aboutsummaryrefslogtreecommitdiff
path: root/gdb/target.h
blob: d867a58e2a8b0196d67920934cda3bad6c178484 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
/* Interface between GDB and target environments, including files and processes

   Copyright (C) 1990-2021 Free Software Foundation, Inc.

   Contributed by Cygnus Support.  Written by John Gilmore.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#if !defined (TARGET_H)
#define TARGET_H

struct objfile;
struct ui_file;
struct mem_attrib;
struct target_ops;
struct bp_location;
struct bp_target_info;
struct regcache;
struct trace_state_variable;
struct trace_status;
struct uploaded_tsv;
struct uploaded_tp;
struct static_tracepoint_marker;
struct traceframe_info;
struct expression;
struct dcache_struct;
struct inferior;

#include "infrun.h" /* For enum exec_direction_kind.  */
#include "breakpoint.h" /* For enum bptype.  */
#include "gdbsupport/scoped_restore.h"
#include "gdbsupport/refcounted-object.h"
#include "target-section.h"

/* This include file defines the interface between the main part
   of the debugger, and the part which is target-specific, or
   specific to the communications interface between us and the
   target.

   A TARGET is an interface between the debugger and a particular
   kind of file or process.  Targets can be STACKED in STRATA,
   so that more than one target can potentially respond to a request.
   In particular, memory accesses will walk down the stack of targets
   until they find a target that is interested in handling that particular
   address.  STRATA are artificial boundaries on the stack, within
   which particular kinds of targets live.  Strata exist so that
   people don't get confused by pushing e.g. a process target and then
   a file target, and wondering why they can't see the current values
   of variables any more (the file target is handling them and they
   never get to the process target).  So when you push a file target,
   it goes into the file stratum, which is always below the process
   stratum.

   Note that rather than allow an empty stack, we always have the
   dummy target at the bottom stratum, so we can call the target
   methods without checking them.  */

#include "target/target.h"
#include "target/resume.h"
#include "target/wait.h"
#include "target/waitstatus.h"
#include "bfd.h"
#include "symtab.h"
#include "memattr.h"
#include "gdbsupport/gdb_signals.h"
#include "btrace.h"
#include "record.h"
#include "command.h"
#include "disasm.h"
#include "tracepoint.h"

#include "gdbsupport/break-common.h" /* For enum target_hw_bp_type.  */

enum strata
  {
    dummy_stratum,		/* The lowest of the low */
    file_stratum,		/* Executable files, etc */
    process_stratum,		/* Executing processes or core dump files */
    thread_stratum,		/* Executing threads */
    record_stratum,		/* Support record debugging */
    arch_stratum,		/* Architecture overrides */
    debug_stratum		/* Target debug.  Must be last.  */
  };

enum thread_control_capabilities
  {
    tc_none = 0,		/* Default: can't control thread execution.  */
    tc_schedlock = 1,		/* Can lock the thread scheduler.  */
  };

/* The structure below stores information about a system call.
   It is basically used in the "catch syscall" command, and in
   every function that gives information about a system call.
   
   It's also good to mention that its fields represent everything
   that we currently know about a syscall in GDB.  */
struct syscall
  {
    /* The syscall number.  */
    int number;

    /* The syscall name.  */
    const char *name;
  };

/* Return a pretty printed form of TARGET_OPTIONS.  */
extern std::string target_options_to_string (target_wait_flags target_options);

/* Possible types of events that the inferior handler will have to
   deal with.  */
enum inferior_event_type
  {
    /* Process a normal inferior event which will result in target_wait
       being called.  */
    INF_REG_EVENT,
    /* We are called to do stuff after the inferior stops.  */
    INF_EXEC_COMPLETE,
  };

