coerce the input.  We want to check if the
     value of the variable object will be different
     after assignment, and the first thing value_assign
     does is coerce the input.
     For example, if we are assigning an array to a pointer variable we
     should compare the pointer with the array's address, not with the
     array's content.  */
  value = coerce_array (value);

  /* The new value may be lazy.  value_assign, or
     rather value_contents, will take care of this.  */
  try
    {
      val = value_assign (var->value.get (), value);
    }

  catch (const gdb_exception_error &except)
    {
      return false;
    }

  /* If the value has changed, record it, so that next -var-update can
     report this change.  If a variable had a value of '1', we've set it
     to '333' and then set again to '1', when -var-update will report this
     variable as changed -- because the first assignment has set the
     'updated' flag.  There's no need to optimize that, because return value
     of -var-update should be considered an approximation.  */
  var->updated = install_new_value (var, val, false /* Compare values.  */);
  input_radix = saved_input_radix;
  return true;
}

#if HAVE_PYTHON

/* A helper function to install a constructor function and visualizer
   in a varobj_dynamic.  */

static void
install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
		    PyObject *visualizer)
{
  Py_XDECREF (var->constructor);
  var->constructor = constructor;

  Py_XDECREF (var->pretty_printer);
  var->pretty_printer = visualizer;

  varobj_iter_delete (var->child_iter);
  var->child_iter = NULL;
}

/* Install the default visualizer for VAR.  */

static void
install_default_visualizer (struct varobj *var)
{
  /* Do not install a visualizer on a CPLUS_FAKE_CHILD.  */
  if (CPLUS_FAKE_CHILD (var))
    return;

  if (pretty_printing)
    {
      gdbpy_ref<> pretty_printer;

      if (var->value != nullptr)
	{
	  pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
	  if (pretty_printer == nullptr)
	    {
	      gdbpy_print_stack ();
	      error (_("Cannot instantiate printer for default visualizer"));
	    }
	}

      if (pretty_printer == Py_None)
	pretty_printer.reset (nullptr);
  
      install_visualizer (var->dynamic, NULL, pretty_printer.release ());
    }
}

/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
   make a new object.  */

static void
construct_visualizer (struct varobj *var, PyObject *constructor)
{
  PyObject *pretty_printer;

  /* Do not install a visualizer on a CPLUS_FAKE_CHILD.  */
  if (CPLUS_FAKE_CHILD (var))
    return;

  Py_INCREF (constructor);
  if (constructor == Py_None)
    pretty_printer = NULL;
  else
    {
      pretty_printer = instantiate_pretty_printer (constructor,
						   var->value.get ());
      if (! pretty_printer)
	{
	  gdbpy_print_stack ();
	  Py_DECREF (constructor);
	  constructor = Py_None;
	  Py_INCREF (constructor);
	}

      if (pretty_printer == Py_None)
	{
	  Py_DECREF (pretty_printer);
	  pretty_printer = NULL;
	}
    }

  install_visualizer (var->dynamic, constructor, pretty_printer);
}

#endif /* HAVE_PYTHON */

/* A helper function for install_new_value.  This creates and installs
   a visualizer for VAR, if appropriate.  */

static void
install_new_value_visualizer (struct varobj *var)
{
#if HAVE_PYTHON
  /* If the constructor is None, then we want the raw value.  If VAR
     does not have a value, just skip this.  */
  if (!gdb_python_initialized)
    return;

  if (var->dynamic->constructor != Py_None && var->value != NULL)
    {
      gdbpy_enter_varobj enter_py (var);

      if (var->dynamic->constructor == NULL)
	install_default_visualizer (var);
      else
	construct_visualizer (var, var->dynamic->constructor);
    }
#else
  /* Do nothing.  */
#endif
}

/* When using RTTI to determine variable type it may be changed in runtime when
   the variable value is changed.  This function checks whether type of varobj
   VAR will change when a new value NEW_VALUE is assigned and if it is so
   updates the type of VAR.  */

static bool
update_type_if_necessary (struct varobj *var, struct value *new_value)
{
  if (new_value)
    {
      struct value_print_options opts;

      get_user_print_options (&opts);
      if (opts.objectprint)
	{
	  struct type *new_type = value_actual_type (new_value, 0, 0);
	  std::string new_type_str = type_to_string (new_type);
	  std::string curr_type_str = varobj_get_type (var);

	  /* Did the type name change?  */
	  if (curr_type_str != new_type_str)
	    {
	      var->type = new_type;

	      /* This information may be not valid for a new type.  */
	      varobj_delete (var, 1);
	      var->children.clear ();
	      var->num_children = -1;
	      return true;
	    }
	}
    }

  return false;
}

/* Assign a new value to a variable object.  If INITIAL is true,
   this is the first assignment after the variable object was just
   created, or changed type.  In that case, just assign the value 
   and return false.
   Otherwise, assign the new value, and return true if the value is
   different from the current one, false otherwise.  The comparison is
   done on textual representation of value.  Therefore, some types
   need not be compared.  E.g.  for structures the reported value is
   always "{...}", so no comparison is necessary here.  If the old
   value was NULL and new one is not, or vice versa, we always return true.

