aboutsummaryrefslogtreecommitdiff
path: root/gdb/value.c
blob: 781808016cde43778c4446b1ae4f0ff02f17b20d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
/* Low level packing and unpacking of values for GDB, the GNU Debugger.

   Copyright (C) 1986-2019 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "arch-utils.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "value.h"
#include "gdbcore.h"
#include "command.h"
#include "gdbcmd.h"
#include "target.h"
#include "language.h"
#include "demangle.h"
#include "regcache.h"
#include "block.h"
#include "target-float.h"
#include "objfiles.h"
#include "valprint.h"
#include "cli/cli-decode.h"
#include "extension.h"
#include <ctype.h>
#include "tracepoint.h"
#include "cp-abi.h"
#include "user-regs.h"
#include <algorithm>
#include "completer.h"
#include "gdbsupport/selftest.h"
#include "gdbsupport/array-view.h"
#include "cli/cli-style.h"

/* Definition of a user function.  */
struct internal_function
{
  /* The name of the function.  It is a bit odd to have this in the
     function itself -- the user might use a differently-named
     convenience variable to hold the function.  */
  char *name;

  /* The handler.  */
  internal_function_fn handler;

  /* User data for the handler.  */
  void *cookie;
};

/* Defines an [OFFSET, OFFSET + LENGTH) range.  */

struct range
{
  /* Lowest offset in the range.  */
  LONGEST offset;

  /* Length of the range.  */
  LONGEST length;

  /* Returns true if THIS is strictly less than OTHER, useful for
     searching.  We keep ranges sorted by offset and coalesce
     overlapping and contiguous ranges, so this just compares the
     starting offset.  */

  bool operator< (const range &other) const
  {
    return offset < other.offset;
  }

  /* Returns true if THIS is equal to OTHER.  */
  bool operator== (const range &other) const
  {
    return offset == other.offset && length == other.length;
  }
};

/* Returns true if the ranges defined by [offset1, offset1+len1) and
   [offset2, offset2+len2) overlap.  */

static int
ranges_overlap (LONGEST offset1, LONGEST len1,
		LONGEST offset2, LONGEST len2)
{
  ULONGEST h, l;

  l = std::max (offset1, offset2);
  h = std::min (offset1 + len1, offset2 + len2);
  return (l < h);
}

/* Returns true if RANGES contains any range that overlaps [OFFSET,
   OFFSET+LENGTH).  */

static int
ranges_contain (const std::vector<range> &ranges, LONGEST offset,
		LONGEST length)
{
  range what;

  what.offset = offset;
  what.length = length;

  /* We keep ranges sorted by offset and coalesce overlapping and
     contiguous ranges, so to check if a range list contains a given
     range, we can do a binary search for the position the given range
     would be inserted if we only considered the starting OFFSET of
     ranges.  We call that position I.  Since we also have LENGTH to
     care for (this is a range afterall), we need to check if the
     _previous_ range overlaps the I range.  E.g.,

         R
         |---|
       |---|    |---|  |------| ... |--|
       0        1      2            N

       I=1

     In the case above, the binary search would return `I=1', meaning,
     this OFFSET should be inserted at position 1, and the current
     position 1 should be pushed further (and before 2).  But, `0'
     overlaps with R.

     Then we need to check if the I range overlaps the I range itself.
     E.g.,

              R
              |---|
       |---|    |---|  |-------| ... |--|
       0        1      2             N

       I=1
  */


  auto i = std::lower_bound (ranges.begin (), ranges.end (), what);

  if (i > ranges.begin ())
    {
      const struct range &bef = *(i - 1);

      if (ranges_overlap (bef.offset, bef.length, offset, length))
	return 1;
    }

  if (i < ranges.end ())
    {
      const struct range &r = *i;

      if (ranges_overlap (r.offset, r.length, offset, length))
	return 1;
    }

  return 0;
}

static struct cmd_list_element *functionlist;

/* Note that the fields in this structure are arranged to save a bit
   of memory.  */

struct value
{
  explicit value (struct type *type_)
    : modifiable (1),
      lazy (1),
      initialized (1),
      stack (0),
      type (type_),
      enclosing_type (type_)
  {
  }

  ~value ()
  {
    if (VALUE_LVAL (this) == lval_computed)
      {
	const struct lval_funcs *funcs = location.computed.funcs;

	if (funcs->free_closure)
	  funcs->free_closure (this);
      }
    else if (VALUE_LVAL (this) == lval_xcallable)
      delete location.xm_worker;
  }

  DISABLE_COPY_AND_ASSIGN (value);

  /* Type of value; either not an lval, or one of the various
     different possible kinds of lval.  */
  enum lval_type lval = not_lval;

  /* Is it modifiable?  Only relevant if lval != not_lval.  */
  unsigned int modifiable : 1;

  /* If zero, contents of this value are in the contents field.  If
     nonzero, contents are in inferior.  If the lval field is lval_memory,
     the contents are in inferior memory at location.address plus offset.
     The lval field may also be lval_register.

     WARNING: This field is used by the code which handles watchpoints
     (see breakpoint.c) to decide whether a particular value can be
     watched by hardware watchpoints.  If the lazy flag is set for
     some member of a value chain, it is assumed that this member of
     the chain doesn't need to be watched as part of watching the
     value itself.  This is how GDB avoids watching the entire struct
     or array when the user wants to watch a single struct member or
     array element.  If you ever change the way lazy flag is set and
     reset, be sure to consider this use as well!  */
  unsigned int lazy : 1;

  /* If value is a variable, is it initialized or not.  */
  unsigned int initialized : 1;

  /* If value is from the stack.  If this is set, read_stack will be
     used instead of read_memory to enable extra caching.  */
  unsigned int stack : 1;

  /* Location of value (if lval).  */
  union
  {
    /* If lval == lval_memory, this is the address in the inferior  */
    CORE_ADDR address;

    /*If lval == lval_register, the value is from a register.  */
    struct
    {
      /* Register number.  */
      int regnum;
      /* Frame ID of "next" frame to which a register value is relative.
	 If the register value is found relative to frame F, then the
	 frame id of F->next will be stored in next_frame_id.  */
      struct frame_id next_frame_id;
    } reg;

    /* Pointer to internal variable.  */
    struct internalvar *internalvar;

    /* Pointer to xmethod worker.  */
    struct xmethod_worker *xm_worker;

    /* If lval == lval_computed, this is a set of function pointers
       to use to access and describe the value, and a closure pointer
       for them to use.  */
    struct
    {
      /* Functions to call.  */
      const struct lval_funcs *funcs;

      /* Closure for those functions to use.  */
      void *closure;
    } computed;
  } location {};

  /* Describes offset of a value within lval of a structure in target
     addressable memory units.  Note also the member embedded_offset
     below.  */
  LONGEST offset = 0;

  /* Only used for bitfields; number of bits contained in them.  */
  LONGEST bitsize = 0;

  /* Only used for bitfields; position of start of field.  For
     little-endian targets, it is the position of the LSB.  For
     big-endian targets, it is the position of the MSB.  */
  LONGEST bitpos = 0;

  /* The number of references to this value.  When a value is created,
     the value chain holds a reference, so REFERENCE_COUNT is 1.  If
     release_value is called, this value is removed from the chain but
     the caller of release_value now has a reference to this value.
     The caller must arrange for a call to value_free later.  */
  int reference_count = 1;

  /* Only used for bitfields; the containing value.  This allows a
     single read from the target when displaying multiple
     bitfields.  */
  value_ref_ptr parent;

  /* Type of the value.  */
  struct type *type;

  /* If a value represents a C++ object, then the `type' field gives
     the object's compile-time type.  If the object actually belongs
     to some class derived from `type', perhaps with other base
     classes and additional members, then `type' is just a subobject
     of the real thing, and the full object is probably larger than
     `type' would suggest.

     If `type' is a dynamic class (i.e. one with a vtable), then GDB
     can actually determine the object's run-time type by looking at
     the run-time type information in the vtable.  When this
     information is available, we may elect to read in the entire
     object, for several reasons:

     - When printing the value, the user would probably rather see the
     full object, not just the limited portion apparent from the
     compile-time type.

     - If `type' has virtual base classes, then even printing `type'
     alone may require reaching outside the `type' portion of the
     object to wherever the virtual base class has been stored.

     When we store the entire object, `enclosing_type' is the run-time
     type -- the complete object -- and `embedded_offset' is the
     offset of `type' within that larger type, in target addressable memory
     units.  The value_contents() macro takes `embedded_offset' into account,
     so most GDB code continues to see the `type' portion of the value, just
     as the inferior would.

     If `type' is a pointer to an object, then `enclosing_type' is a
     pointer to the object's run-time type, and `pointed_to_offset' is
     the offset in target addressable memory units from the full object
     to the pointed-to object -- that is, the value `embedded_offset' would
     have if we followed the pointer and fetched the complete object.
     (I don't really see the point.  Why not just determine the
     run-time type when you indirect, and avoid the special case?  The
     contents don't matter until you indirect anyway.)

     If we're not doing anything fancy, `enclosing_type' is equal to
     `type', and `embedded_offset' is zero, so everything works
     normally.  */
  struct type *enclosing_type;
  LONGEST embedded_offset = 0;
  LONGEST pointed_to_offset = 0;

  /* Actual contents of the value.  Target byte-order.  NULL or not
     valid if lazy is nonzero.  */
  gdb::unique_xmalloc_ptr<gdb_byte> contents;

  /* Unavailable ranges in CONTENTS.  We mark unavailable ranges,
     rather than available, since the common and default case is for a
     value to be available.  This is filled in at value read time.
     The unavailable ranges are tracked in bits.  Note that a contents
     bit that has been optimized out doesn't really exist in the
     program, so it can't be marked unavailable either.  */
  std::vector<range> unavailable;

  /* Likewise, but for optimized out contents (a chunk of the value of
     a variable that does not actually exist in the program).  If LVAL
     is lval_register, this is a register ($pc, $sp, etc., never a
     program variable) that has not been saved in the frame.  Not
     saved registers and optimized-out program variables values are
     treated pretty much the same, except not-saved registers have a
     different string representation and related error strings.  */
  std::vector<range> optimized_out;
};

/* See value.h.  */

struct gdbarch *
get_value_arch (const struct value *value)
{
  return get_type_arch (value_type (value));
}

int
value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
{
  gdb_assert (!value->lazy);

  return !ranges_contain (value->unavailable, offset, length);
}

int
value_bytes_available (const struct value *value,
		       LONGEST offset, LONGEST length)
{
  return value_bits_available (value,
			       offset * TARGET_CHAR_BIT,
			       length * TARGET_CHAR_BIT);
}

int
value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
{
  gdb_assert (!value->lazy);

  return ranges_contain (value->optimized_out, bit_offset, bit_length);
}

int
value_entirely_available (struct value *value)
{
  /* We can only tell whether the whole value is available when we try
     to read it.  */
  if (value->lazy)
    value_fetch_lazy (value);

  if (value->unavailable.empty ())
    return 1;
  return 0;
}

/* Returns true if VALUE is entirely covered by RANGES.  If the value
   is lazy, it'll be read now.  Note that RANGE is a pointer to
   pointer because reading the value might change *RANGE.  */

static int
value_entirely_covered_by_range_vector (struct value *value,
					const std::vector<range> &ranges)
{
  /* We can only tell whether the whole value is optimized out /
     unavailable when we try to read it.  */
  if (value->lazy)
    value_fetch_lazy (value);

  if (ranges.size () == 1)
    {
      const struct range &t = ranges[0];

      if (t.offset == 0
	  && t.length == (TARGET_CHAR_BIT
			  * TYPE_LENGTH (value_enclosing_type (value))))
	return 1;
    }

  return 0;
}

int
value_entirely_unavailable (struct value *value)
{
  return value_entirely_covered_by_range_vector (value, value->unavailable);
}

int
value_entirely_optimized_out (struct value *value)
{
  return value_entirely_covered_by_range_vector (value, value->optimized_out);
}

/* Insert into the vector pointed to by VECTORP the bit range starting of
   OFFSET bits, and extending for the next LENGTH bits.  */

static void
insert_into_bit_range_vector (std::vector<range> *vectorp,
			      LONGEST offset, LONGEST length)
{
  range newr;

  /* Insert the range sorted.  If there's overlap or the new range
     would be contiguous with an existing range, merge.  */

  newr.offset = offset;
  newr.length = length;

  /* Do a binary search for the position the given range would be
     inserted if we only considered the starting OFFSET of ranges.
     Call that position I.  Since we also have LENGTH to care for
     (this is a range afterall), we need to check if the _previous_
     range overlaps the I range.  E.g., calling R the new range:

       #1 - overlaps with previous

	   R
	   |-...-|
	 |---|     |---|  |------| ... |--|
	 0         1      2            N

	 I=1

     In the case #1 above, the binary search would return `I=1',
     meaning, this OFFSET should be inserted at position 1, and the
     current position 1 should be pushed further (and become 2).  But,
     note that `0' overlaps with R, so we want to merge them.

     A similar consideration needs to be taken if the new range would
     be contiguous with the previous range:

       #2 - contiguous with previous

	    R
	    |-...-|
	 |--|       |---|  |------| ... |--|
	 0          1      2            N

	 I=1

     If there's no overlap with the previous range, as in:

       #3 - not overlapping and not contiguous

	       R
	       |-...-|
	  |--|         |---|  |------| ... |--|
	  0            1      2            N

	 I=1

     or if I is 0:

       #4 - R is the range with lowest offset

	  R
	 |-...-|
	         |--|       |---|  |------| ... |--|
	         0          1      2            N

	 I=0

     ... we just push the new range to I.