/* Target objects which can be transfered using target_read,
   target_write, et cetera.  */

enum target_object
{
  /* AVR target specific transfer.  See "avr-tdep.c" and "remote.c".  */
  TARGET_OBJECT_AVR,
  /* Transfer up-to LEN bytes of memory starting at OFFSET.  */
  TARGET_OBJECT_MEMORY,
  /* Memory, avoiding GDB's data cache and trusting the executable.
     Target implementations of to_xfer_partial never need to handle
     this object, and most callers should not use it.  */
  TARGET_OBJECT_RAW_MEMORY,
  /* Memory known to be part of the target's stack.  This is cached even
     if it is not in a region marked as such, since it is known to be
     "normal" RAM.  */
  TARGET_OBJECT_STACK_MEMORY,
  /* Memory known to be part of the target code.   This is cached even
     if it is not in a region marked as such.  */
  TARGET_OBJECT_CODE_MEMORY,
  /* Kernel Unwind Table.  See "ia64-tdep.c".  */
  TARGET_OBJECT_UNWIND_TABLE,
  /* Transfer auxilliary vector.  */
  TARGET_OBJECT_AUXV,
  /* StackGhost cookie.  See "sparc-tdep.c".  */
  TARGET_OBJECT_WCOOKIE,
  /* Target memory map in XML format.  */
  TARGET_OBJECT_MEMORY_MAP,
  /* Flash memory.  This object can be used to write contents to
     a previously erased flash memory.  Using it without erasing
     flash can have unexpected results.  Addresses are physical
     address on target, and not relative to flash start.  */
  TARGET_OBJECT_FLASH,
  /* Available target-specific features, e.g. registers and coprocessors.
     See "target-descriptions.c".  ANNEX should never be empty.  */
  TARGET_OBJECT_AVAILABLE_FEATURES,
  /* Currently loaded libraries, in XML format.  */
  TARGET_OBJECT_LIBRARIES,
  /* Currently loaded libraries specific for SVR4 systems, in XML format.  */
  TARGET_OBJECT_LIBRARIES_SVR4,
  /* Currently loaded libraries specific to AIX systems, in XML format.  */
  TARGET_OBJECT_LIBRARIES_AIX,
  /* Get OS specific data.  The ANNEX specifies the type (running
     processes, etc.).  The data being transfered is expected to follow
     the DTD specified in features/osdata.dtd.  */
  TARGET_OBJECT_OSDATA,
  /* Extra signal info.  Usually the contents of `siginfo_t' on unix
     platforms.  */
  TARGET_OBJECT_SIGNAL_INFO,
  /* The list of threads that are being debugged.  */
  TARGET_OBJECT_THREADS,
  /* Collected static trace data.  */
  TARGET_OBJECT_STATIC_TRACE_DATA,
  /* Traceframe info, in XML format.  */
  TARGET_OBJECT_TRACEFRAME_INFO,
  /* Load maps for FDPIC systems.  */
  TARGET_OBJECT_FDPIC,
  /* Darwin dynamic linker info data.  */
  TARGET_OBJECT_DARWIN_DYLD_INFO,
  /* OpenVMS Unwind Information Block.  */
  TARGET_OBJECT_OPENVMS_UIB,
  /* Branch trace data, in XML format.  */
  TARGET_OBJECT_BTRACE,
  /* Branch trace configuration, in XML format.  */
  TARGET_OBJECT_BTRACE_CONF,
  /* The pathname of the executable file that was run to create
     a specified process.  ANNEX should be a string representation
     of the process ID of the process in question, in hexadecimal
     format.  */
  TARGET_OBJECT_EXEC_FILE,
  /* FreeBSD virtual memory mappings.  */
  TARGET_OBJECT_FREEBSD_VMMAP,
  /* FreeBSD process strings.  */
  TARGET_OBJECT_FREEBSD_PS_STRINGS,
  /* Possible future objects: TARGET_OBJECT_FILE, ...  */
};

/* Possible values returned by target_xfer_partial, etc.  */

enum target_xfer_status
{
  /* Some bytes are transferred.  */
  TARGET_XFER_OK = 1,

  /* No further transfer is possible.  */
  TARGET_XFER_EOF = 0,

  /* The piece of the object requested is unavailable.  */
  TARGET_XFER_UNAVAILABLE = 2,