   The VALUE parameter should not be released -- the function will
   take care of releasing it when needed.  */
static bool
install_new_value (struct varobj *var, struct value *value, bool initial)
{ 
  bool changeable;
  bool need_to_fetch;
  bool changed = false;
  bool intentionally_not_fetched = false;

  /* We need to know the varobj's type to decide if the value should
     be fetched or not.  C++ fake children (public/protected/private)
     don't have a type.  */
  gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
  changeable = varobj_value_is_changeable_p (var);

  /* If the type has custom visualizer, we consider it to be always
     changeable.  FIXME: need to make sure this behaviour will not
     mess up read-sensitive values.  */
  if (var->dynamic->pretty_printer != NULL)
    changeable = true;

  need_to_fetch = changeable;

  /* We are not interested in the address of references, and given
     that in C++ a reference is not rebindable, it cannot
     meaningfully change.  So, get hold of the real value.  */
  if (value)
    value = coerce_ref (value);

  if (var->type && var->type->code () == TYPE_CODE_UNION)
    /* For unions, we need to fetch the value implicitly because
       of implementation of union member fetch.  When gdb
       creates a value for a field and the value of the enclosing
       structure is not lazy,  it immediately copies the necessary
       bytes from the enclosing values.  If the enclosing value is
       lazy, the call to value_fetch_lazy on the field will read
       the data from memory.  For unions, that means we'll read the
       same memory more than once, which is not desirable.  So
       fetch now.  */
    need_to_fetch = true;

  /* The new value might be lazy.  If the type is changeable,
     that is we'll be comparing values of this type, fetch the
     value now.  Otherwise, on the next update the old value
     will be lazy, which means we've lost that old value.  */
  if (need_to_fetch && value && value_lazy (value))
    {
      const struct varobj *parent = var->parent;
      bool frozen = var->frozen;

      for (; !frozen && parent; parent = parent->parent)
	frozen |= parent->frozen;

      if (frozen && initial)
	{
	  /* For variables that are frozen, or are children of frozen
	     variables, we don't do fetch on initial assignment.
	     For non-initial assignment we do the fetch, since it means we're
	     explicitly asked to compare the new value with the old one.  */
	  intentionally_not_fetched = true;
	}
      else
	{

	  try
	    {
	      value_fetch_lazy (value);
	    }

	  catch (const gdb_exception_error &except)
	    {
	      /* Set the value to NULL, so that for the next -var-update,
		 we don't try to compare the new value with this value,
		 that we couldn't even read.  */
	      value = NULL;
	    }
	}
    }

  /* Get a reference now, before possibly passing it to any Python
     code that might release it.  */
  value_ref_ptr value_holder;
  if (value != NULL)
    value_holder = value_ref_ptr::new_reference (value);

  /* Below, we'll be comparing string rendering of old and new
     values.  Don't get string rendering if the value is
     lazy -- if it is, the code above has decided that the value
     should not be fetched.  */
  std::string print_value;
  if (value != NULL && !value_lazy (value)
      && var->dynamic->pretty_printer == NULL)
    print_value = varobj_value_get_print_value (value, var->format, var);

  /* If the type is changeable, compare the old and the new values.
     If this is the initial assignment, we don't have any old value
     to compare with.  */
  if (!initial && changeable)
    {
      /* If the value of the varobj was changed by -var-set-value,
	 then the value in the varobj and in the target is the same.
	 However, that value is different from the value that the
	 varobj had after the previous -var-update.  So need to the
	 varobj as changed.  */
      if (var->updated)
	changed = true;
      else if (var->dynamic->pretty_printer == NULL)
	{
	  /* Try to compare the values.  That requires that both
	     values are non-lazy.  */
	  if (var->not_fetched && value_lazy (var->value.get ()))
	    {
	      /* This is a frozen varobj and the value was never read.
		 Presumably, UI shows some "never read" indicator.
		 Now that we've fetched the real value, we need to report
		 this varobj as changed so that UI can show the real
		 value.  */
	      changed = true;
	    }
          else  if (var->value == NULL && value == NULL)
	    /* Equal.  */
	    ;
	  else if (var->value == NULL || value == NULL)
	    {
	      changed = true;
	    }
	  else
	    {
	      gdb_assert (!value_lazy (var->value.get ()));
	      gdb_assert (!value_lazy (value));

	      gdb_assert (!var->print_value.empty () && !print_value.empty ());
	      if (var->print_value != print_value)
		changed = true;
	    }
	}
    }

  if (!initial && !changeable)
    {
      /* For values that are not changeable, we don't compare the values.
	 However, we want to notice if a value was not NULL and now is NULL,
	 or vise versa, so that we report when top-level varobjs come in scope
	 and leave the scope.  */
      changed = (var->value != NULL) != (value != NULL);
    }