     All the 4 cases above need to consider that the new range may
     also overlap several of the ranges that follow, or that R may be
     contiguous with the following range, and merge.  E.g.,

       #5 - overlapping following ranges

	  R
	 |------------------------|
	         |--|       |---|  |------| ... |--|
	         0          1      2            N

	 I=0

       or:

	    R
	    |-------|
	 |--|       |---|  |------| ... |--|
	 0          1      2            N

	 I=1

  */

  auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr);
  if (i > vectorp->begin ())
    {
      struct range &bef = *(i - 1);

      if (ranges_overlap (bef.offset, bef.length, offset, length))
	{
	  /* #1 */
	  ULONGEST l = std::min (bef.offset, offset);
	  ULONGEST h = std::max (bef.offset + bef.length, offset + length);

	  bef.offset = l;
	  bef.length = h - l;
	  i--;
	}
      else if (offset == bef.offset + bef.length)
	{
	  /* #2 */
	  bef.length += length;
	  i--;
	}
      else
	{
	  /* #3 */
	  i = vectorp->insert (i, newr);
	}
    }
  else
    {
      /* #4 */
      i = vectorp->insert (i, newr);
    }

  /* Check whether the ranges following the one we've just added or
     touched can be folded in (#5 above).  */
  if (i != vectorp->end () && i + 1 < vectorp->end ())
    {
      int removed = 0;
      auto next = i + 1;

      /* Get the range we just touched.  */
      struct range &t = *i;
      removed = 0;

      i = next;
      for (; i < vectorp->end (); i++)
	{
	  struct range &r = *i;
	  if (r.offset <= t.offset + t.length)
	    {
	      ULONGEST l, h;

	      l = std::min (t.offset, r.offset);
	      h = std::max (t.offset + t.length, r.offset + r.length);

	      t.offset = l;
	      t.length = h - l;

	      removed++;
	    }
	  else
	    {
	      /* If we couldn't merge this one, we won't be able to
		 merge following ones either, since the ranges are
		 always sorted by OFFSET.  */
	      break;
	    }
	}

      if (removed != 0)
	vectorp->erase (next, next + removed);
    }
}

void
mark_value_bits_unavailable (struct value *value,
			     LONGEST offset, LONGEST length)
{
  insert_into_bit_range_vector (&value->unavailable, offset, length);
}

void
mark_value_bytes_unavailable (struct value *value,
			      LONGEST offset, LONGEST length)
{
  mark_value_bits_unavailable (value,
			       offset * TARGET_CHAR_BIT,
			       length * TARGET_CHAR_BIT);
}

/* Find the first range in RANGES that overlaps the range defined by
   OFFSET and LENGTH, starting at element POS in the RANGES vector,
   Returns the index into RANGES where such overlapping range was
   found, or -1 if none was found.  */

static int
find_first_range_overlap (const std::vector<range> *ranges, int pos,
			  LONGEST offset, LONGEST length)
{
  int i;

  for (i = pos; i < ranges->size (); i++)
    {
      const range &r = (*ranges)[i];
      if (ranges_overlap (r.offset, r.length, offset, length))
	return i;
    }

  return -1;
}

/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
   PTR2 + OFFSET2_BITS.  Return 0 if the memory is the same, otherwise
   return non-zero.

   It must always be the case that:
     OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT

   It is assumed that memory can be accessed from:
     PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
   to:
     PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
            / TARGET_CHAR_BIT)  */
static int
memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
			 const gdb_byte *ptr2, size_t offset2_bits,
			 size_t length_bits)
{
  gdb_assert (offset1_bits % TARGET_CHAR_BIT
	      == offset2_bits % TARGET_CHAR_BIT);

  if (offset1_bits % TARGET_CHAR_BIT != 0)
    {
      size_t bits;
      gdb_byte mask, b1, b2;

      /* The offset from the base pointers PTR1 and PTR2 is not a complete
	 number of bytes.  A number of bits up to either the next exact
	 byte boundary, or LENGTH_BITS (which ever is sooner) will be
	 compared.  */
      bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
      gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
      mask = (1 << bits) - 1;

      if (length_bits < bits)
	{
	  mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
	  bits = length_bits;
	}

      /* Now load the two bytes and mask off the bits we care about.  */
      b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
      b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;

      if (b1 != b2)
	return 1;

      /* Now update the length and offsets to take account of the bits
	 we've just compared.  */
      length_bits -= bits;
      offset1_bits += bits;
      offset2_bits += bits;
    }

  if (length_bits % TARGET_CHAR_BIT != 0)
    {
      size_t bits;
      size_t o1, o2;
      gdb_byte mask, b1, b2;

      /* The length is not an exact number of bytes.  After the previous
	 IF.. block then the offsets are byte aligned, or the
	 length is zero (in which case this code is not reached).  Compare
	 a number of bits at the end of the region, starting from an exact
	 byte boundary.  */
      bits = length_bits % TARGET_CHAR_BIT;
      o1 = offset1_bits + length_bits - bits;
      o2 = offset2_bits + length_bits - bits;

      gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
      mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);

      gdb_assert (o1 % TARGET_CHAR_BIT == 0);
      gdb_assert (o2 % TARGET_CHAR_BIT == 0);

      b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
      b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;

      if (b1 != b2)
	return 1;

      length_bits -= bits;
    }

  if (length_bits > 0)
    {
      /* We've now taken care of any stray "bits" at the start, or end of
	 the region to compare, the remainder can be covered with a simple
	 memcmp.  */
      gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
      gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
      gdb_assert (length_bits % TARGET_CHAR_BIT == 0);

      return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
		     ptr2 + offset2_bits / TARGET_CHAR_BIT,
		     length_bits / TARGET_CHAR_BIT);
    }

  /* Length is zero, regions match.  */
  return 0;
}

/* Helper struct for find_first_range_overlap_and_match and
   value_contents_bits_eq.  Keep track of which slot of a given ranges
   vector have we last looked at.  */

struct ranges_and_idx
{
  /* The ranges.  */
  const std::vector<range> *ranges;

  /* The range we've last found in RANGES.  Given ranges are sorted,
     we can start the next lookup here.  */
  int idx;
};

/* Helper function for value_contents_bits_eq.  Compare LENGTH bits of
   RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
   ranges starting at OFFSET2 bits.  Return true if the ranges match
   and fill in *L and *H with the overlapping window relative to
   (both) OFFSET1 or OFFSET2.  */

static int
find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
				    struct ranges_and_idx *rp2,
				    LONGEST offset1, LONGEST offset2,
				    LONGEST length, ULONGEST *l, ULONGEST *h)
{
  rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
				       offset1, length);
  rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
				       offset2, length);

  if (rp1->idx == -1 && rp2->idx == -1)
    {
      *l = length;
      *h = length;
      return 1;
    }
  else if (rp1->idx == -1 || rp2->idx == -1)
    return 0;
  else
    {
      const range *r1, *r2;
      ULONGEST l1, h1;
      ULONGEST l2, h2;

      r1 = &(*rp1->ranges)[rp1->idx];
      r2 = &(*rp2->ranges)[rp2->idx];

      /* Get the unavailable windows intersected by the incoming
	 ranges.  The first and last ranges that overlap the argument
	 range may be wider than said incoming arguments ranges.  */
      l1 = std::max (offset1, r1->offset);
      h1 = std::min (offset1 + length, r1->offset + r1->length);

      l2 = std::max (offset2, r2->offset);
      h2 = std::min (offset2 + length, offset2 + r2->length);

      /* Make them relative to the respective start offsets, so we can
	 compare them for equality.  */
      l1 -= offset1;
      h1 -= offset1;

      l2 -= offset2;
      h2 -= offset2;

      /* Different ranges, no match.  */
      if (l1 != l2 || h1 != h2)
	return 0;

      *h = h1;
      *l = l1;
      return 1;
    }
}

/* Helper function for value_contents_eq.  The only difference is that
   this function is bit rather than byte based.

   Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
   with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
   Return true if the available bits match.  */

static bool
value_contents_bits_eq (const struct value *val1, int offset1,
			const struct value *val2, int offset2,
			int length)
{
  /* Each array element corresponds to a ranges source (unavailable,
     optimized out).  '1' is for VAL1, '2' for VAL2.  */
  struct ranges_and_idx rp1[2], rp2[2];

  /* See function description in value.h.  */
  gdb_assert (!val1->lazy && !val2->lazy);

  /* We shouldn't be trying to compare past the end of the values.  */
  gdb_assert (offset1 + length
	      <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
  gdb_assert (offset2 + length
	      <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);

  memset (&rp1, 0, sizeof (rp1));
  memset (&rp2, 0, sizeof (rp2));
  rp1[0].ranges = &val1->unavailable;
  rp2[0].ranges = &val2->unavailable;
  rp1[1].ranges = &val1->optimized_out;
  rp2[1].ranges = &val2->optimized_out;

  while (length > 0)
    {
      ULONGEST l = 0, h = 0; /* init for gcc -Wall */
      int i;

      for (i = 0; i < 2; i++)
	{
	  ULONGEST l_tmp, h_tmp;

	  /* The contents only match equal if the invalid/unavailable
	     contents ranges match as well.  */
	  if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
						   offset1, offset2, length,
						   &l_tmp, &h_tmp))
	    return false;

	  /* We're interested in the lowest/first range found.  */
	  if (i == 0 || l_tmp < l)
	    {
	      l = l_tmp;
	      h = h_tmp;
	    }
	}

      /* Compare the available/valid contents.  */
      if (memcmp_with_bit_offsets (val1->contents.get (), offset1,
				   val2->contents.get (), offset2, l) != 0)
	return false;

      length -= h;
      offset1 += h;
      offset2 += h;
    }

  return true;
}

bool
value_contents_eq (const struct value *val1, LONGEST offset1,
		   const struct value *val2, LONGEST offset2,
		   LONGEST length)
{
  return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
				 val2, offset2 * TARGET_CHAR_BIT,
				 length * TARGET_CHAR_BIT);
}


/* The value-history records all the values printed by print commands
   during this session.  */

static std::vector<value_ref_ptr> value_history;


/* List of all value objects currently allocated
   (except for those released by calls to release_value)
   This is so they can be freed after each command.  */

static std::vector<value_ref_ptr> all_values;

/* Allocate a lazy value for type TYPE.  Its actual content is
   "lazily" allocated too: the content field of the return value is
   NULL; it will be allocated when it is fetched from the target.  */

struct value *
allocate_value_lazy (struct type *type)
{
  struct value *val;

  /* Call check_typedef on our type to make sure that, if TYPE
     is a TYPE_CODE_TYPEDEF, its length is set to the length
     of the target type instead of zero.  However, we do not
     replace the typedef type by the target type, because we want
     to keep the typedef in order to be able to set the VAL's type
     description correctly.  */
  check_typedef (type);

  val = new struct value (type);

  /* Values start out on the all_values chain.  */
  all_values.emplace_back (val);

  return val;
}

/* The maximum size, in bytes, that GDB will try to allocate for a value.
   The initial value of 64k was not selected for any specific reason, it is
   just a reasonable starting point.  */

static int max_value_size = 65536; /* 64k bytes */

/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
   LONGEST, otherwise GDB will not be able to parse integer values from the
   CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
   be unable to parse "set max-value-size 2".

   As we want a consistent GDB experience across hosts with different sizes
   of LONGEST, this arbitrary minimum value was selected, so long as this
   is bigger than LONGEST on all GDB supported hosts we're fine.  */

#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);

/* Implement the "set max-value-size" command.  */

static void
set_max_value_size (const char *args, int from_tty,
		    struct cmd_list_element *c)
{
  gdb_assert (max_value_size == -1 || max_value_size >= 0);

  if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
    {
      max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
      error (_("max-value-size set too low, increasing to %d bytes"),
	     max_value_size);
    }
}

/* Implement the "show max-value-size" command.  */

static void
show_max_value_size (struct ui_file *file, int from_tty,
		     struct cmd_list_element *c, const char *value)
{
  if (max_value_size == -1)
    fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
  else
    fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
		      max_value_size);
}

/* Called before we attempt to allocate or reallocate a buffer for the
   contents of a value.  TYPE is the type of the value for which we are
   allocating the buffer.  If the buffer is too large (based on the user
   controllable setting) then throw an error.  If this function returns
   then we should attempt to allocate the buffer.  */

static void
check_type_length_before_alloc (const struct type *type)
{
  unsigned int length = TYPE_LENGTH (type);

  if (max_value_size > -1 && length > max_value_size)
    {
      if (TYPE_NAME (type) != NULL)
	error (_("value of type `%s' requires %u bytes, which is more "
		 "than max-value-size"), TYPE_NAME (type), length);
      else
	error (_("value requires %u bytes, which is more than "
		 "max-value-size"), length);
    }
}

/* Allocate the contents of VAL if it has not been allocated yet.  */

static void
allocate_value_contents (struct value *val)
{
  if (!val->contents)
    {
      check_type_length_before_alloc (val->enclosing_type);
      val->contents.reset
	((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)));
    }
}

/* Allocate a  value  and its contents for type TYPE.  */

struct value *
allocate_value (struct type *type)
{
  struct value *val = allocate_value_lazy (type);

  allocate_value_contents (val);
  val->lazy = 0;
  return val;
}

/* Allocate a  value  that has the correct length
   for COUNT repetitions of type TYPE.  */

struct value *
allocate_repeat_value (struct type *type, int count)
{
  int low_bound = current_language->string_lower_bound;		/* ??? */
  /* FIXME-type-allocation: need a way to free this type when we are
     done with it.  */
  struct type *array_type
    = lookup_array_range_type (type, low_bound, count + low_bound - 1);

  return allocate_value (array_type);
}

struct value *
allocate_computed_value (struct type *type,
                         const struct lval_funcs *funcs,
                         void *closure)
{
  struct value *v = allocate_value_lazy (type);

  VALUE_LVAL (v) = lval_computed;
  v->location.computed.funcs = funcs;
  v->location.computed.closure = closure;

  return v;
}

/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT.  */

struct value *
allocate_optimized_out_value (struct type *type)
{
  struct value *retval = allocate_value_lazy (type);

  mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
  set_value_lazy (retval, 0);
  return retval;
}