  /* Generic I/O error.  Note that it's important that this is '-1',
     as we still have target_xfer-related code returning hardcoded
     '-1' on error.  */
  TARGET_XFER_E_IO = -1,

  /* Keep list in sync with target_xfer_status_to_string.  */
};

/* Return the string form of STATUS.  */

extern const char *
  target_xfer_status_to_string (enum target_xfer_status status);

typedef enum target_xfer_status
  target_xfer_partial_ftype (struct target_ops *ops,
			     enum target_object object,
			     const char *annex,
			     gdb_byte *readbuf,
			     const gdb_byte *writebuf,
			     ULONGEST offset,
			     ULONGEST len,
			     ULONGEST *xfered_len);

enum target_xfer_status
  raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
			   const gdb_byte *writebuf, ULONGEST memaddr,
			   LONGEST len, ULONGEST *xfered_len);

/* Request that OPS transfer up to LEN addressable units of the target's
   OBJECT.  When reading from a memory object, the size of an addressable unit
   is architecture dependent and can be found using
   gdbarch_addressable_memory_unit_size.  Otherwise, an addressable unit is 1
   byte long.  BUF should point to a buffer large enough to hold the read data,
   taking into account the addressable unit size.  The OFFSET, for a seekable
   object, specifies the starting point.  The ANNEX can be used to provide
   additional data-specific information to the target.

   Return the number of addressable units actually transferred, or a negative
   error code (an 'enum target_xfer_error' value) if the transfer is not
   supported or otherwise fails.  Return of a positive value less than
   LEN indicates that no further transfer is possible.  Unlike the raw
   to_xfer_partial interface, callers of these functions do not need
   to retry partial transfers.  */

extern LONGEST target_read (struct target_ops *ops,
			    enum target_object object,
			    const char *annex, gdb_byte *buf,
			    ULONGEST offset, LONGEST len);

struct memory_read_result
{
  memory_read_result (ULONGEST begin_, ULONGEST end_,
		      gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
    : begin (begin_),
      end (end_),
      data (std::move (data_))
  {
  }

  ~memory_read_result () = default;

  memory_read_result (memory_read_result &&other) = default;

  DISABLE_COPY_AND_ASSIGN (memory_read_result);

  /* First address that was read.  */
  ULONGEST begin;
  /* Past-the-end address.  */
  ULONGEST end;
  /* The data.  */
  gdb::unique_xmalloc_ptr<gdb_byte> data;
};

extern std::vector<memory_read_result> read_memory_robust
    (struct target_ops *ops, const ULONGEST offset, const LONGEST len);

/* Request that OPS transfer up to LEN addressable units from BUF to the
   target's OBJECT.  When writing to a memory object, the addressable unit
   size is architecture dependent and can be found using
   gdbarch_addressable_memory_unit_size.  Otherwise, an addressable unit is 1
   byte long.  The OFFSET, for a seekable object, specifies the starting point.
   The ANNEX can be used to provide additional data-specific information to
   the target.

   Return the number of addressable units actually transferred, or a negative
   error code (an 'enum target_xfer_status' value) if the transfer is not
   supported or otherwise fails.  Return of a positive value less than
   LEN indicates that no further transfer is possible.  Unlike the raw
   to_xfer_partial interface, callers of these functions do not need to
   retry partial transfers.  */

extern LONGEST target_write (struct target_ops *ops,
			     enum target_object object,
			     const char *annex, const gdb_byte *buf,
			     ULONGEST offset, LONGEST len);

/* Similar to target_write, except that it also calls PROGRESS with
   the number of bytes written and the opaque BATON after every
   successful partial write (and before the first write).  This is
   useful for progress reporting and user interaction while writing
   data.  To abort the transfer, the progress callback can throw an
   exception.  */

LONGEST target_write_with_progress (struct target_ops *ops,
				    enum target_object object,
				    const char *annex, const gdb_byte *buf,
				    ULONGEST offset, LONGEST len,
				    void (*progress) (ULONGEST, void *),
				    void *baton);

/* Wrapper to perform a full read of unknown size.  OBJECT/ANNEX will be read
   using OPS.  The return value will be uninstantiated if the transfer fails or
   is not supported.