  /* We must always keep the new value, since children depend on it.  */
  var->value = value_holder;
  if (value && value_lazy (value) && intentionally_not_fetched)
    var->not_fetched = true;
  else
    var->not_fetched = false;
  var->updated = false;

  install_new_value_visualizer (var);

  /* If we installed a pretty-printer, re-compare the printed version
     to see if the variable changed.  */
  if (var->dynamic->pretty_printer != NULL)
    {
      print_value = varobj_value_get_print_value (var->value.get (),
						  var->format, var);
      if ((var->print_value.empty () && !print_value.empty ())
	  || (!var->print_value.empty () && print_value.empty ())
	  || (!var->print_value.empty () && !print_value.empty ()
	      && var->print_value != print_value))
	  changed = true;
    }
  var->print_value = print_value;

  gdb_assert (var->value == nullptr || value_type (var->value.get ()));

  return changed;
}

/* Return the requested range for a varobj.  VAR is the varobj.  FROM
   and TO are out parameters; *FROM and *TO will be set to the
   selected sub-range of VAR.  If no range was selected using
   -var-set-update-range, then both will be -1.  */
void
varobj_get_child_range (const struct varobj *var, int *from, int *to)
{
  *from = var->from;
  *to = var->to;
}

/* Set the selected sub-range of children of VAR to start at index
   FROM and end at index TO.  If either FROM or TO is less than zero,
   this is interpreted as a request for all children.  */
void
varobj_set_child_range (struct varobj *var, int from, int to)
{
  var->from = from;
  var->to = to;
}

void 
varobj_set_visualizer (struct varobj *var, const char *visualizer)
{
#if HAVE_PYTHON
  PyObject *mainmod;

  if (!gdb_python_initialized)
    return;

  gdbpy_enter_varobj enter_py (var);

  mainmod = PyImport_AddModule ("__main__");
  gdbpy_ref<> globals
    = gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod));
  gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
					 globals.get (), globals.get ()));

  if (constructor == NULL)
    {
      gdbpy_print_stack ();
      error (_("Could not evaluate visualizer expression: %s"), visualizer);
    }

  construct_visualizer (var, constructor.get ());

  /* If there are any children now, wipe them.  */
  varobj_delete (var, 1 /* children only */);
  var->num_children = -1;
#else
  error (_("Python support required"));
#endif
}

/* If NEW_VALUE is the new value of the given varobj (var), return
   true if var has mutated.  In other words, if the type of
   the new value is different from the type of the varobj's old
   value.

   NEW_VALUE may be NULL, if the varobj is now out of scope.  */

static bool
varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
			  struct type *new_type)
{
  /* If we haven't previously computed the number of children in var,
     it does not matter from the front-end's perspective whether
     the type has mutated or not.  For all intents and purposes,
     it has not mutated.  */
  if (var->num_children < 0)
    return false;

  if (var->root->lang_ops->value_has_mutated != NULL)
    {
      /* The varobj module, when installing new values, explicitly strips
	 references, saying that we're not interested in those addresses.
	 But detection of mutation happens before installing the new
	 value, so our value may be a reference that we need to strip
	 in order to remain consistent.  */
      if (new_value != NULL)
	new_value = coerce_ref (new_value);
      return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
    }
  else
    return false;
}

/* Update the values for a variable and its children.  This is a
   two-pronged attack.  First, re-parse the value for the root's
   expression to see if it's changed.  Then go all the way
   through its children, reconstructing them and noting if they've
   changed.

   The IS_EXPLICIT parameter specifies if this call is result
   of MI request to update this specific variable, or 
   result of implicit -var-update *.  For implicit request, we don't
   update frozen variables.

   NOTE: This function may delete the caller's varobj.  If it
   returns TYPE_CHANGED, then it has done this and VARP will be modified
   to point to the new varobj.  */

std::vector<varobj_update_result>
varobj_update (struct varobj **varp, bool is_explicit)
{
  bool type_changed = false;
  struct value *newobj;
  std::vector<varobj_update_result> stack;
  std::vector<varobj_update_result> result;

  /* Frozen means frozen -- we don't check for any change in
     this varobj, including its going out of scope, or
     changing type.  One use case for frozen varobjs is
     retaining previously evaluated expressions, and we don't
     want them to be reevaluated at all.  */
  if (!is_explicit && (*varp)->frozen)
    return result;

  if (!(*varp)->root->is_valid)
    {
      result.emplace_back (*varp, VAROBJ_INVALID);
      return result;
    }

  if ((*varp)->root->rootvar == *varp)
    {
      varobj_update_result r (*varp);