/* Accessor methods.  */

struct type *
value_type (const struct value *value)
{
  return value->type;
}
void
deprecated_set_value_type (struct value *value, struct type *type)
{
  value->type = type;
}

LONGEST
value_offset (const struct value *value)
{
  return value->offset;
}
void
set_value_offset (struct value *value, LONGEST offset)
{
  value->offset = offset;
}

LONGEST
value_bitpos (const struct value *value)
{
  return value->bitpos;
}
void
set_value_bitpos (struct value *value, LONGEST bit)
{
  value->bitpos = bit;
}

LONGEST
value_bitsize (const struct value *value)
{
  return value->bitsize;
}
void
set_value_bitsize (struct value *value, LONGEST bit)
{
  value->bitsize = bit;
}

struct value *
value_parent (const struct value *value)
{
  return value->parent.get ();
}

/* See value.h.  */

void
set_value_parent (struct value *value, struct value *parent)
{
  value->parent = value_ref_ptr::new_reference (parent);
}

gdb_byte *
value_contents_raw (struct value *value)
{
  struct gdbarch *arch = get_value_arch (value);
  int unit_size = gdbarch_addressable_memory_unit_size (arch);

  allocate_value_contents (value);
  return value->contents.get () + value->embedded_offset * unit_size;
}

gdb_byte *
value_contents_all_raw (struct value *value)
{
  allocate_value_contents (value);
  return value->contents.get ();
}

struct type *
value_enclosing_type (const struct value *value)
{
  return value->enclosing_type;
}

/* Look at value.h for description.  */

struct type *
value_actual_type (struct value *value, int resolve_simple_types,
		   int *real_type_found)
{
  struct value_print_options opts;
  struct type *result;

  get_user_print_options (&opts);

  if (real_type_found)
    *real_type_found = 0;
  result = value_type (value);
  if (opts.objectprint)
    {
      /* If result's target type is TYPE_CODE_STRUCT, proceed to
	 fetch its rtti type.  */
      if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
	  && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
	     == TYPE_CODE_STRUCT
	  && !value_optimized_out (value))
        {
          struct type *real_type;

          real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
          if (real_type)
            {
              if (real_type_found)
                *real_type_found = 1;
              result = real_type;
            }
        }
      else if (resolve_simple_types)
        {
          if (real_type_found)
            *real_type_found = 1;
          result = value_enclosing_type (value);
        }
    }

  return result;
}

void
error_value_optimized_out (void)
{
  error (_("value has been optimized out"));
}

static void
require_not_optimized_out (const struct value *value)
{
  if (!value->optimized_out.empty ())
    {
      if (value->lval == lval_register)
	error (_("register has not been saved in frame"));
      else
	error_value_optimized_out ();
    }
}

static void
require_available (const struct value *value)
{
  if (!value->unavailable.empty ())
    throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
}

const gdb_byte *
value_contents_for_printing (struct value *value)
{
  if (value->lazy)
    value_fetch_lazy (value);
  return value->contents.get ();
}

const gdb_byte *
value_contents_for_printing_const (const struct value *value)
{
  gdb_assert (!value->lazy);
  return value->contents.get ();
}

const gdb_byte *
value_contents_all (struct value *value)
{
  const gdb_byte *result = value_contents_for_printing (value);
  require_not_optimized_out (value);
  require_available (value);
  return result;
}

/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
   SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted.  */

static void
ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset,
		      const std::vector<range> &src_range, int src_bit_offset,
		      int bit_length)
{
  for (const range &r : src_range)
    {
      ULONGEST h, l;

      l = std::max (r.offset, (LONGEST) src_bit_offset);
      h = std::min (r.offset + r.length,
		    (LONGEST) src_bit_offset + bit_length);

      if (l < h)
	insert_into_bit_range_vector (dst_range,
				      dst_bit_offset + (l - src_bit_offset),
				      h - l);
    }
}

/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
   SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted.  */

static void
value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
			    const struct value *src, int src_bit_offset,
			    int bit_length)
{
  ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
			src->unavailable, src_bit_offset,
			bit_length);
  ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
			src->optimized_out, src_bit_offset,
			bit_length);
}

/* Copy LENGTH target addressable memory units of SRC value's (all) contents
   (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
   contents, starting at DST_OFFSET.  If unavailable contents are
   being copied from SRC, the corresponding DST contents are marked
   unavailable accordingly.  Neither DST nor SRC may be lazy
   values.

   It is assumed the contents of DST in the [DST_OFFSET,
   DST_OFFSET+LENGTH) range are wholly available.  */

void
value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
			 struct value *src, LONGEST src_offset, LONGEST length)
{
  LONGEST src_bit_offset, dst_bit_offset, bit_length;
  struct gdbarch *arch = get_value_arch (src);
  int unit_size = gdbarch_addressable_memory_unit_size (arch);

  /* A lazy DST would make that this copy operation useless, since as
     soon as DST's contents were un-lazied (by a later value_contents
     call, say), the contents would be overwritten.  A lazy SRC would
     mean we'd be copying garbage.  */
  gdb_assert (!dst->lazy && !src->lazy);

  /* The overwritten DST range gets unavailability ORed in, not
     replaced.  Make sure to remember to implement replacing if it
     turns out actually necessary.  */
  gdb_assert (value_bytes_available (dst, dst_offset, length));
  gdb_assert (!value_bits_any_optimized_out (dst,
					     TARGET_CHAR_BIT * dst_offset,
					     TARGET_CHAR_BIT * length));

  /* Copy the data.  */
  memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
	  value_contents_all_raw (src) + src_offset * unit_size,
	  length * unit_size);

  /* Copy the meta-data, adjusted.  */
  src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
  dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
  bit_length = length * unit_size * HOST_CHAR_BIT;

  value_ranges_copy_adjusted (dst, dst_bit_offset,
			      src, src_bit_offset,
			      bit_length);
}

/* Copy LENGTH bytes of SRC value's (all) contents
   (value_contents_all) starting at SRC_OFFSET byte, into DST value's
   (all) contents, starting at DST_OFFSET.  If unavailable contents
   are being copied from SRC, the corresponding DST contents are
   marked unavailable accordingly.  DST must not be lazy.  If SRC is
   lazy, it will be fetched now.

   It is assumed the contents of DST in the [DST_OFFSET,
   DST_OFFSET+LENGTH) range are wholly available.  */

void
value_contents_copy (struct value *dst, LONGEST dst_offset,
		     struct value *src, LONGEST src_offset, LONGEST length)
{
  if (src->lazy)
    value_fetch_lazy (src);

  value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
}

int
value_lazy (const struct value *value)
{
  return value->lazy;
}

void
set_value_lazy (struct value *value, int val)
{
  value->lazy = val;
}

int
value_stack (const struct value *value)
{
  return value->stack;
}

void
set_value_stack (struct value *value, int val)
{
  value->stack = val;
}

const gdb_byte *
value_contents (struct value *value)
{
  const gdb_byte *result = value_contents_writeable (value);
  require_not_optimized_out (value);
  require_available (value);
  return result;
}

gdb_byte *
value_contents_writeable (struct value *value)
{
  if (value->lazy)
    value_fetch_lazy (value);
  return value_contents_raw (value);
}

int
value_optimized_out (struct value *value)
{
  /* We can only know if a value is optimized out once we have tried to
     fetch it.  */
  if (value->optimized_out.empty () && value->lazy)
    {
      try
	{
	  value_fetch_lazy (value);
	}
      catch (const gdb_exception_error &ex)
	{
	  /* Fall back to checking value->optimized_out.  */
	}
    }

  return !value->optimized_out.empty ();
}

/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
   the following LENGTH bytes.  */

void
mark_value_bytes_optimized_out (struct value *value, int offset, int length)
{
  mark_value_bits_optimized_out (value,
				 offset * TARGET_CHAR_BIT,
				 length * TARGET_CHAR_BIT);
}

/* See value.h.  */

void
mark_value_bits_optimized_out (struct value *value,
			       LONGEST offset, LONGEST length)
{
  insert_into_bit_range_vector (&value->optimized_out, offset, length);
}

int
value_bits_synthetic_pointer (const struct value *value,
			      LONGEST offset, LONGEST length)
{
  if (value->lval != lval_computed
      || !value->location.computed.funcs->check_synthetic_pointer)
    return 0;
  return value->location.computed.funcs->check_synthetic_pointer (value,
								  offset,
								  length);
}

LONGEST
value_embedded_offset (const struct value *value)
{
  return value->embedded_offset;
}

void
set_value_embedded_offset (struct value *value, LONGEST val)
{
  value->embedded_offset = val;
}

LONGEST
value_pointed_to_offset (const struct value *value)
{
  return value->pointed_to_offset;
}

void
set_value_pointed_to_offset (struct value *value, LONGEST val)
{
  value->pointed_to_offset = val;
}

const struct lval_funcs *
value_computed_funcs (const struct value *v)
{
  gdb_assert (value_lval_const (v) == lval_computed);

  return v->location.computed.funcs;
}

void *
value_computed_closure (const struct value *v)
{
  gdb_assert (v->lval == lval_computed);

  return v->location.computed.closure;
}

enum lval_type *
deprecated_value_lval_hack (struct value *value)
{
  return &value->lval;
}

enum lval_type
value_lval_const (const struct value *value)
{
  return value->lval;
}

CORE_ADDR
value_address (const struct value *value)
{
  if (value->lval != lval_memory)
    return 0;
  if (value->parent != NULL)
    return value_address (value->parent.get ()) + value->offset;
  if (NULL != TYPE_DATA_LOCATION (value_type (value)))
    {
      gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
      return TYPE_DATA_LOCATION_ADDR (value_type (value));
    }

  return value->location.address + value->offset;
}

CORE_ADDR
value_raw_address (const struct value *value)
{
  if (value->lval != lval_memory)
    return 0;
  return value->location.address;
}

void
set_value_address (struct value *value, CORE_ADDR addr)
{
  gdb_assert (value->lval == lval_memory);
  value->location.address = addr;
}

struct internalvar **
deprecated_value_internalvar_hack (struct value *value)
{
  return &value->location.internalvar;
}

struct frame_id *
deprecated_value_next_frame_id_hack (struct value *value)
{
  gdb_assert (value->lval == lval_register);
  return &value->location.reg.next_frame_id;
}

int *
deprecated_value_regnum_hack (struct value *value)
{
  gdb_assert (value->lval == lval_register);
  return &value->location.reg.regnum;
}

int
deprecated_value_modifiable (const struct value *value)
{
  return value->modifiable;
}

/* Return a mark in the value chain.  All values allocated after the
   mark is obtained (except for those released) are subject to being freed
   if a subsequent value_free_to_mark is passed the mark.  */
struct value *
value_mark (void)
{
  if (all_values.empty ())
    return nullptr;
  return all_values.back ().get ();
}

/* See value.h.  */

void
value_incref (struct value *val)
{
  val->reference_count++;
}

/* Release a reference to VAL, which was acquired with value_incref.
   This function is also called to deallocate values from the value
   chain.  */

void
value_decref (struct value *val)
{
  if (val != nullptr)
    {
      gdb_assert (val->reference_count > 0);
      val->reference_count--;
      if (val->reference_count == 0)
	delete val;
    }
}

/* Free all values allocated since MARK was obtained by value_mark
   (except for those released).  */
void
value_free_to_mark (const struct value *mark)
{
  auto iter = std::find (all_values.begin (), all_values.end (), mark);
  if (iter == all_values.end ())
    all_values.clear ();
  else
    all_values.erase (iter + 1, all_values.end ());
}

/* Remove VAL from the chain all_values
   so it will not be freed automatically.  */

value_ref_ptr
release_value (struct value *val)
{
  if (val == nullptr)
    return value_ref_ptr ();

  std::vector<value_ref_ptr>::reverse_iterator iter;
  for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter)
    {
      if (*iter == val)
	{
	  value_ref_ptr result = *iter;
	  all_values.erase (iter.base () - 1);
	  return result;
	}
    }

  /* We must always return an owned reference.  Normally this happens
     because we transfer the reference from the value chain, but in
     this case the value was not on the chain.  */
  return value_ref_ptr::new_reference (val);
}

/* See value.h.  */

std::vector<value_ref_ptr>
value_release_to_mark (const struct value *mark)
{
  std::vector<value_ref_ptr> result;

  auto iter = std::find (all_values.begin (), all_values.end (), mark);
  if (iter == all_values.end ())
    std::swap (result, all_values);
  else
    {
      std::move (iter + 1, all_values.end (), std::back_inserter (result));
      all_values.erase (iter + 1, all_values.end ());
    }
  std::reverse (result.begin (), result.end ());
  return result;
}

/* Return a copy of the value ARG.
   It contains the same contents, for same memory address,
   but it's a different block of storage.  */

struct value *
value_copy (struct value *arg)
{
  struct type *encl_type = value_enclosing_type (arg);
  struct value *val;

  if (value_lazy (arg))
    val = allocate_value_lazy (encl_type);
  else
    val = allocate_value (encl_type);
  val->type = arg->type;
  VALUE_LVAL (val) = VALUE_LVAL (arg);
  val->location = arg->location;
  val->offset = arg->offset;
  val->bitpos = arg->bitpos;
  val->bitsize = arg->bitsize;
  val->lazy = arg->lazy;
  val->embedded_offset = value_embedded_offset (arg);
  val->pointed_to_offset = arg->pointed_to_offset;
  val->modifiable = arg->modifiable;
  if (!value_lazy (val))
    {
      memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
	      TYPE_LENGTH (value_enclosing_type (arg)));