   This method should be used for objects sufficiently small to store
   in a single xmalloc'd buffer, when no fixed bound on the object's
   size is known in advance.  Don't try to read TARGET_OBJECT_MEMORY
   through this function.  */

extern gdb::optional<gdb::byte_vector> target_read_alloc
    (struct target_ops *ops, enum target_object object, const char *annex);

/* Read OBJECT/ANNEX using OPS.  The result is a NUL-terminated character vector
   (therefore usable as a NUL-terminated string).  If an error occurs or the
   transfer is unsupported, the return value will be uninstantiated.  Empty
   objects are returned as allocated but empty strings.  Therefore, on success,
   the returned vector is guaranteed to have at least one element.  A warning is
   issued if the result contains any embedded NUL bytes.  */

extern gdb::optional<gdb::char_vector> target_read_stralloc
    (struct target_ops *ops, enum target_object object, const char *annex);

/* See target_ops->to_xfer_partial.  */
extern target_xfer_partial_ftype target_xfer_partial;

/* Wrappers to target read/write that perform memory transfers.  They
   throw an error if the memory transfer fails.

   NOTE: cagney/2003-10-23: The naming schema is lifted from
   "frame.h".  The parameter order is lifted from get_frame_memory,
   which in turn lifted it from read_memory.  */

extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
			       gdb_byte *buf, LONGEST len);
extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
					    CORE_ADDR addr, int len,
					    enum bfd_endian byte_order);

struct thread_info;		/* fwd decl for parameter list below: */

/* The type of the callback to the to_async method.  */

typedef void async_callback_ftype (enum inferior_event_type event_type,
				   void *context);

/* Normally target debug printing is purely type-based.  However,
   sometimes it is necessary to override the debug printing on a
   per-argument basis.  This macro can be used, attribute-style, to
   name the target debug printing function for a particular method
   argument.  FUNC is the name of the function.  The macro's
   definition is empty because it is only used by the
   make-target-delegates script.  */

#define TARGET_DEBUG_PRINTER(FUNC)

/* These defines are used to mark target_ops methods.  The script
   make-target-delegates scans these and auto-generates the base
   method implementations.  There are four macros that can be used:
   
   1. TARGET_DEFAULT_IGNORE.  There is no argument.  The base method
   does nothing.  This is only valid if the method return type is
   'void'.
   
   2. TARGET_DEFAULT_NORETURN.  The argument is a function call, like
   'tcomplain ()'.  The base method simply makes this call, which is
   assumed not to return.
   
   3. TARGET_DEFAULT_RETURN.  The argument is a C expression.  The
   base method returns this expression's value.
   
   4. TARGET_DEFAULT_FUNC.  The argument is the name of a function.
   make-target-delegates does not generate a base method in this case,
   but instead uses the argument function as the base method.  */

#define TARGET_DEFAULT_IGNORE()
#define TARGET_DEFAULT_NORETURN(ARG)
#define TARGET_DEFAULT_RETURN(ARG)
#define TARGET_DEFAULT_FUNC(ARG)

/* Each target that can be activated with "target TARGET_NAME" passes
   the address of one of these objects to add_target, which uses the
   object's address as unique identifier, and registers the "target
   TARGET_NAME" command using SHORTNAME as target name.  */

struct target_info
{
  /* Name of this target.  */
  const char *shortname;

  /* Name for printing.  */
  const char *longname;

  /* Documentation.  Does not include trailing newline, and starts
     with a one-line description (probably similar to longname).  */
  const char *doc;
};

struct target_ops
  : public refcounted_object
  {
    /* Return this target's stratum.  */
    virtual strata stratum () const = 0;

    /* To the target under this one.  */
    target_ops *beneath () const;