      /* Update the root variable.  value_of_root can return NULL
	 if the variable is no longer around, i.e. we stepped out of
	 the frame in which a local existed.  We are letting the 
	 value_of_root variable dispose of the varobj if the type
	 has changed.  */
      newobj = value_of_root (varp, &type_changed);
      if (update_type_if_necessary (*varp, newobj))
	  type_changed = true;
      r.varobj = *varp;
      r.type_changed = type_changed;
      if (install_new_value ((*varp), newobj, type_changed))
	r.changed = true;
      
      if (newobj == NULL)
	r.status = VAROBJ_NOT_IN_SCOPE;
      r.value_installed = true;

      if (r.status == VAROBJ_NOT_IN_SCOPE)
	{
	  if (r.type_changed || r.changed)
	    result.push_back (std::move (r));

	  return result;
	}

      stack.push_back (std::move (r));
    }
  else
    stack.emplace_back (*varp);

  /* Walk through the children, reconstructing them all.  */
  while (!stack.empty ())
    {
      varobj_update_result r = std::move (stack.back ());
      stack.pop_back ();
      struct varobj *v = r.varobj;

      /* Update this variable, unless it's a root, which is already
	 updated.  */
      if (!r.value_installed)
	{
	  struct type *new_type;

	  newobj = value_of_child (v->parent, v->index);
	  if (update_type_if_necessary (v, newobj))
	    r.type_changed = true;
	  if (newobj)
	    new_type = value_type (newobj);
	  else
	    new_type = v->root->lang_ops->type_of_child (v->parent, v->index);

	  if (varobj_value_has_mutated (v, newobj, new_type))
	    {
	      /* The children are no longer valid; delete them now.
	         Report the fact that its type changed as well.  */
	      varobj_delete (v, 1 /* only_children */);
	      v->num_children = -1;
	      v->to = -1;
	      v->from = -1;
	      v->type = new_type;
	      r.type_changed = true;
	    }

	  if (install_new_value (v, newobj, r.type_changed))
	    {
	      r.changed = true;
	      v->updated = false;
	    }
	}

      /* We probably should not get children of a dynamic varobj, but
	 for which -var-list-children was never invoked.  */
      if (varobj_is_dynamic_p (v))
	{
	  std::vector<varobj *> changed, type_changed_vec, unchanged, newobj_vec;
	  bool children_changed = false;

	  if (v->frozen)
	    continue;

	  if (!v->dynamic->children_requested)
	    {
	      bool dummy;

	      /* If we initially did not have potential children, but
		 now we do, consider the varobj as changed.
		 Otherwise, if children were never requested, consider
		 it as unchanged -- presumably, such varobj is not yet
		 expanded in the UI, so we need not bother getting
		 it.  */
	      if (!varobj_has_more (v, 0))
		{
		  update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
						  &dummy, false, 0, 0);
		  if (varobj_has_more (v, 0))
		    r.changed = true;
		}

	      if (r.changed)
		result.push_back (std::move (r));

	      continue;
	    }

	  /* If update_dynamic_varobj_children returns false, then we have
	     a non-conforming pretty-printer, so we skip it.  */
	  if (update_dynamic_varobj_children (v, &changed, &type_changed_vec,
					      &newobj_vec,
					      &unchanged, &children_changed,
					      true, v->from, v->to))
	    {
	      if (children_changed || !newobj_vec.empty ())
		{
		  r.children_changed = true;
		  r.newobj = std::move (newobj_vec);
		}
	      /* Push in reverse order so that the first child is
		 popped from the work stack first, and so will be
		 added to result first.  This does not affect
		 correctness, just "nicer".  */
	      for (int i = type_changed_vec.size () - 1; i >= 0; --i)
		{
		  varobj_update_result item (type_changed_vec[i]);

		  /* Type may change only if value was changed.  */
		  item.changed = true;
		  item.type_changed = true;
		  item.value_installed = true;

		  stack.push_back (std::move (item));
		}
	      for (int i = changed.size () - 1; i >= 0; --i)
		{
		  varobj_update_result item (changed[i]);

		  item.changed = true;
		  item.value_installed = true;

		  stack.push_back (std::move (item));
		}
	      for (int i = unchanged.size () - 1; i >= 0; --i)
		{
		  if (!unchanged[i]->frozen)
		    {
		      varobj_update_result item (unchanged[i]);

		      item.value_installed = true;

		      stack.push_back (std::move (item));
		    }
		}
	      if (r.changed || r.children_changed)
		result.push_back (std::move (r));

	      continue;
	    }
	}

      /* Push any children.  Use reverse order so that the first
	 child is popped from the work stack first, and so
	 will be added to result first.  This does not
	 affect correctness, just "nicer".  */
      for (int i = v->children.size () - 1; i >= 0; --i)
	{
	  varobj *c = v->children[i];