    }
  val->unavailable = arg->unavailable;
  val->optimized_out = arg->optimized_out;
  val->parent = arg->parent;
  if (VALUE_LVAL (val) == lval_computed)
    {
      const struct lval_funcs *funcs = val->location.computed.funcs;

      if (funcs->copy_closure)
        val->location.computed.closure = funcs->copy_closure (val);
    }
  return val;
}

/* Return a "const" and/or "volatile" qualified version of the value V.
   If CNST is true, then the returned value will be qualified with
   "const".
   if VOLTL is true, then the returned value will be qualified with
   "volatile".  */

struct value *
make_cv_value (int cnst, int voltl, struct value *v)
{
  struct type *val_type = value_type (v);
  struct type *enclosing_type = value_enclosing_type (v);
  struct value *cv_val = value_copy (v);

  deprecated_set_value_type (cv_val,
			     make_cv_type (cnst, voltl, val_type, NULL));
  set_value_enclosing_type (cv_val,
			    make_cv_type (cnst, voltl, enclosing_type, NULL));

  return cv_val;
}

/* Return a version of ARG that is non-lvalue.  */

struct value *
value_non_lval (struct value *arg)
{
  if (VALUE_LVAL (arg) != not_lval)
    {
      struct type *enc_type = value_enclosing_type (arg);
      struct value *val = allocate_value (enc_type);

      memcpy (value_contents_all_raw (val), value_contents_all (arg),
	      TYPE_LENGTH (enc_type));
      val->type = arg->type;
      set_value_embedded_offset (val, value_embedded_offset (arg));
      set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
      return val;
    }
   return arg;
}

/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY.  */

void
value_force_lval (struct value *v, CORE_ADDR addr)
{
  gdb_assert (VALUE_LVAL (v) == not_lval);

  write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
  v->lval = lval_memory;
  v->location.address = addr;
}

void
set_value_component_location (struct value *component,
			      const struct value *whole)
{
  struct type *type;

  gdb_assert (whole->lval != lval_xcallable);

  if (whole->lval == lval_internalvar)
    VALUE_LVAL (component) = lval_internalvar_component;
  else
    VALUE_LVAL (component) = whole->lval;

  component->location = whole->location;
  if (whole->lval == lval_computed)
    {
      const struct lval_funcs *funcs = whole->location.computed.funcs;

      if (funcs->copy_closure)
        component->location.computed.closure = funcs->copy_closure (whole);
    }

  /* If type has a dynamic resolved location property
     update it's value address.  */
  type = value_type (whole);
  if (NULL != TYPE_DATA_LOCATION (type)
      && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
    set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
}

/* Access to the value history.  */

/* Record a new value in the value history.
   Returns the absolute history index of the entry.  */

int
record_latest_value (struct value *val)
{
  /* We don't want this value to have anything to do with the inferior anymore.
     In particular, "set $1 = 50" should not affect the variable from which
     the value was taken, and fast watchpoints should be able to assume that
     a value on the value history never changes.  */
  if (value_lazy (val))
    value_fetch_lazy (val);
  /* We preserve VALUE_LVAL so that the user can find out where it was fetched
     from.  This is a bit dubious, because then *&$1 does not just return $1
     but the current contents of that location.  c'est la vie...  */
  val->modifiable = 0;

  value_history.push_back (release_value (val));

  return value_history.size ();
}

/* Return a copy of the value in the history with sequence number NUM.  */

struct value *
access_value_history (int num)
{
  int absnum = num;

  if (absnum <= 0)
    absnum += value_history.size ();

  if (absnum <= 0)
    {
      if (num == 0)
	error (_("The history is empty."));
      else if (num == 1)
	error (_("There is only one value in the history."));
      else
	error (_("History does not go back to $$%d."), -num);
    }
  if (absnum > value_history.size ())
    error (_("History has not yet reached $%d."), absnum);

  absnum--;

  return value_copy (value_history[absnum].get ());
}

static void
show_values (const char *num_exp, int from_tty)
{
  int i;
  struct value *val;
  static int num = 1;

  if (num_exp)
    {
      /* "show values +" should print from the stored position.
         "show values <exp>" should print around value number <exp>.  */
      if (num_exp[0] != '+' || num_exp[1] != '\0')
	num = parse_and_eval_long (num_exp) - 5;
    }
  else
    {
      /* "show values" means print the last 10 values.  */
      num = value_history.size () - 9;
    }

  if (num <= 0)
    num = 1;

  for (i = num; i < num + 10 && i <= value_history.size (); i++)
    {
      struct value_print_options opts;

      val = access_value_history (i);
      printf_filtered (("$%d = "), i);
      get_user_print_options (&opts);
      value_print (val, gdb_stdout, &opts);
      printf_filtered (("\n"));
    }

  /* The next "show values +" should start after what we just printed.  */
  num += 10;

  /* Hitting just return after this command should do the same thing as
     "show values +".  If num_exp is null, this is unnecessary, since
     "show values +" is not useful after "show values".  */
  if (from_tty && num_exp)
    set_repeat_arguments ("+");
}

enum internalvar_kind
{
  /* The internal variable is empty.  */
  INTERNALVAR_VOID,

  /* The value of the internal variable is provided directly as
     a GDB value object.  */
  INTERNALVAR_VALUE,

  /* A fresh value is computed via a call-back routine on every
     access to the internal variable.  */
  INTERNALVAR_MAKE_VALUE,

  /* The internal variable holds a GDB internal convenience function.  */
  INTERNALVAR_FUNCTION,

  /* The variable holds an integer value.  */
  INTERNALVAR_INTEGER,

  /* The variable holds a GDB-provided string.  */
  INTERNALVAR_STRING,
};

union internalvar_data
{
  /* A value object used with INTERNALVAR_VALUE.  */
  struct value *value;

  /* The call-back routine used with INTERNALVAR_MAKE_VALUE.  */
  struct
  {
    /* The functions to call.  */
    const struct internalvar_funcs *functions;

    /* The function's user-data.  */
    void *data;
  } make_value;

  /* The internal function used with INTERNALVAR_FUNCTION.  */
  struct
  {
    struct internal_function *function;
    /* True if this is the canonical name for the function.  */
    int canonical;
  } fn;

  /* An integer value used with INTERNALVAR_INTEGER.  */
  struct
  {
    /* If type is non-NULL, it will be used as the type to generate
       a value for this internal variable.  If type is NULL, a default
       integer type for the architecture is used.  */
    struct type *type;
    LONGEST val;
  } integer;

  /* A string value used with INTERNALVAR_STRING.  */
  char *string;
};

/* Internal variables.  These are variables within the debugger
   that hold values assigned by debugger commands.
   The user refers to them with a '$' prefix
   that does not appear in the variable names stored internally.  */

struct internalvar
{
  struct internalvar *next;
  char *name;

  /* We support various different kinds of content of an internal variable.
     enum internalvar_kind specifies the kind, and union internalvar_data
     provides the data associated with this particular kind.  */

  enum internalvar_kind kind;

  union internalvar_data u;
};

static struct internalvar *internalvars;

/* If the variable does not already exist create it and give it the
   value given.  If no value is given then the default is zero.  */
static void
init_if_undefined_command (const char* args, int from_tty)
{
  struct internalvar* intvar;

  /* Parse the expression - this is taken from set_command().  */
  expression_up expr = parse_expression (args);

  /* Validate the expression.
     Was the expression an assignment?
     Or even an expression at all?  */
  if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
    error (_("Init-if-undefined requires an assignment expression."));

  /* Extract the variable from the parsed expression.
     In the case of an assign the lvalue will be in elts[1] and elts[2].  */
  if (expr->elts[1].opcode != OP_INTERNALVAR)
    error (_("The first parameter to init-if-undefined "
	     "should be a GDB variable."));
  intvar = expr->elts[2].internalvar;

  /* Only evaluate the expression if the lvalue is void.
     This may still fail if the expression is invalid.  */
  if (intvar->kind == INTERNALVAR_VOID)
    evaluate_expression (expr.get ());
}


/* Look up an internal variable with name NAME.  NAME should not
   normally include a dollar sign.

   If the specified internal variable does not exist,
   the return value is NULL.  */

struct internalvar *
lookup_only_internalvar (const char *name)
{
  struct internalvar *var;

  for (var = internalvars; var; var = var->next)
    if (strcmp (var->name, name) == 0)
      return var;

  return NULL;
}

/* Complete NAME by comparing it to the names of internal
   variables.  */

void
complete_internalvar (completion_tracker &tracker, const char *name)
{
  struct internalvar *var;
  int len;

  len = strlen (name);

  for (var = internalvars; var; var = var->next)
    if (strncmp (var->name, name, len) == 0)
      tracker.add_completion (make_unique_xstrdup (var->name));
}

/* Create an internal variable with name NAME and with a void value.
   NAME should not normally include a dollar sign.  */

struct internalvar *
create_internalvar (const char *name)
{
  struct internalvar *var = XNEW (struct internalvar);

  var->name = xstrdup (name);
  var->kind = INTERNALVAR_VOID;
  var->next = internalvars;
  internalvars = var;
  return var;
}

/* Create an internal variable with name NAME and register FUN as the
   function that value_of_internalvar uses to create a value whenever
   this variable is referenced.  NAME should not normally include a
   dollar sign.  DATA is passed uninterpreted to FUN when it is
   called.  CLEANUP, if not NULL, is called when the internal variable
   is destroyed.  It is passed DATA as its only argument.  */

struct internalvar *
create_internalvar_type_lazy (const char *name,
			      const struct internalvar_funcs *funcs,
			      void *data)
{
  struct internalvar *var = create_internalvar (name);

  var->kind = INTERNALVAR_MAKE_VALUE;
  var->u.make_value.functions = funcs;
  var->u.make_value.data = data;
  return var;
}

/* See documentation in value.h.  */

int
compile_internalvar_to_ax (struct internalvar *var,
			   struct agent_expr *expr,
			   struct axs_value *value)
{
  if (var->kind != INTERNALVAR_MAKE_VALUE
      || var->u.make_value.functions->compile_to_ax == NULL)
    return 0;

  var->u.make_value.functions->compile_to_ax (var, expr, value,
					      var->u.make_value.data);
  return 1;
}

/* Look up an internal variable with name NAME.  NAME should not
   normally include a dollar sign.

   If the specified internal variable does not exist,
   one is created, with a void value.  */

struct internalvar *
lookup_internalvar (const char *name)
{
  struct internalvar *var;

  var = lookup_only_internalvar (name);
  if (var)
    return var;

  return create_internalvar (name);
}

/* Return current value of internal variable VAR.  For variables that
   are not inherently typed, use a value type appropriate for GDBARCH.  */

struct value *
value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
{
  struct value *val;
  struct trace_state_variable *tsv;

  /* If there is a trace state variable of the same name, assume that
     is what we really want to see.  */
  tsv = find_trace_state_variable (var->name);
  if (tsv)
    {
      tsv->value_known = target_get_trace_state_variable_value (tsv->number,
								&(tsv->value));
      if (tsv->value_known)
	val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
				  tsv->value);
      else
	val = allocate_value (builtin_type (gdbarch)->builtin_void);
      return val;
    }

  switch (var->kind)
    {
    case INTERNALVAR_VOID:
      val = allocate_value (builtin_type (gdbarch)->builtin_void);
      break;

    case INTERNALVAR_FUNCTION:
      val = allocate_value (builtin_type (gdbarch)->internal_fn);
      break;

    case INTERNALVAR_INTEGER:
      if (!var->u.integer.type)
	val = value_from_longest (builtin_type (gdbarch)->builtin_int,
				  var->u.integer.val);
      else
	val = value_from_longest (var->u.integer.type, var->u.integer.val);
      break;

    case INTERNALVAR_STRING:
      val = value_cstring (var->u.string, strlen (var->u.string),
			   builtin_type (gdbarch)->builtin_char);
      break;

    case INTERNALVAR_VALUE:
      val = value_copy (var->u.value);
      if (value_lazy (val))
	value_fetch_lazy (val);
      break;

    case INTERNALVAR_MAKE_VALUE:
      val = (*var->u.make_value.functions->make_value) (gdbarch, var,
							var->u.make_value.data);
      break;

    default:
      internal_error (__FILE__, __LINE__, _("bad kind"));
    }

  /* Change the VALUE_LVAL to lval_internalvar so that future operations
     on this value go back to affect the original internal variable.

     Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
     no underlying modifiable state in the internal variable.

     Likewise, if the variable's value is a computed lvalue, we want
     references to it to produce another computed lvalue, where
     references and assignments actually operate through the
     computed value's functions.