    /* Free resources associated with the target.  Note that singleton
       targets, like e.g., native targets, are global objects, not
       heap allocated, and are thus only deleted on GDB exit.  The
       main teardown entry point is the "close" method, below.  */
    virtual ~target_ops () {}

    /* Return a reference to this target's unique target_info
       object.  */
    virtual const target_info &info () const = 0;

    /* Name this target type.  */
    const char *shortname () const
    { return info ().shortname; }

    const char *longname () const
    { return info ().longname; }

    /* Close the target.  This is where the target can handle
       teardown.  Heap-allocated targets should delete themselves
       before returning.  */
    virtual void close ();

    /* Attaches to a process on the target side.  Arguments are as
       passed to the `attach' command by the user.  This routine can
       be called when the target is not on the target-stack, if the
       target_ops::can_run method returns 1; in that case, it must push
       itself onto the stack.  Upon exit, the target should be ready
       for normal operations, and should be ready to deliver the
       status of the process immediately (without waiting) to an
       upcoming target_wait call.  */
    virtual bool can_attach ();
    virtual void attach (const char *, int);
    virtual void post_attach (int)
      TARGET_DEFAULT_IGNORE ();

    /* Detaches from the inferior.  Note that on targets that support
       async execution (i.e., targets where it is possible to detach
       from programs with threads running), the target is responsible
       for removing breakpoints from the program before the actual
       detach, otherwise the program dies when it hits one.  */
    virtual void detach (inferior *, int)
      TARGET_DEFAULT_IGNORE ();

    virtual void disconnect (const char *, int)
      TARGET_DEFAULT_NORETURN (tcomplain ());
    virtual void resume (ptid_t,
			 int TARGET_DEBUG_PRINTER (target_debug_print_step),
			 enum gdb_signal)
      TARGET_DEFAULT_NORETURN (noprocess ());

    /* Ensure that all resumed threads are committed to the target.

       See the description of
       process_stratum_target::commit_resumed_state for more
       details.  */
    virtual void commit_resumed ()
      TARGET_DEFAULT_IGNORE ();

    /* See target_wait's description.  Note that implementations of
       this method must not assume that inferior_ptid on entry is
       pointing at the thread or inferior that ends up reporting an
       event.  The reported event could be for some other thread in
       the current inferior or even for a different process of the
       current target.  inferior_ptid may also be null_ptid on
       entry.  */
    virtual ptid_t wait (ptid_t, struct target_waitstatus *,
			 target_wait_flags options)
      TARGET_DEFAULT_FUNC (default_target_wait);
    virtual void fetch_registers (struct regcache *, int)
      TARGET_DEFAULT_IGNORE ();
    virtual void store_registers (struct regcache *, int)
      TARGET_DEFAULT_NORETURN (noprocess ());
    virtual void prepare_to_store (struct regcache *)
      TARGET_DEFAULT_NORETURN (noprocess ());

    virtual void files_info ()
      TARGET_DEFAULT_IGNORE ();
    virtual int insert_breakpoint (struct gdbarch *,
				 struct bp_target_info *)
      TARGET_DEFAULT_NORETURN (noprocess ());
    virtual int remove_breakpoint (struct gdbarch *,
				 struct bp_target_info *,
				 enum remove_bp_reason)
      TARGET_DEFAULT_NORETURN (noprocess ());

    /* Returns true if the target stopped because it executed a
       software breakpoint.  This is necessary for correct background
       execution / non-stop mode operation, and for correct PC
       adjustment on targets where the PC needs to be adjusted when a
       software breakpoint triggers.  In these modes, by the time GDB
       processes a breakpoint event, the breakpoint may already be
       done from the target, so GDB needs to be able to tell whether
       it should ignore the event and whether it should adjust the PC.
       See adjust_pc_after_break.  */
    virtual bool stopped_by_sw_breakpoint ()
      TARGET_DEFAULT_RETURN (false);
    /* Returns true if the above method is supported.  */
    virtual bool supports_stopped_by_sw_breakpoint ()
      TARGET_DEFAULT_RETURN (false);