	  /* Child may be NULL if explicitly deleted by -var-delete.  */
	  if (c != NULL && !c->frozen)
	    stack.emplace_back (c);
	}

      if (r.changed || r.type_changed)
	result.push_back (std::move (r));
    }

  return result;
}

/* Helper functions */

/*
 * Variable object construction/destruction
 */

static int
delete_variable (struct varobj *var, bool only_children_p)
{
  int delcount = 0;

  delete_variable_1 (&delcount, var, only_children_p,
		     true /* remove_from_parent_p */ );

  return delcount;
}

/* Delete the variable object VAR and its children.  */
/* IMPORTANT NOTE: If we delete a variable which is a child
   and the parent is not removed we dump core.  It must be always
   initially called with remove_from_parent_p set.  */
static void
delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
		   bool remove_from_parent_p)
{
  /* Delete any children of this variable, too.  */
  for (varobj *child : var->children)
    {   
      if (!child)
	continue;

      if (!remove_from_parent_p)
	child->parent = NULL;

      delete_variable_1 (delcountp, child, false, only_children_p);
    }
  var->children.clear ();

  /* if we were called to delete only the children we are done here.  */
  if (only_children_p)
    return;

  /* Otherwise, add it to the list of deleted ones and proceed to do so.  */
  /* If the name is empty, this is a temporary variable, that has not
     yet been installed, don't report it, it belongs to the caller...  */
  if (!var->obj_name.empty ())
    {
      *delcountp = *delcountp + 1;
    }

  /* If this variable has a parent, remove it from its parent's list.  */
  /* OPTIMIZATION: if the parent of this variable is also being deleted, 
     (as indicated by remove_from_parent_p) we don't bother doing an
     expensive list search to find the element to remove when we are
     discarding the list afterwards.  */
  if ((remove_from_parent_p) && (var->parent != NULL))
    var->parent->children[var->index] = NULL;

  if (!var->obj_name.empty ())
    uninstall_variable (var);

  /* Free memory associated with this variable.  */
  delete var;
}

/* Install the given variable VAR with the object name VAR->OBJ_NAME.  */
static bool
install_variable (struct varobj *var)
{
  struct vlist *cv;
  struct vlist *newvl;
  const char *chp;
  unsigned int index = 0;
  unsigned int i = 1;

  for (chp = var->obj_name.c_str (); *chp; chp++)
    {
      index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
    }

  cv = *(varobj_table + index);
  while (cv != NULL && cv->var->obj_name != var->obj_name)
    cv = cv->next;

  if (cv != NULL)
    error (_("Duplicate variable object name"));

  /* Add varobj to hash table.  */
  newvl = XNEW (struct vlist);
  newvl->next = *(varobj_table + index);
  newvl->var = var;
  *(varobj_table + index) = newvl;

  /* If root, add varobj to root list.  */
  if (is_root_p (var))
    {
      /* Add to list of root variables.  */
      if (rootlist == NULL)
	var->root->next = NULL;
      else
	var->root->next = rootlist;
      rootlist = var->root;
    }

  return true;			/* OK */
}

/* Uninstall the object VAR.  */
static void
uninstall_variable (struct varobj *var)
{
  struct vlist *cv;
  struct vlist *prev;
  struct varobj_root *cr;
  struct varobj_root *prer;
  const char *chp;
  unsigned int index = 0;
  unsigned int i = 1;

  /* Remove varobj from hash table.  */
  for (chp = var->obj_name.c_str (); *chp; chp++)
    {
      index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
    }

  cv = *(varobj_table + index);
  prev = NULL;
  while (cv != NULL && cv->var->obj_name != var->obj_name)
    {
      prev = cv;
      cv = cv->next;
    }

  if (varobjdebug)
    fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());

  if (cv == NULL)
    {
      warning
	("Assertion failed: Could not find variable object \"%s\" to delete",
	 var->obj_name.c_str ());
      return;
    }

  if (prev == NULL)
    *(varobj_table + index) = cv->next;
  else
    prev->next = cv->next;

  xfree (cv);

  /* If root, remove varobj from root list.  */
  if (is_root_p (var))
    {
      /* Remove from list of root variables.  */
      if (rootlist == var->root)
	rootlist = var->root->next;
      else
	{
	  prer = NULL;
	  cr = rootlist;
	  while ((cr != NULL) && (cr->rootvar != var))
	    {
	      prer = cr;
	      cr = cr->next;
	    }
	  if (cr == NULL)
	    {
	      warning (_("Assertion failed: Could not find "
		         "varobj \"%s\" in root list"),
		       var->obj_name.c_str ());
	      return;
	    }
	  if (prer == NULL)
	    rootlist = NULL;
	  else
	    prer->next = cr->next;
	}
    }

}

/* Create and install a child of the parent of the given name.