     This means that internal variables with computed values
     behave a little differently from other internal variables:
     assignments to them don't just replace the previous value
     altogether.  At the moment, this seems like the behavior we
     want.  */

  if (var->kind != INTERNALVAR_MAKE_VALUE
      && val->lval != lval_computed)
    {
      VALUE_LVAL (val) = lval_internalvar;
      VALUE_INTERNALVAR (val) = var;
    }

  return val;
}

int
get_internalvar_integer (struct internalvar *var, LONGEST *result)
{
  if (var->kind == INTERNALVAR_INTEGER)
    {
      *result = var->u.integer.val;
      return 1;
    }

  if (var->kind == INTERNALVAR_VALUE)
    {
      struct type *type = check_typedef (value_type (var->u.value));

      if (TYPE_CODE (type) == TYPE_CODE_INT)
	{
	  *result = value_as_long (var->u.value);
	  return 1;
	}
    }

  return 0;
}

static int
get_internalvar_function (struct internalvar *var,
			  struct internal_function **result)
{
  switch (var->kind)
    {
    case INTERNALVAR_FUNCTION:
      *result = var->u.fn.function;
      return 1;

    default:
      return 0;
    }
}

void
set_internalvar_component (struct internalvar *var,
			   LONGEST offset, LONGEST bitpos,
			   LONGEST bitsize, struct value *newval)
{
  gdb_byte *addr;
  struct gdbarch *arch;
  int unit_size;

  switch (var->kind)
    {
    case INTERNALVAR_VALUE:
      addr = value_contents_writeable (var->u.value);
      arch = get_value_arch (var->u.value);
      unit_size = gdbarch_addressable_memory_unit_size (arch);

      if (bitsize)
	modify_field (value_type (var->u.value), addr + offset,
		      value_as_long (newval), bitpos, bitsize);
      else
	memcpy (addr + offset * unit_size, value_contents (newval),
		TYPE_LENGTH (value_type (newval)));
      break;

    default:
      /* We can never get a component of any other kind.  */
      internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
    }
}

void
set_internalvar (struct internalvar *var, struct value *val)
{
  enum internalvar_kind new_kind;
  union internalvar_data new_data = { 0 };

  if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
    error (_("Cannot overwrite convenience function %s"), var->name);

  /* Prepare new contents.  */
  switch (TYPE_CODE (check_typedef (value_type (val))))
    {
    case TYPE_CODE_VOID:
      new_kind = INTERNALVAR_VOID;
      break;

    case TYPE_CODE_INTERNAL_FUNCTION:
      gdb_assert (VALUE_LVAL (val) == lval_internalvar);
      new_kind = INTERNALVAR_FUNCTION;
      get_internalvar_function (VALUE_INTERNALVAR (val),
				&new_data.fn.function);
      /* Copies created here are never canonical.  */
      break;

    default:
      new_kind = INTERNALVAR_VALUE;
      struct value *copy = value_copy (val);
      copy->modifiable = 1;

      /* Force the value to be fetched from the target now, to avoid problems
	 later when this internalvar is referenced and the target is gone or
	 has changed.  */
      if (value_lazy (copy))
	value_fetch_lazy (copy);

      /* Release the value from the value chain to prevent it from being
	 deleted by free_all_values.  From here on this function should not
	 call error () until new_data is installed into the var->u to avoid
	 leaking memory.  */
      new_data.value = release_value (copy).release ();

      /* Internal variables which are created from values with a dynamic
         location don't need the location property of the origin anymore.
         The resolved dynamic location is used prior then any other address
         when accessing the value.
         If we keep it, we would still refer to the origin value.
         Remove the location property in case it exist.  */
      remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));

      break;
    }

  /* Clean up old contents.  */
  clear_internalvar (var);

  /* Switch over.  */
  var->kind = new_kind;
  var->u = new_data;
  /* End code which must not call error().  */
}

void
set_internalvar_integer (struct internalvar *var, LONGEST l)
{
  /* Clean up old contents.  */
  clear_internalvar (var);

  var->kind = INTERNALVAR_INTEGER;
  var->u.integer.type = NULL;
  var->u.integer.val = l;
}

void
set_internalvar_string (struct internalvar *var, const char *string)
{
  /* Clean up old contents.  */
  clear_internalvar (var);

  var->kind = INTERNALVAR_STRING;
  var->u.string = xstrdup (string);
}

static void
set_internalvar_function (struct internalvar *var, struct internal_function *f)
{
  /* Clean up old contents.  */
  clear_internalvar (var);

  var->kind = INTERNALVAR_FUNCTION;
  var->u.fn.function = f;
  var->u.fn.canonical = 1;
  /* Variables installed here are always the canonical version.  */
}

void
clear_internalvar (struct internalvar *var)
{
  /* Clean up old contents.  */
  switch (var->kind)
    {
    case INTERNALVAR_VALUE:
      value_decref (var->u.value);
      break;

    case INTERNALVAR_STRING:
      xfree (var->u.string);
      break;

    case INTERNALVAR_MAKE_VALUE:
      if (var->u.make_value.functions->destroy != NULL)
	var->u.make_value.functions->destroy (var->u.make_value.data);
      break;

    default:
      break;
    }

  /* Reset to void kind.  */
  var->kind = INTERNALVAR_VOID;
}

char *
internalvar_name (const struct internalvar *var)
{
  return var->name;
}

static struct internal_function *
create_internal_function (const char *name,
			  internal_function_fn handler, void *cookie)
{
  struct internal_function *ifn = XNEW (struct internal_function);

  ifn->name = xstrdup (name);
  ifn->handler = handler;
  ifn->cookie = cookie;
  return ifn;
}

char *
value_internal_function_name (struct value *val)
{
  struct internal_function *ifn;
  int result;

  gdb_assert (VALUE_LVAL (val) == lval_internalvar);
  result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
  gdb_assert (result);

  return ifn->name;
}

struct value *
call_internal_function (struct gdbarch *gdbarch,
			const struct language_defn *language,
			struct value *func, int argc, struct value **argv)
{
  struct internal_function *ifn;
  int result;

  gdb_assert (VALUE_LVAL (func) == lval_internalvar);
  result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
  gdb_assert (result);

  return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
}

/* The 'function' command.  This does nothing -- it is just a
   placeholder to let "help function NAME" work.  This is also used as
   the implementation of the sub-command that is created when
   registering an internal function.  */
static void
function_command (const char *command, int from_tty)
{
  /* Do nothing.  */
}

/* Helper function that does the work for add_internal_function.  */

static struct cmd_list_element *
do_add_internal_function (const char *name, const char *doc,
			  internal_function_fn handler, void *cookie)
{
  struct internal_function *ifn;
  struct internalvar *var = lookup_internalvar (name);

  ifn = create_internal_function (name, handler, cookie);
  set_internalvar_function (var, ifn);

  return add_cmd (name, no_class, function_command, doc, &functionlist);
}

/* See value.h.  */

void
add_internal_function (const char *name, const char *doc,
		       internal_function_fn handler, void *cookie)
{
  do_add_internal_function (name, doc, handler, cookie);
}

/* See value.h.  */

void
add_internal_function (gdb::unique_xmalloc_ptr<char> &&name,
		       gdb::unique_xmalloc_ptr<char> &&doc,
		       internal_function_fn handler, void *cookie)
{
  struct cmd_list_element *cmd
    = do_add_internal_function (name.get (), doc.get (), handler, cookie);
  doc.release ();
  cmd->doc_allocated = 1;
  name.release ();
  cmd->name_allocated = 1;
}

/* Update VALUE before discarding OBJFILE.  COPIED_TYPES is used to
   prevent cycles / duplicates.  */

void
preserve_one_value (struct value *value, struct objfile *objfile,
		    htab_t copied_types)
{
  if (TYPE_OBJFILE (value->type) == objfile)
    value->type = copy_type_recursive (objfile, value->type, copied_types);

  if (TYPE_OBJFILE (value->enclosing_type) == objfile)
    value->enclosing_type = copy_type_recursive (objfile,
						 value->enclosing_type,
						 copied_types);
}

/* Likewise for internal variable VAR.  */

static void
preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
			  htab_t copied_types)
{
  switch (var->kind)
    {
    case INTERNALVAR_INTEGER:
      if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
	var->u.integer.type
	  = copy_type_recursive (objfile, var->u.integer.type, copied_types);
      break;

    case INTERNALVAR_VALUE:
      preserve_one_value (var->u.value, objfile, copied_types);
      break;
    }
}

/* Update the internal variables and value history when OBJFILE is
   discarded; we must copy the types out of the objfile.  New global types
   will be created for every convenience variable which currently points to
   this objfile's types, and the convenience variables will be adjusted to
   use the new global types.  */

void
preserve_values (struct objfile *objfile)
{
  htab_t copied_types;
  struct internalvar *var;

  /* Create the hash table.  We allocate on the objfile's obstack, since
     it is soon to be deleted.  */
  copied_types = create_copied_types_hash (objfile);

  for (const value_ref_ptr &item : value_history)
    preserve_one_value (item.get (), objfile, copied_types);

  for (var = internalvars; var; var = var->next)
    preserve_one_internalvar (var, objfile, copied_types);

  preserve_ext_lang_values (objfile, copied_types);

  htab_delete (copied_types);
}

static void
show_convenience (const char *ignore, int from_tty)
{
  struct gdbarch *gdbarch = get_current_arch ();
  struct internalvar *var;
  int varseen = 0;
  struct value_print_options opts;

  get_user_print_options (&opts);
  for (var = internalvars; var; var = var->next)
    {

      if (!varseen)
	{
	  varseen = 1;
	}
      printf_filtered (("$%s = "), var->name);

      try
	{
	  struct value *val;

	  val = value_of_internalvar (gdbarch, var);
	  value_print (val, gdb_stdout, &opts);
	}
      catch (const gdb_exception_error &ex)
	{
	  fprintf_styled (gdb_stdout, metadata_style.style (),
			  _("<error: %s>"), ex.what ());
	}

      printf_filtered (("\n"));
    }
  if (!varseen)
    {
      /* This text does not mention convenience functions on purpose.
	 The user can't create them except via Python, and if Python support
	 is installed this message will never be printed ($_streq will
	 exist).  */
      printf_unfiltered (_("No debugger convenience variables now defined.\n"
			   "Convenience variables have "
			   "names starting with \"$\";\n"
			   "use \"set\" as in \"set "
			   "$foo = 5\" to define them.\n"));
    }
}


/* See value.h.  */

struct value *
value_from_xmethod (xmethod_worker_up &&worker)
{
  struct value *v;

  v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
  v->lval = lval_xcallable;
  v->location.xm_worker = worker.release ();
  v->modifiable = 0;

  return v;
}

/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD.  */

struct type *
result_type_of_xmethod (struct value *method, gdb::array_view<value *> argv)
{
  gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
	      && method->lval == lval_xcallable && !argv.empty ());

  return method->location.xm_worker->get_result_type (argv[0], argv.slice (1));
}

/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD.  */

struct value *
call_xmethod (struct value *method, gdb::array_view<value *> argv)
{
  gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
	      && method->lval == lval_xcallable && !argv.empty ());

  return method->location.xm_worker->invoke (argv[0], argv.slice (1));
}

/* Extract a value as a C number (either long or double).
   Knows how to convert fixed values to double, or
   floating values to long.
   Does not deallocate the value.  */

LONGEST
value_as_long (struct value *val)
{
  /* This coerces arrays and functions, which is necessary (e.g.
     in disassemble_command).  It also dereferences references, which
     I suspect is the most logical thing to do.  */
  val = coerce_array (val);
  return unpack_long (value_type (val), value_contents (val));
}

/* Extract a value as a C pointer.  Does not deallocate the value.
   Note that val's type may not actually be a pointer; value_as_long
   handles all the cases.  */
CORE_ADDR
value_as_address (struct value *val)
{
  struct gdbarch *gdbarch = get_type_arch (value_type (val));

  /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
     whether we want this to be true eventually.  */
#if 0
  /* gdbarch_addr_bits_remove is wrong if we are being called for a
     non-address (e.g. argument to "signal", "info break", etc.), or
     for pointers to char, in which the low bits *are* significant.  */
  return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
#else

  /* There are several targets (IA-64, PowerPC, and others) which
     don't represent pointers to functions as simply the address of
     the function's entry point.  For example, on the IA-64, a
     function pointer points to a two-word descriptor, generated by
     the linker, which contains the function's entry point, and the
     value the IA-64 "global pointer" register should have --- to
     support position-independent code.  The linker generates
     descriptors only for those functions whose addresses are taken.

     On such targets, it's difficult for GDB to convert an arbitrary
     function address into a function pointer; it has to either find
     an existing descriptor for that function, or call malloc and
     build its own.  On some targets, it is impossible for GDB to
     build a descriptor at all: the descriptor must contain a jump
     instruction; data memory cannot be executed; and code memory
     cannot be modified.

     Upon entry to this function, if VAL is a value of type `function'
     (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
     value_address (val) is the address of the function.  This is what
     you'll get if you evaluate an expression like `main'.  The call
     to COERCE_ARRAY below actually does all the usual unary
     conversions, which includes converting values of type `function'
     to `pointer to function'.  This is the challenging conversion
     discussed above.  Then, `unpack_long' will convert that pointer
     back into an address.

     So, suppose the user types `disassemble foo' on an architecture
     with a strange function pointer representation, on which GDB
     cannot build its own descriptors, and suppose further that `foo'
     has no linker-built descriptor.  The address->pointer conversion
     will signal an error and prevent the command from running, even
     though the next step would have been to convert the pointer
     directly back into the same address.

     The following shortcut avoids this whole mess.  If VAL is a
     function, just return its address directly.  */
  if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
      || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
    return value_address (val);

  val = coerce_array (val);

  /* Some architectures (e.g. Harvard), map instruction and data
     addresses onto a single large unified address space.  For
     instance: An architecture may consider a large integer in the
     range 0x10000000 .. 0x1000ffff to already represent a data
     addresses (hence not need a pointer to address conversion) while
     a small integer would still need to be converted integer to
     pointer to address.  Just assume such architectures handle all
     integer conversions in a single function.  */

  /* JimB writes:

     I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
     must admonish GDB hackers to make sure its behavior matches the
     compiler's, whenever possible.

     In general, I think GDB should evaluate expressions the same way
     the compiler does.  When the user copies an expression out of
     their source code and hands it to a `print' command, they should
     get the same value the compiler would have computed.  Any
     deviation from this rule can cause major confusion and annoyance,
     and needs to be justified carefully.  In other words, GDB doesn't
     really have the freedom to do these conversions in clever and
     useful ways.

     AndrewC pointed out that users aren't complaining about how GDB
     casts integers to pointers; they are complaining that they can't
     take an address from a disassembly listing and give it to `x/i'.
     This is certainly important.