   The created VAROBJ takes ownership of the allocated NAME.  */

static struct varobj *
create_child (struct varobj *parent, int index, std::string &name)
{
  struct varobj_item item;

  std::swap (item.name, name);
  item.value = value_of_child (parent, index);

  return create_child_with_value (parent, index, &item);
}

static struct varobj *
create_child_with_value (struct varobj *parent, int index,
			 struct varobj_item *item)
{
  varobj *child = new varobj (parent->root);

  /* NAME is allocated by caller.  */
  std::swap (child->name, item->name);
  child->index = index;
  child->parent = parent;

  if (varobj_is_anonymous_child (child))
    child->obj_name = string_printf ("%s.%d_anonymous",
				     parent->obj_name.c_str (), index);
  else
    child->obj_name = string_printf ("%s.%s",
				     parent->obj_name.c_str (),
				     child->name.c_str ());

  install_variable (child);

  /* Compute the type of the child.  Must do this before
     calling install_new_value.  */
  if (item->value != NULL)
    /* If the child had no evaluation errors, var->value
       will be non-NULL and contain a valid type.  */
    child->type = value_actual_type (item->value, 0, NULL);
  else
    /* Otherwise, we must compute the type.  */
    child->type = (*child->root->lang_ops->type_of_child) (child->parent,
							   child->index);
  install_new_value (child, item->value, 1);

  return child;
}


/*
 * Miscellaneous utility functions.
 */

/* Allocate memory and initialize a new variable.  */
varobj::varobj (varobj_root *root_)
: root (root_), dynamic (new varobj_dynamic)
{
}

/* Free any allocated memory associated with VAR.  */

varobj::~varobj ()
{
  varobj *var = this;

#if HAVE_PYTHON
  if (var->dynamic->pretty_printer != NULL)
    {
      gdbpy_enter_varobj enter_py (var);

      Py_XDECREF (var->dynamic->constructor);
      Py_XDECREF (var->dynamic->pretty_printer);
    }
#endif

  varobj_iter_delete (var->dynamic->child_iter);
  varobj_clear_saved_item (var->dynamic);

  if (is_root_p (var))
    delete var->root;

  delete var->dynamic;
}

/* Return the type of the value that's stored in VAR,
   or that would have being stored there if the
   value were accessible.

   This differs from VAR->type in that VAR->type is always
   the true type of the expression in the source language.
   The return value of this function is the type we're
   actually storing in varobj, and using for displaying
   the values and for comparing previous and new values.

   For example, top-level references are always stripped.  */
struct type *
varobj_get_value_type (const struct varobj *var)
{
  struct type *type;

  if (var->value != nullptr)
    type = value_type (var->value.get ());
  else
    type = var->type;

  type = check_typedef (type);

  if (TYPE_IS_REFERENCE (type))
    type = get_target_type (type);

  type = check_typedef (type);

  return type;
}

/* What is the default display for this variable? We assume that
   everything is "natural".  Any exceptions?  */
static enum varobj_display_formats
variable_default_display (struct varobj *var)
{
  return FORMAT_NATURAL;
}

/*
 * Language-dependencies
 */

/* Common entry points */

/* Return the number of children for a given variable.
   The result of this function is defined by the language
   implementation.  The number of children returned by this function
   is the number of children that the user will see in the variable
   display.  */
static int
number_of_children (const struct varobj *var)
{
  return (*var->root->lang_ops->number_of_children) (var);
}

/* What is the expression for the root varobj VAR? */

static std::string
name_of_variable (const struct varobj *var)
{
  return (*var->root->lang_ops->name_of_variable) (var);
}

/* What is the name of the INDEX'th child of VAR?  */

static std::string
name_of_child (struct varobj *var, int index)
{
  return (*var->root->lang_ops->name_of_child) (var, index);
}

/* If frame associated with VAR can be found, switch
   to it and return true.  Otherwise, return false.  */

static bool
check_scope (const struct varobj *var)
{
  struct frame_info *fi;
  bool scope;

  fi = frame_find_by_id (var->root->frame);
  scope = fi != NULL;

  if (fi)
    {
      CORE_ADDR pc = get_frame_pc (fi);

      if (pc <  BLOCK_START (var->root->valid_block) ||
	  pc >= BLOCK_END (var->root->valid_block))
	scope = false;
      else
	select_frame (fi);
    }
  return scope;
}

/* Helper function to value_of_root.  */

static struct value *
value_of_root_1 (struct varobj **var_handle)
{
  struct value *new_val = NULL;
  struct varobj *var = *var_handle;
  bool within_scope = false;
								 
  /*  Only root variables can be updated...  */
  if (!is_root_p (var))
    /* Not a root var.  */
    return NULL;

  scoped_restore_current_thread restore_thread;

  /* Determine whether the variable is still around.  */
  if (var->root->valid_block == NULL || var->root->floating)
    within_scope = true;
  else if (var->root->thread_id == 0)
    {
      /* The program was single-threaded when the variable object was
	 created.  Technically, it's possible that the program became
	 multi-threaded since then, but we don't support such
	 scenario yet.  */
      within_scope = check_scope (var);	  
    }
  else
    {
      thread_info *thread = find_thread_global_id (var->root->thread_id);

      if (thread != NULL)
	{
	  switch_to_thread (thread);
	  within_scope = check_scope (var);
	}
    }

  if (within_scope)
    {

      /* We need to catch errors here, because if evaluate
         expression fails we want to just return NULL.  */
      try
	{
	  new_val = evaluate_expression (var->root->exp.get ());
	}
      catch (const gdb_exception_error &except)
	{
	}
    }

  return new_val;
}

/* What is the ``struct value *'' of the root variable VAR?
   For floating variable object, evaluation can get us a value
   of different type from what is stored in varobj already.  In
   that case:
   - *type_changed will be set to 1
   - old varobj will be freed, and new one will be
   created, with the same name.
   - *var_handle will be set to the new varobj 
   Otherwise, *type_changed will be set to 0.  */
static struct value *
value_of_root (struct varobj **var_handle, bool *type_changed)
{
  struct varobj *var;

  if (var_handle == NULL)
    return NULL;

  var = *var_handle;