     Adding an architecture method like integer_to_address() certainly
     makes it possible for GDB to "get it right" in all circumstances
     --- the target has complete control over how things get done, so
     people can Do The Right Thing for their target without breaking
     anyone else.  The standard doesn't specify how integers get
     converted to pointers; usually, the ABI doesn't either, but
     ABI-specific code is a more reasonable place to handle it.  */

  if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
      && !TYPE_IS_REFERENCE (value_type (val))
      && gdbarch_integer_to_address_p (gdbarch))
    return gdbarch_integer_to_address (gdbarch, value_type (val),
				       value_contents (val));

  return unpack_long (value_type (val), value_contents (val));
#endif
}

/* Unpack raw data (copied from debugee, target byte order) at VALADDR
   as a long, or as a double, assuming the raw data is described
   by type TYPE.  Knows how to convert different sizes of values
   and can convert between fixed and floating point.  We don't assume
   any alignment for the raw data.  Return value is in host byte order.

   If you want functions and arrays to be coerced to pointers, and
   references to be dereferenced, call value_as_long() instead.

   C++: It is assumed that the front-end has taken care of
   all matters concerning pointers to members.  A pointer
   to member which reaches here is considered to be equivalent
   to an INT (or some size).  After all, it is only an offset.  */

LONGEST
unpack_long (struct type *type, const gdb_byte *valaddr)
{
  enum bfd_endian byte_order = type_byte_order (type);
  enum type_code code = TYPE_CODE (type);
  int len = TYPE_LENGTH (type);
  int nosign = TYPE_UNSIGNED (type);

  switch (code)
    {
    case TYPE_CODE_TYPEDEF:
      return unpack_long (check_typedef (type), valaddr);
    case TYPE_CODE_ENUM:
    case TYPE_CODE_FLAGS:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_INT:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_MEMBERPTR:
      {
	LONGEST result;
	if (nosign)
	  result = extract_unsigned_integer (valaddr, len, byte_order);
	else
	  result = extract_signed_integer (valaddr, len, byte_order);
	if (code == TYPE_CODE_RANGE)
	  result += TYPE_RANGE_DATA (type)->bias;
	return result;
      }

    case TYPE_CODE_FLT:
    case TYPE_CODE_DECFLOAT:
      return target_float_to_longest (valaddr, type);

    case TYPE_CODE_PTR:
    case TYPE_CODE_REF:
    case TYPE_CODE_RVALUE_REF:
      /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
         whether we want this to be true eventually.  */
      return extract_typed_address (valaddr, type);

    default:
      error (_("Value can't be converted to integer."));
    }
}

/* Unpack raw data (copied from debugee, target byte order) at VALADDR
   as a CORE_ADDR, assuming the raw data is described by type TYPE.
   We don't assume any alignment for the raw data.  Return value is in
   host byte order.

   If you want functions and arrays to be coerced to pointers, and
   references to be dereferenced, call value_as_address() instead.

   C++: It is assumed that the front-end has taken care of
   all matters concerning pointers to members.  A pointer
   to member which reaches here is considered to be equivalent
   to an INT (or some size).  After all, it is only an offset.  */

CORE_ADDR
unpack_pointer (struct type *type, const gdb_byte *valaddr)
{
  /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
     whether we want this to be true eventually.  */
  return unpack_long (type, valaddr);
}

bool
is_floating_value (struct value *val)
{
  struct type *type = check_typedef (value_type (val));

  if (is_floating_type (type))
    {
      if (!target_float_is_valid (value_contents (val), type))
	error (_("Invalid floating value found in program."));
      return true;
    }

  return false;
}


/* Get the value of the FIELDNO'th field (which must be static) of
   TYPE.  */

struct value *
value_static_field (struct type *type, int fieldno)
{
  struct value *retval;

  switch (TYPE_FIELD_LOC_KIND (type, fieldno))
    {
    case FIELD_LOC_KIND_PHYSADDR:
      retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
			      TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
      break;
    case FIELD_LOC_KIND_PHYSNAME:
    {
      const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
      /* TYPE_FIELD_NAME (type, fieldno); */
      struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);

      if (sym.symbol == NULL)
	{
	  /* With some compilers, e.g. HP aCC, static data members are
	     reported as non-debuggable symbols.  */
	  struct bound_minimal_symbol msym
	    = lookup_minimal_symbol (phys_name, NULL, NULL);
	  struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);

	  if (!msym.minsym)
	    retval = allocate_optimized_out_value (field_type);
	  else
	    retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
	}
      else
	retval = value_of_variable (sym.symbol, sym.block);
      break;
    }
    default:
      gdb_assert_not_reached ("unexpected field location kind");
    }

  return retval;
}

/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
   You have to be careful here, since the size of the data area for the value
   is set by the length of the enclosing type.  So if NEW_ENCL_TYPE is bigger
   than the old enclosing type, you have to allocate more space for the
   data.  */

void
set_value_enclosing_type (struct value *val, struct type *new_encl_type)
{
  if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
    {
      check_type_length_before_alloc (new_encl_type);
      val->contents
	.reset ((gdb_byte *) xrealloc (val->contents.release (),
				       TYPE_LENGTH (new_encl_type)));
    }

  val->enclosing_type = new_encl_type;
}

/* Given a value ARG1 (offset by OFFSET bytes)
   of a struct or union type ARG_TYPE,
   extract and return the value of one of its (non-static) fields.
   FIELDNO says which field.  */

struct value *
value_primitive_field (struct value *arg1, LONGEST offset,
		       int fieldno, struct type *arg_type)
{
  struct value *v;
  struct type *type;
  struct gdbarch *arch = get_value_arch (arg1);
  int unit_size = gdbarch_addressable_memory_unit_size (arch);

  arg_type = check_typedef (arg_type);
  type = TYPE_FIELD_TYPE (arg_type, fieldno);

  /* Call check_typedef on our type to make sure that, if TYPE
     is a TYPE_CODE_TYPEDEF, its length is set to the length
     of the target type instead of zero.  However, we do not
     replace the typedef type by the target type, because we want
     to keep the typedef in order to be able to print the type
     description correctly.  */
  check_typedef (type);

  if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
    {
      /* Handle packed fields.

	 Create a new value for the bitfield, with bitpos and bitsize
	 set.  If possible, arrange offset and bitpos so that we can
	 do a single aligned read of the size of the containing type.
	 Otherwise, adjust offset to the byte containing the first
	 bit.  Assume that the address, offset, and embedded offset
	 are sufficiently aligned.  */

      LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
      LONGEST container_bitsize = TYPE_LENGTH (type) * 8;

      v = allocate_value_lazy (type);
      v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
      if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
	  && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
	v->bitpos = bitpos % container_bitsize;
      else
	v->bitpos = bitpos % 8;
      v->offset = (value_embedded_offset (arg1)
		   + offset
		   + (bitpos - v->bitpos) / 8);
      set_value_parent (v, arg1);
      if (!value_lazy (arg1))
	value_fetch_lazy (v);
    }
  else if (fieldno < TYPE_N_BASECLASSES (arg_type))
    {
      /* This field is actually a base subobject, so preserve the
	 entire object's contents for later references to virtual
	 bases, etc.  */
      LONGEST boffset;

      /* Lazy register values with offsets are not supported.  */
      if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
	value_fetch_lazy (arg1);

      /* We special case virtual inheritance here because this
	 requires access to the contents, which we would rather avoid
	 for references to ordinary fields of unavailable values.  */
      if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
	boffset = baseclass_offset (arg_type, fieldno,
				    value_contents (arg1),
				    value_embedded_offset (arg1),
				    value_address (arg1),
				    arg1);
      else
	boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;

      if (value_lazy (arg1))
	v = allocate_value_lazy (value_enclosing_type (arg1));
      else
	{
	  v = allocate_value (value_enclosing_type (arg1));
	  value_contents_copy_raw (v, 0, arg1, 0,
				   TYPE_LENGTH (value_enclosing_type (arg1)));
	}
      v->type = type;
      v->offset = value_offset (arg1);
      v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
    }
  else if (NULL != TYPE_DATA_LOCATION (type))
    {
      /* Field is a dynamic data member.  */

      gdb_assert (0 == offset);
      /* We expect an already resolved data location.  */
      gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
      /* For dynamic data types defer memory allocation
         until we actual access the value.  */
      v = allocate_value_lazy (type);
    }
  else
    {
      /* Plain old data member */
      offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
	         / (HOST_CHAR_BIT * unit_size));

      /* Lazy register values with offsets are not supported.  */
      if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
	value_fetch_lazy (arg1);

      if (value_lazy (arg1))
	v = allocate_value_lazy (type);
      else
	{
	  v = allocate_value (type);
	  value_contents_copy_raw (v, value_embedded_offset (v),
				   arg1, value_embedded_offset (arg1) + offset,
				   type_length_units (type));
	}
      v->offset = (value_offset (arg1) + offset
		   + value_embedded_offset (arg1));
    }
  set_value_component_location (v, arg1);
  return v;
}

/* Given a value ARG1 of a struct or union type,
   extract and return the value of one of its (non-static) fields.
   FIELDNO says which field.  */

struct value *
value_field (struct value *arg1, int fieldno)
{
  return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
}

/* Return a non-virtual function as a value.
   F is the list of member functions which contains the desired method.
   J is an index into F which provides the desired method.

   We only use the symbol for its address, so be happy with either a
   full symbol or a minimal symbol.  */

struct value *
value_fn_field (struct value **arg1p, struct fn_field *f,
		int j, struct type *type,
		LONGEST offset)
{
  struct value *v;
  struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
  const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
  struct symbol *sym;
  struct bound_minimal_symbol msym;

  sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
  if (sym != NULL)
    {
      memset (&msym, 0, sizeof (msym));
    }
  else
    {
      gdb_assert (sym == NULL);
      msym = lookup_bound_minimal_symbol (physname);
      if (msym.minsym == NULL)
	return NULL;
    }

  v = allocate_value (ftype);
  VALUE_LVAL (v) = lval_memory;
  if (sym)
    {
      set_value_address (v, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)));
    }
  else
    {
      /* The minimal symbol might point to a function descriptor;
	 resolve it to the actual code address instead.  */
      struct objfile *objfile = msym.objfile;
      struct gdbarch *gdbarch = get_objfile_arch (objfile);

      set_value_address (v,
	gdbarch_convert_from_func_ptr_addr
	   (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), current_top_target ()));
    }

  if (arg1p)
    {
      if (type != value_type (*arg1p))
	*arg1p = value_ind (value_cast (lookup_pointer_type (type),
					value_addr (*arg1p)));

      /* Move the `this' pointer according to the offset.
         VALUE_OFFSET (*arg1p) += offset; */
    }

  return v;
}



/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
   VALADDR, and store the result in *RESULT.
   The bitfield starts at BITPOS bits and contains BITSIZE bits; if
   BITSIZE is zero, then the length is taken from FIELD_TYPE.

   Extracting bits depends on endianness of the machine.  Compute the
   number of least significant bits to discard.  For big endian machines,
   we compute the total number of bits in the anonymous object, subtract
   off the bit count from the MSB of the object to the MSB of the
   bitfield, then the size of the bitfield, which leaves the LSB discard
   count.  For little endian machines, the discard count is simply the
   number of bits from the LSB of the anonymous object to the LSB of the
   bitfield.

   If the field is signed, we also do sign extension.  */

static LONGEST
unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
		     LONGEST bitpos, LONGEST bitsize)
{
  enum bfd_endian byte_order = type_byte_order (field_type);
  ULONGEST val;
  ULONGEST valmask;
  int lsbcount;
  LONGEST bytes_read;
  LONGEST read_offset;

  /* Read the minimum number of bytes required; there may not be
     enough bytes to read an entire ULONGEST.  */
  field_type = check_typedef (field_type);
  if (bitsize)
    bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
  else
    {
      bytes_read = TYPE_LENGTH (field_type);
      bitsize = 8 * bytes_read;
    }

  read_offset = bitpos / 8;

  val = extract_unsigned_integer (valaddr + read_offset,
				  bytes_read, byte_order);

  /* Extract bits.  See comment above.  */

  if (byte_order == BFD_ENDIAN_BIG)
    lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
  else
    lsbcount = (bitpos % 8);
  val >>= lsbcount;

  /* If the field does not entirely fill a LONGEST, then zero the sign bits.
     If the field is signed, and is negative, then sign extend.  */

  if (bitsize < 8 * (int) sizeof (val))
    {
      valmask = (((ULONGEST) 1) << bitsize) - 1;
      val &= valmask;
      if (!TYPE_UNSIGNED (field_type))
	{
	  if (val & (valmask ^ (valmask >> 1)))
	    {
	      val |= ~valmask;
	    }
	}
    }

  return val;
}

/* Unpack a field FIELDNO of the specified TYPE, from the object at
   VALADDR + EMBEDDED_OFFSET.  VALADDR points to the contents of
   ORIGINAL_VALUE, which must not be NULL.  See
   unpack_value_bits_as_long for more details.  */

int
unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
			    LONGEST embedded_offset, int fieldno,
			    const struct value *val, LONGEST *result)
{
  int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
  int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
  struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
  int bit_offset;

  gdb_assert (val != NULL);

  bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
  if (value_bits_any_optimized_out (val, bit_offset, bitsize)
      || !value_bits_available (val, bit_offset, bitsize))
    return 0;

  *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
				 bitpos, bitsize);
  return 1;
}

/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
   object at VALADDR.  See unpack_bits_as_long for more details.  */

LONGEST
unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
{
  int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
  int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
  struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);

  return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
}

/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
   VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
   the contents in DEST_VAL, zero or sign extending if the type of
   DEST_VAL is wider than BITSIZE.  VALADDR points to the contents of
   VAL.  If the VAL's contents required to extract the bitfield from
   are unavailable/optimized out, DEST_VAL is correspondingly
   marked unavailable/optimized out.  */

void
unpack_value_bitfield (struct value *dest_val,
		       LONGEST bitpos, LONGEST bitsize,
		       const gdb_byte *valaddr, LONGEST embedded_offset,
		       const struct value *val)
{
  enum bfd_endian byte_order;
  int src_bit_offset;
  int dst_bit_offset;
  struct type *field_type = value_type (dest_val);

  byte_order = type_byte_order (field_type);