  /* This should really be an exception, since this should
     only get called with a root variable.  */

  if (!is_root_p (var))
    return NULL;

  if (var->root->floating)
    {
      struct varobj *tmp_var;

      tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
			       USE_SELECTED_FRAME);
      if (tmp_var == NULL)
	{
	  return NULL;
	}
      std::string old_type = varobj_get_type (var);
      std::string new_type = varobj_get_type (tmp_var);
      if (old_type == new_type)
	{
	  /* The expression presently stored inside var->root->exp
	     remembers the locations of local variables relatively to
	     the frame where the expression was created (in DWARF location
	     button, for example).  Naturally, those locations are not
	     correct in other frames, so update the expression.  */

	  std::swap (var->root->exp, tmp_var->root->exp);

	  varobj_delete (tmp_var, 0);
	  *type_changed = 0;
	}
      else
	{
	  tmp_var->obj_name = var->obj_name;
	  tmp_var->from = var->from;
	  tmp_var->to = var->to;
	  varobj_delete (var, 0);

	  install_variable (tmp_var);
	  *var_handle = tmp_var;
	  var = *var_handle;
	  *type_changed = true;
	}
    }
  else
    {
      *type_changed = 0;
    }

  {
    struct value *value;

    value = value_of_root_1 (var_handle);
    if (var->value == NULL || value == NULL)
      {
	/* For root varobj-s, a NULL value indicates a scoping issue.
	   So, nothing to do in terms of checking for mutations.  */
      }
    else if (varobj_value_has_mutated (var, value, value_type (value)))
      {
	/* The type has mutated, so the children are no longer valid.
	   Just delete them, and tell our caller that the type has
	   changed.  */
	varobj_delete (var, 1 /* only_children */);
	var->num_children = -1;
	var->to = -1;
	var->from = -1;
	*type_changed = true;
      }
    return value;
  }
}

/* What is the ``struct value *'' for the INDEX'th child of PARENT?  */
static struct value *
value_of_child (const struct varobj *parent, int index)
{
  struct value *value;

  value = (*parent->root->lang_ops->value_of_child) (parent, index);

  return value;
}

/* GDB already has a command called "value_of_variable".  Sigh.  */
static std::string
my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
{
  if (var->root->is_valid)
    {
      if (var->dynamic->pretty_printer != NULL)
	return varobj_value_get_print_value (var->value.get (), var->format,
					     var);
      return (*var->root->lang_ops->value_of_variable) (var, format);
    }
  else
    return std::string ();
}

void
varobj_formatted_print_options (struct value_print_options *opts,
				enum varobj_display_formats format)
{
  get_formatted_print_options (opts, format_code[(int) format]);
  opts->deref_ref = 0;
  opts->raw = !pretty_printing;
}

std::string
varobj_value_get_print_value (struct value *value,
			      enum varobj_display_formats format,
			      const struct varobj *var)
{
  struct value_print_options opts;
  struct type *type = NULL;
  long len = 0;
  gdb::unique_xmalloc_ptr<char> encoding;
  /* Initialize it just to avoid a GCC false warning.  */
  CORE_ADDR str_addr = 0;
  bool string_print = false;

  if (value == NULL)
    return std::string ();

  string_file stb;
  std::string thevalue;

#if HAVE_PYTHON
  if (gdb_python_initialized)
    {
      PyObject *value_formatter =  var->dynamic->pretty_printer;

      gdbpy_enter_varobj enter_py (var);

      if (value_formatter)
	{
	  /* First check to see if we have any children at all.  If so,
	     we simply return {...}.  */
	  if (dynamic_varobj_has_child_method (var))
	    return "{...}";

	  if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
	    {
	      struct value *replacement;

	      gdbpy_ref<> output = apply_varobj_pretty_printer (value_formatter,
								&replacement,
								&stb);