  /* First, unpack and sign extend the bitfield as if it was wholly
     valid.  Optimized out/unavailable bits are read as zero, but
     that's OK, as they'll end up marked below.  If the VAL is
     wholly-invalid we may have skipped allocating its contents,
     though.  See allocate_optimized_out_value.  */
  if (valaddr != NULL)
    {
      LONGEST num;

      num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
				 bitpos, bitsize);
      store_signed_integer (value_contents_raw (dest_val),
			    TYPE_LENGTH (field_type), byte_order, num);
    }

  /* Now copy the optimized out / unavailability ranges to the right
     bits.  */
  src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
  if (byte_order == BFD_ENDIAN_BIG)
    dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
  else
    dst_bit_offset = 0;
  value_ranges_copy_adjusted (dest_val, dst_bit_offset,
			      val, src_bit_offset, bitsize);
}

/* Return a new value with type TYPE, which is FIELDNO field of the
   object at VALADDR + EMBEDDEDOFFSET.  VALADDR points to the contents
   of VAL.  If the VAL's contents required to extract the bitfield
   from are unavailable/optimized out, the new value is
   correspondingly marked unavailable/optimized out.  */

struct value *
value_field_bitfield (struct type *type, int fieldno,
		      const gdb_byte *valaddr,
		      LONGEST embedded_offset, const struct value *val)
{
  int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
  int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
  struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));

  unpack_value_bitfield (res_val, bitpos, bitsize,
			 valaddr, embedded_offset, val);

  return res_val;
}

/* Modify the value of a bitfield.  ADDR points to a block of memory in
   target byte order; the bitfield starts in the byte pointed to.  FIELDVAL
   is the desired value of the field, in host byte order.  BITPOS and BITSIZE
   indicate which bits (in target bit order) comprise the bitfield.
   Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
   0 <= BITPOS, where lbits is the size of a LONGEST in bits.  */

void
modify_field (struct type *type, gdb_byte *addr,
	      LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
{
  enum bfd_endian byte_order = type_byte_order (type);
  ULONGEST oword;
  ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
  LONGEST bytesize;

  /* Normalize BITPOS.  */
  addr += bitpos / 8;
  bitpos %= 8;

  /* If a negative fieldval fits in the field in question, chop
     off the sign extension bits.  */
  if ((~fieldval & ~(mask >> 1)) == 0)
    fieldval &= mask;

  /* Warn if value is too big to fit in the field in question.  */
  if (0 != (fieldval & ~mask))
    {
      /* FIXME: would like to include fieldval in the message, but
         we don't have a sprintf_longest.  */
      warning (_("Value does not fit in %s bits."), plongest (bitsize));

      /* Truncate it, otherwise adjoining fields may be corrupted.  */
      fieldval &= mask;
    }

  /* Ensure no bytes outside of the modified ones get accessed as it may cause
     false valgrind reports.  */

  bytesize = (bitpos + bitsize + 7) / 8;
  oword = extract_unsigned_integer (addr, bytesize, byte_order);

  /* Shifting for bit field depends on endianness of the target machine.  */
  if (byte_order == BFD_ENDIAN_BIG)
    bitpos = bytesize * 8 - bitpos - bitsize;

  oword &= ~(mask << bitpos);
  oword |= fieldval << bitpos;

  store_unsigned_integer (addr, bytesize, byte_order, oword);
}

/* Pack NUM into BUF using a target format of TYPE.  */

void
pack_long (gdb_byte *buf, struct type *type, LONGEST num)
{
  enum bfd_endian byte_order = type_byte_order (type);
  LONGEST len;

  type = check_typedef (type);
  len = TYPE_LENGTH (type);

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_RANGE:
      num -= TYPE_RANGE_DATA (type)->bias;
      /* Fall through.  */
    case TYPE_CODE_INT:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_FLAGS:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_MEMBERPTR:
      store_signed_integer (buf, len, byte_order, num);
      break;

    case TYPE_CODE_REF:
    case TYPE_CODE_RVALUE_REF:
    case TYPE_CODE_PTR:
      store_typed_address (buf, type, (CORE_ADDR) num);
      break;

    case TYPE_CODE_FLT:
    case TYPE_CODE_DECFLOAT:
      target_float_from_longest (buf, type, num);
      break;

    default:
      error (_("Unexpected type (%d) encountered for integer constant."),
	     TYPE_CODE (type));
    }
}


/* Pack NUM into BUF using a target format of TYPE.  */

static void
pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
{
  LONGEST len;
  enum bfd_endian byte_order;

  type = check_typedef (type);
  len = TYPE_LENGTH (type);
  byte_order = type_byte_order (type);

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_INT:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_FLAGS:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_MEMBERPTR:
      store_unsigned_integer (buf, len, byte_order, num);
      break;

    case TYPE_CODE_REF:
    case TYPE_CODE_RVALUE_REF:
    case TYPE_CODE_PTR:
      store_typed_address (buf, type, (CORE_ADDR) num);
      break;

    case TYPE_CODE_FLT:
    case TYPE_CODE_DECFLOAT:
      target_float_from_ulongest (buf, type, num);
      break;

    default:
      error (_("Unexpected type (%d) encountered "
	       "for unsigned integer constant."),
	     TYPE_CODE (type));
    }
}


/* Convert C numbers into newly allocated values.  */

struct value *
value_from_longest (struct type *type, LONGEST num)
{
  struct value *val = allocate_value (type);

  pack_long (value_contents_raw (val), type, num);
  return val;
}


/* Convert C unsigned numbers into newly allocated values.  */

struct value *
value_from_ulongest (struct type *type, ULONGEST num)
{
  struct value *val = allocate_value (type);

  pack_unsigned_long (value_contents_raw (val), type, num);

  return val;
}


/* Create a value representing a pointer of type TYPE to the address
   ADDR.  */

struct value *
value_from_pointer (struct type *type, CORE_ADDR addr)
{
  struct value *val = allocate_value (type);

  store_typed_address (value_contents_raw (val),
		       check_typedef (type), addr);
  return val;
}

/* Create and return a value object of TYPE containing the value D.  The
   TYPE must be of TYPE_CODE_FLT, and must be large enough to hold D once
   it is converted to target format.  */

struct value *
value_from_host_double (struct type *type, double d)
{
  struct value *value = allocate_value (type);
  gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
  target_float_from_host_double (value_contents_raw (value),
				 value_type (value), d);
  return value;
}

/* Create a value of type TYPE whose contents come from VALADDR, if it
   is non-null, and whose memory address (in the inferior) is
   ADDRESS.  The type of the created value may differ from the passed
   type TYPE.  Make sure to retrieve values new type after this call.
   Note that TYPE is not passed through resolve_dynamic_type; this is
   a special API intended for use only by Ada.  */

struct value *
value_from_contents_and_address_unresolved (struct type *type,
					    const gdb_byte *valaddr,
					    CORE_ADDR address)
{
  struct value *v;

  if (valaddr == NULL)
    v = allocate_value_lazy (type);
  else
    v = value_from_contents (type, valaddr);
  VALUE_LVAL (v) = lval_memory;
  set_value_address (v, address);
  return v;
}

/* Create a value of type TYPE whose contents come from VALADDR, if it
   is non-null, and whose memory address (in the inferior) is
   ADDRESS.  The type of the created value may differ from the passed
   type TYPE.  Make sure to retrieve values new type after this call.  */

struct value *
value_from_contents_and_address (struct type *type,
				 const gdb_byte *valaddr,
				 CORE_ADDR address)
{
  struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
  struct type *resolved_type_no_typedef = check_typedef (resolved_type);
  struct value *v;

  if (valaddr == NULL)
    v = allocate_value_lazy (resolved_type);
  else
    v = value_from_contents (resolved_type, valaddr);
  if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
      && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
    address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
  VALUE_LVAL (v) = lval_memory;
  set_value_address (v, address);
  return v;
}

/* Create a value of type TYPE holding the contents CONTENTS.
   The new value is `not_lval'.  */

struct value *
value_from_contents (struct type *type, const gdb_byte *contents)
{
  struct value *result;

  result = allocate_value (type);
  memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
  return result;
}

/* Extract a value from the history file.  Input will be of the form
   $digits or $$digits.  See block comment above 'write_dollar_variable'
   for details.  */

struct value *
value_from_history_ref (const char *h, const char **endp)
{
  int index, len;

  if (h[0] == '$')
    len = 1;
  else
    return NULL;

  if (h[1] == '$')
    len = 2;

  /* Find length of numeral string.  */
  for (; isdigit (h[len]); len++)
    ;

  /* Make sure numeral string is not part of an identifier.  */
  if (h[len] == '_' || isalpha (h[len]))
    return NULL;

  /* Now collect the index value.  */
  if (h[1] == '$')
    {
      if (len == 2)
	{
	  /* For some bizarre reason, "$$" is equivalent to "$$1", 
	     rather than to "$$0" as it ought to be!  */
	  index = -1;
	  *endp += len;
	}
      else
	{
	  char *local_end;

	  index = -strtol (&h[2], &local_end, 10);
	  *endp = local_end;
	}
    }
  else
    {
      if (len == 1)
	{
	  /* "$" is equivalent to "$0".  */
	  index = 0;
	  *endp += len;
	}
      else
	{
	  char *local_end;

	  index = strtol (&h[1], &local_end, 10);
	  *endp = local_end;
	}
    }

  return access_value_history (index);
}

/* Get the component value (offset by OFFSET bytes) of a struct or
   union WHOLE.  Component's type is TYPE.  */

struct value *
value_from_component (struct value *whole, struct type *type, LONGEST offset)
{
  struct value *v;

  if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
    v = allocate_value_lazy (type);
  else
    {
      v = allocate_value (type);
      value_contents_copy (v, value_embedded_offset (v),
			   whole, value_embedded_offset (whole) + offset,
			   type_length_units (type));
    }
  v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
  set_value_component_location (v, whole);

  return v;
}

struct value *
coerce_ref_if_computed (const struct value *arg)
{
  const struct lval_funcs *funcs;

  if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
    return NULL;

  if (value_lval_const (arg) != lval_computed)
    return NULL;

  funcs = value_computed_funcs (arg);
  if (funcs->coerce_ref == NULL)
    return NULL;

  return funcs->coerce_ref (arg);
}

/* Look at value.h for description.  */

struct value *
readjust_indirect_value_type (struct value *value, struct type *enc_type,
			      const struct type *original_type,
			      const struct value *original_value)
{
  /* Re-adjust type.  */
  deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));

  /* Add embedding info.  */
  set_value_enclosing_type (value, enc_type);
  set_value_embedded_offset (value, value_pointed_to_offset (original_value));

  /* We may be pointing to an object of some derived type.  */
  return value_full_object (value, NULL, 0, 0, 0);
}

struct value *
coerce_ref (struct value *arg)
{
  struct type *value_type_arg_tmp = check_typedef (value_type (arg));
  struct value *retval;
  struct type *enc_type;

  retval = coerce_ref_if_computed (arg);
  if (retval)
    return retval;

  if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
    return arg;

  enc_type = check_typedef (value_enclosing_type (arg));
  enc_type = TYPE_TARGET_TYPE (enc_type);

  retval = value_at_lazy (enc_type,
                          unpack_pointer (value_type (arg),
                                          value_contents (arg)));
  enc_type = value_type (retval);
  return readjust_indirect_value_type (retval, enc_type,
                                       value_type_arg_tmp, arg);
}

struct value *
coerce_array (struct value *arg)
{
  struct type *type;

  arg = coerce_ref (arg);
  type = check_typedef (value_type (arg));

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_ARRAY:
      if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
	arg = value_coerce_array (arg);
      break;
    case TYPE_CODE_FUNC:
      arg = value_coerce_function (arg);
      break;
    }
  return arg;
}


/* Return the return value convention that will be used for the
   specified type.  */

enum return_value_convention
struct_return_convention (struct gdbarch *gdbarch,
			  struct value *function, struct type *value_type)
{
  enum type_code code = TYPE_CODE (value_type);

  if (code == TYPE_CODE_ERROR)
    error (_("Function return type unknown."));

  /* Probe the architecture for the return-value convention.  */
  return gdbarch_return_value (gdbarch, function, value_type,
			       NULL, NULL, NULL);
}

/* Return true if the function returning the specified type is using
   the convention of returning structures in memory (passing in the
   address as a hidden first parameter).  */

int
using_struct_return (struct gdbarch *gdbarch,
		     struct value *function, struct type *value_type)
{
  if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
    /* A void return value is never in memory.  See also corresponding
       code in "print_return_value".  */
    return 0;

  return (struct_return_convention (gdbarch, function, value_type)
	  != RETURN_VALUE_REGISTER_CONVENTION);
}

/* Set the initialized field in a value struct.  */

void
set_value_initialized (struct value *val, int status)
{
  val->initialized = status;
}

/* Return the initialized field in a value struct.  */

int
value_initialized (const struct value *val)
{
  return val->initialized;
}

/* Helper for value_fetch_lazy when the value is a bitfield.  */

static void
value_fetch_lazy_bitfield (struct value *val)
{
  gdb_assert (value_bitsize (val) != 0);

  /* To read a lazy bitfield, read the entire enclosing value.  This
     prevents reading the same block of (possibly volatile) memory once
     per bitfield.  It would be even better to read only the containing
     word, but we have no way to record that just specific bits of a
     value have been fetched.  */
  struct value *parent = value_parent (val);

  if (value_lazy (parent))
    value_fetch_lazy (parent);

  unpack_value_bitfield (val, value_bitpos (val), value_bitsize (val),
			 value_contents_for_printing (parent),
			 value_offset (val), parent);
}

/* Helper for value_fetch_lazy when the value is in memory.  */

static void
value_fetch_lazy_memory (struct value *val)
{
  gdb_assert (VALUE_LVAL (val) == lval_memory);