	      /* If we have string like output ...  */
	      if (output != NULL)
		{
		  /* If this is a lazy string, extract it.  For lazy
		     strings we always print as a string, so set
		     string_print.  */
		  if (gdbpy_is_lazy_string (output.get ()))
		    {
		      gdbpy_extract_lazy_string (output.get (), &str_addr,
						 &type, &len, &encoding);
		      string_print = true;
		    }
		  else
		    {
		      /* If it is a regular (non-lazy) string, extract
			 it and copy the contents into THEVALUE.  If the
			 hint says to print it as a string, set
			 string_print.  Otherwise just return the extracted
			 string as a value.  */

		      gdb::unique_xmalloc_ptr<char> s
			= python_string_to_target_string (output.get ());

		      if (s)
			{
			  struct gdbarch *gdbarch;

			  gdb::unique_xmalloc_ptr<char> hint
			    = gdbpy_get_display_hint (value_formatter);
			  if (hint)
			    {
			      if (!strcmp (hint.get (), "string"))
				string_print = true;
			    }

			  thevalue = std::string (s.get ());
			  len = thevalue.size ();
			  gdbarch = get_type_arch (value_type (value));
			  type = builtin_type (gdbarch)->builtin_char;

			  if (!string_print)
			    return thevalue;
			}
		      else
			gdbpy_print_stack ();
		    }
		}
	      /* If the printer returned a replacement value, set VALUE
		 to REPLACEMENT.  If there is not a replacement value,
		 just use the value passed to this function.  */
	      if (replacement)
		value = replacement;
	    }
	}
    }
#endif

  varobj_formatted_print_options (&opts, format);

  /* If the THEVALUE has contents, it is a regular string.  */
  if (!thevalue.empty ())
    LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
		     len, encoding.get (), 0, &opts);
  else if (string_print)
    /* Otherwise, if string_print is set, and it is not a regular
       string, it is a lazy string.  */
    val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
  else
    /* All other cases.  */
    common_val_print (value, &stb, 0, &opts, current_language);

  return std::move (stb.string ());
}

bool
varobj_editable_p (const struct varobj *var)
{
  struct type *type;

  if (!(var->root->is_valid && var->value != nullptr
	&& VALUE_LVAL (var->value.get ())))
    return false;

  type = varobj_get_value_type (var);

  switch (type->code ())
    {
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
    case TYPE_CODE_ARRAY:
    case TYPE_CODE_FUNC:
    case TYPE_CODE_METHOD:
      return false;
      break;

    default:
      return true;
      break;
    }
}

/* Call VAR's value_is_changeable_p language-specific callback.  */

bool
varobj_value_is_changeable_p (const struct varobj *var)
{
  return var->root->lang_ops->value_is_changeable_p (var);
}

/* Return true if that varobj is floating, that is is always evaluated in the
   selected frame, and not bound to thread/frame.  Such variable objects
   are created using '@' as frame specifier to -var-create.  */
bool
varobj_floating_p (const struct varobj *var)
{
  return var->root->floating;
}

/* Implement the "value_is_changeable_p" varobj callback for most
   languages.  */

bool
varobj_default_value_is_changeable_p (const struct varobj *var)
{
  bool r;
  struct type *type;

  if (CPLUS_FAKE_CHILD (var))
    return false;

  type = varobj_get_value_type (var);

  switch (type->code ())
    {
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
    case TYPE_CODE_ARRAY:
      r = false;
      break;

    default:
      r = true;
    }

  return r;
}

/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
   with an arbitrary caller supplied DATA pointer.  */

void
all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
{
  struct varobj_root *var_root, *var_root_next;

  /* Iterate "safely" - handle if the callee deletes its passed VAROBJ.  */

  for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
    {
      var_root_next = var_root->next;

      (*func) (var_root->rootvar, data);
    }
}

/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
   defined on globals.  It is a helper for varobj_invalidate.

   This function is called after changing the symbol file, in this case the
   pointers to "struct type" stored by the varobj are no longer valid.  All
   varobj must be either re-evaluated, or marked as invalid here.  */

static void
varobj_invalidate_iter (struct varobj *var, void *unused)
{
  /* global and floating var must be re-evaluated.  */
  if (var->root->floating || var->root->valid_block == NULL)
    {
      struct varobj *tmp_var;

      /* Try to create a varobj with same expression.  If we succeed
	 replace the old varobj, otherwise invalidate it.  */
      tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
			       USE_CURRENT_FRAME);
      if (tmp_var != NULL) 
	{ 
	  tmp_var->obj_name = var->obj_name;
	  varobj_delete (var, 0);
	  install_variable (tmp_var);
	}
      else
	var->root->is_valid = false;
    }
  else /* locals must be invalidated.  */
    var->root->is_valid = false;
}

/* Invalidate the varobjs that are tied to locals and re-create the ones that
   are defined on globals.
   Invalidated varobjs will be always printed in_scope="invalid".  */

void 
varobj_invalidate (void)
{
  all_root_varobjs (varobj_invalidate_iter, NULL);
}

void _initialize_varobj ();
void
_initialize_varobj ()
{
  varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);

  add_setshow_zuinteger_cmd ("varobj", class_maintenance,
			     &varobjdebug,
			     _("Set varobj debugging."),
			     _("Show varobj debugging."),
			     _("When non-zero, varobj debugging is enabled."),
			     NULL, show_varobjdebug,
			     &setdebuglist, &showdebuglist);
}