  CORE_ADDR addr = value_address (val);
  struct type *type = check_typedef (value_enclosing_type (val));

  if (TYPE_LENGTH (type))
      read_value_memory (val, 0, value_stack (val),
			 addr, value_contents_all_raw (val),
			 type_length_units (type));
}

/* Helper for value_fetch_lazy when the value is in a register.  */

static void
value_fetch_lazy_register (struct value *val)
{
  struct frame_info *next_frame;
  int regnum;
  struct type *type = check_typedef (value_type (val));
  struct value *new_val = val, *mark = value_mark ();

  /* Offsets are not supported here; lazy register values must
     refer to the entire register.  */
  gdb_assert (value_offset (val) == 0);

  while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
    {
      struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);

      next_frame = frame_find_by_id (next_frame_id);
      regnum = VALUE_REGNUM (new_val);

      gdb_assert (next_frame != NULL);

      /* Convertible register routines are used for multi-register
	 values and for interpretation in different types
	 (e.g. float or int from a double register).  Lazy
	 register values should have the register's natural type,
	 so they do not apply.  */
      gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
					       regnum, type));

      /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
	 Since a "->next" operation was performed when setting
	 this field, we do not need to perform a "next" operation
	 again when unwinding the register.  That's why
	 frame_unwind_register_value() is called here instead of
	 get_frame_register_value().  */
      new_val = frame_unwind_register_value (next_frame, regnum);

      /* If we get another lazy lval_register value, it means the
	 register is found by reading it from NEXT_FRAME's next frame.
	 frame_unwind_register_value should never return a value with
	 the frame id pointing to NEXT_FRAME.  If it does, it means we
	 either have two consecutive frames with the same frame id
	 in the frame chain, or some code is trying to unwind
	 behind get_prev_frame's back (e.g., a frame unwind
	 sniffer trying to unwind), bypassing its validations.  In
	 any case, it should always be an internal error to end up
	 in this situation.  */
      if (VALUE_LVAL (new_val) == lval_register
	  && value_lazy (new_val)
	  && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
	internal_error (__FILE__, __LINE__,
			_("infinite loop while fetching a register"));
    }

  /* If it's still lazy (for instance, a saved register on the
     stack), fetch it.  */
  if (value_lazy (new_val))
    value_fetch_lazy (new_val);

  /* Copy the contents and the unavailability/optimized-out
     meta-data from NEW_VAL to VAL.  */
  set_value_lazy (val, 0);
  value_contents_copy (val, value_embedded_offset (val),
		       new_val, value_embedded_offset (new_val),
		       type_length_units (type));

  if (frame_debug)
    {
      struct gdbarch *gdbarch;
      struct frame_info *frame;
      /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
	 so that the frame level will be shown correctly.  */
      frame = frame_find_by_id (VALUE_FRAME_ID (val));
      regnum = VALUE_REGNUM (val);
      gdbarch = get_frame_arch (frame);

      fprintf_unfiltered (gdb_stdlog,
			  "{ value_fetch_lazy "
			  "(frame=%d,regnum=%d(%s),...) ",
			  frame_relative_level (frame), regnum,
			  user_reg_map_regnum_to_name (gdbarch, regnum));

      fprintf_unfiltered (gdb_stdlog, "->");
      if (value_optimized_out (new_val))
	{
	  fprintf_unfiltered (gdb_stdlog, " ");
	  val_print_optimized_out (new_val, gdb_stdlog);
	}
      else
	{
	  int i;
	  const gdb_byte *buf = value_contents (new_val);

	  if (VALUE_LVAL (new_val) == lval_register)
	    fprintf_unfiltered (gdb_stdlog, " register=%d",
				VALUE_REGNUM (new_val));
	  else if (VALUE_LVAL (new_val) == lval_memory)
	    fprintf_unfiltered (gdb_stdlog, " address=%s",
				paddress (gdbarch,
					  value_address (new_val)));
	  else
	    fprintf_unfiltered (gdb_stdlog, " computed");

	  fprintf_unfiltered (gdb_stdlog, " bytes=");
	  fprintf_unfiltered (gdb_stdlog, "[");
	  for (i = 0; i < register_size (gdbarch, regnum); i++)
	    fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
	  fprintf_unfiltered (gdb_stdlog, "]");
	}

      fprintf_unfiltered (gdb_stdlog, " }\n");
    }

  /* Dispose of the intermediate values.  This prevents
     watchpoints from trying to watch the saved frame pointer.  */
  value_free_to_mark (mark);
}

/* Load the actual content of a lazy value.  Fetch the data from the
   user's process and clear the lazy flag to indicate that the data in
   the buffer is valid.

   If the value is zero-length, we avoid calling read_memory, which
   would abort.  We mark the value as fetched anyway -- all 0 bytes of
   it.  */

void
value_fetch_lazy (struct value *val)
{
  gdb_assert (value_lazy (val));
  allocate_value_contents (val);
  /* A value is either lazy, or fully fetched.  The
     availability/validity is only established as we try to fetch a
     value.  */
  gdb_assert (val->optimized_out.empty ());
  gdb_assert (val->unavailable.empty ());
  if (value_bitsize (val))
    value_fetch_lazy_bitfield (val);
  else if (VALUE_LVAL (val) == lval_memory)
    value_fetch_lazy_memory (val);
  else if (VALUE_LVAL (val) == lval_register)
    value_fetch_lazy_register (val);
  else if (VALUE_LVAL (val) == lval_computed
	   && value_computed_funcs (val)->read != NULL)
    value_computed_funcs (val)->read (val);
  else
    internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));

  set_value_lazy (val, 0);
}

/* Implementation of the convenience function $_isvoid.  */

static struct value *
isvoid_internal_fn (struct gdbarch *gdbarch,
		    const struct language_defn *language,
		    void *cookie, int argc, struct value **argv)
{
  int ret;

  if (argc != 1)
    error (_("You must provide one argument for $_isvoid."));

  ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;

  return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
}

/* Implementation of the convenience function $_creal.  Extracts the
   real part from a complex number.  */

static struct value *
creal_internal_fn (struct gdbarch *gdbarch,
		   const struct language_defn *language,
		   void *cookie, int argc, struct value **argv)
{
  if (argc != 1)
    error (_("You must provide one argument for $_creal."));

  value *cval = argv[0];
  type *ctype = check_typedef (value_type (cval));
  if (TYPE_CODE (ctype) != TYPE_CODE_COMPLEX)
    error (_("expected a complex number"));
  return value_from_component (cval, TYPE_TARGET_TYPE (ctype), 0);
}

/* Implementation of the convenience function $_cimag.  Extracts the
   imaginary part from a complex number.  */

static struct value *
cimag_internal_fn (struct gdbarch *gdbarch,
		   const struct language_defn *language,
		   void *cookie, int argc,
		   struct value **argv)
{
  if (argc != 1)
    error (_("You must provide one argument for $_cimag."));

  value *cval = argv[0];
  type *ctype = check_typedef (value_type (cval));
  if (TYPE_CODE (ctype) != TYPE_CODE_COMPLEX)
    error (_("expected a complex number"));
  return value_from_component (cval, TYPE_TARGET_TYPE (ctype),
			       TYPE_LENGTH (TYPE_TARGET_TYPE (ctype)));
}

#if GDB_SELF_TEST
namespace selftests
{

/* Test the ranges_contain function.  */

static void
test_ranges_contain ()
{
  std::vector<range> ranges;
  range r;

  /* [10, 14] */
  r.offset = 10;
  r.length = 5;
  ranges.push_back (r);

  /* [20, 24] */
  r.offset = 20;
  r.length = 5;
  ranges.push_back (r);

  /* [2, 6] */
  SELF_CHECK (!ranges_contain (ranges, 2, 5));
  /* [9, 13] */
  SELF_CHECK (ranges_contain (ranges, 9, 5));
  /* [10, 11] */
  SELF_CHECK (ranges_contain (ranges, 10, 2));
  /* [10, 14] */
  SELF_CHECK (ranges_contain (ranges, 10, 5));
  /* [13, 18] */
  SELF_CHECK (ranges_contain (ranges, 13, 6));
  /* [14, 18] */
  SELF_CHECK (ranges_contain (ranges, 14, 5));
  /* [15, 18] */
  SELF_CHECK (!ranges_contain (ranges, 15, 4));
  /* [16, 19] */
  SELF_CHECK (!ranges_contain (ranges, 16, 4));
  /* [16, 21] */
  SELF_CHECK (ranges_contain (ranges, 16, 6));
  /* [21, 21] */
  SELF_CHECK (ranges_contain (ranges, 21, 1));
  /* [21, 25] */
  SELF_CHECK (ranges_contain (ranges, 21, 5));
  /* [26, 28] */
  SELF_CHECK (!ranges_contain (ranges, 26, 3));
}

/* Check that RANGES contains the same ranges as EXPECTED.  */

static bool
check_ranges_vector (gdb::array_view<const range> ranges,
		     gdb::array_view<const range> expected)
{
  return ranges == expected;
}

/* Test the insert_into_bit_range_vector function.  */

static void
test_insert_into_bit_range_vector ()
{
  std::vector<range> ranges;

  /* [10, 14] */
  {
    insert_into_bit_range_vector (&ranges, 10, 5);
    static const range expected[] = {
      {10, 5}
    };
    SELF_CHECK (check_ranges_vector (ranges, expected));
  }

  /* [10, 14] */
  {
    insert_into_bit_range_vector (&ranges, 11, 4);
    static const range expected = {10, 5};
    SELF_CHECK (check_ranges_vector (ranges, expected));
  }

  /* [10, 14] [20, 24] */
  {
    insert_into_bit_range_vector (&ranges, 20, 5);
    static const range expected[] = {
      {10, 5},
      {20, 5},
    };
    SELF_CHECK (check_ranges_vector (ranges, expected));
  }

  /* [10, 14] [17, 24] */
  {
    insert_into_bit_range_vector (&ranges, 17, 5);
    static const range expected[] = {
      {10, 5},
      {17, 8},
    };
    SELF_CHECK (check_ranges_vector (ranges, expected));
  }

  /* [2, 8] [10, 14] [17, 24] */
  {
    insert_into_bit_range_vector (&ranges, 2, 7);
    static const range expected[] = {
      {2, 7},
      {10, 5},
      {17, 8},
    };
    SELF_CHECK (check_ranges_vector (ranges, expected));
  }

  /* [2, 14] [17, 24] */
  {
    insert_into_bit_range_vector (&ranges, 9, 1);
    static const range expected[] = {
      {2, 13},
      {17, 8},
    };
    SELF_CHECK (check_ranges_vector (ranges, expected));
  }

  /* [2, 14] [17, 24] */
  {
    insert_into_bit_range_vector (&ranges, 9, 1);
    static const range expected[] = {
      {2, 13},
      {17, 8},
    };
    SELF_CHECK (check_ranges_vector (ranges, expected));
  }

  /* [2, 33] */
  {
    insert_into_bit_range_vector (&ranges, 4, 30);
    static const range expected = {2, 32};
    SELF_CHECK (check_ranges_vector (ranges, expected));
  }
}

} /* namespace selftests */
#endif /* GDB_SELF_TEST */

void
_initialize_values (void)
{
  add_cmd ("convenience", no_class, show_convenience, _("\
Debugger convenience (\"$foo\") variables and functions.\n\
Convenience variables are created when you assign them values;\n\
thus, \"set $foo=1\" gives \"$foo\" the value 1.  Values may be any type.\n\
\n\
A few convenience variables are given values automatically:\n\
\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
\"$__\" holds the contents of the last address examined with \"x\"."
#ifdef HAVE_PYTHON
"\n\n\
Convenience functions are defined via the Python API."
#endif
	   ), &showlist);
  add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);

  add_cmd ("values", no_set_class, show_values, _("\
Elements of value history around item number IDX (or last ten)."),
	   &showlist);

  add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
Initialize a convenience variable if necessary.\n\
init-if-undefined VARIABLE = EXPRESSION\n\
Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
exist or does not contain a value.  The EXPRESSION is not evaluated if the\n\
VARIABLE is already initialized."));

  add_prefix_cmd ("function", no_class, function_command, _("\
Placeholder command for showing help on convenience functions."),
		  &functionlist, "function ", 0, &cmdlist);

  add_internal_function ("_isvoid", _("\
Check whether an expression is void.\n\
Usage: $_isvoid (expression)\n\
Return 1 if the expression is void, zero otherwise."),
			 isvoid_internal_fn, NULL);

  add_internal_function ("_creal", _("\
Extract the real part of a complex number.\n\
Usage: $_creal (expression)\n\
Return the real part of a complex number, the type depends on the\n\
type of a complex number."),
			 creal_internal_fn, NULL);

  add_internal_function ("_cimag", _("\
Extract the imaginary part of a complex number.\n\
Usage: $_cimag (expression)\n\
Return the imaginary part of a complex number, the type depends on the\n\
type of a complex number."),
			 cimag_internal_fn, NULL);

  add_setshow_zuinteger_unlimited_cmd ("max-value-size",
				       class_support, &max_value_size, _("\
Set maximum sized value gdb will load from the inferior."), _("\
Show maximum sized value gdb will load from the inferior."), _("\
Use this to control the maximum size, in bytes, of a value that gdb\n\
will load from the inferior.  Setting this value to 'unlimited'\n\
disables checking.\n\
Setting this does not invalidate already allocated values, it only\n\
prevents future values, larger than this size, from being allocated."),
			    set_max_value_size,
			    show_max_value_size,
			    &setlist, &showlist);
#if GDB_SELF_TEST
  selftests::register_test ("ranges_contain", selftests::test_ranges_contain);
  selftests::register_test ("insert_into_bit_range_vector",
			    selftests::test_insert_into_bit_range_vector);
#endif
}

/* See value.h.  */

void
finalize_values ()
{
  all_values.clear ();
}