    /* Returns true if the target stopped for a hardware breakpoint.
       Likewise, if the target supports hardware breakpoints, this
       method is necessary for correct background execution / non-stop
       mode operation.  Even though hardware breakpoints do not
       require PC adjustment, GDB needs to be able to tell whether the
       hardware breakpoint event is a delayed event for a breakpoint
       that is already gone and should thus be ignored.  */
    virtual bool stopped_by_hw_breakpoint ()
      TARGET_DEFAULT_RETURN (false);
    /* Returns true if the above method is supported.  */
    virtual bool supports_stopped_by_hw_breakpoint ()
      TARGET_DEFAULT_RETURN (false);

    virtual int can_use_hw_breakpoint (enum bptype, int, int)
      TARGET_DEFAULT_RETURN (0);
    virtual int ranged_break_num_registers ()
      TARGET_DEFAULT_RETURN (-1);
    virtual int insert_hw_breakpoint (struct gdbarch *,
				      struct bp_target_info *)
      TARGET_DEFAULT_RETURN (-1);
    virtual int remove_hw_breakpoint (struct gdbarch *,
				      struct bp_target_info *)
      TARGET_DEFAULT_RETURN (-1);

    /* Documentation of what the two routines below are expected to do is
       provided with the corresponding target_* macros.  */
    virtual int remove_watchpoint (CORE_ADDR, int,
				 enum target_hw_bp_type, struct expression *)
      TARGET_DEFAULT_RETURN (-1);
    virtual int insert_watchpoint (CORE_ADDR, int,
				 enum target_hw_bp_type, struct expression *)
      TARGET_DEFAULT_RETURN (-1);

    virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
					enum target_hw_bp_type)
      TARGET_DEFAULT_RETURN (1);
    virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
					enum target_hw_bp_type)
      TARGET_DEFAULT_RETURN (1);
    virtual bool stopped_by_watchpoint ()
      TARGET_DEFAULT_RETURN (false);
    virtual bool have_steppable_watchpoint ()
      TARGET_DEFAULT_RETURN (false);
    virtual bool stopped_data_address (CORE_ADDR *)
      TARGET_DEFAULT_RETURN (false);
    virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
      TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);

    /* Documentation of this routine is provided with the corresponding
       target_* macro.  */
    virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
      TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);

    virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
						 struct expression *)
      TARGET_DEFAULT_RETURN (false);
    virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
      TARGET_DEFAULT_RETURN (-1);

    /* Return 1 for sure target can do single step.  Return -1 for
       unknown.  Return 0 for target can't do.  */
    virtual int can_do_single_step ()
      TARGET_DEFAULT_RETURN (-1);

    virtual bool supports_terminal_ours ()
      TARGET_DEFAULT_RETURN (false);
    virtual void terminal_init ()
      TARGET_DEFAULT_IGNORE ();
    virtual void terminal_inferior ()
      TARGET_DEFAULT_IGNORE ();
    virtual void terminal_save_inferior ()
      TARGET_DEFAULT_IGNORE ();
    virtual void terminal_ours_for_output ()
      TARGET_DEFAULT_IGNORE ();
    virtual void terminal_ours ()
      TARGET_DEFAULT_IGNORE ();
    virtual void terminal_info (const char *, int)
      TARGET_DEFAULT_FUNC (default_terminal_info);
    virtual void kill ()
      TARGET_DEFAULT_NORETURN (noprocess ());
    virtual void load (const char *, int)
      TARGET_DEFAULT_NORETURN (tcomplain ());
    /* Start an inferior process and set inferior_ptid to its pid.
       EXEC_FILE is the file to run.
       ALLARGS is a string containing the arguments to the program.
       ENV is the environment vector to pass.  Errors reported with error().
       On VxWorks and various standalone systems, we ignore exec_file.  */
    virtual bool can_create_inferior ();
    virtual void create_inferior (const char *, const std::string &,
				  char **, int);
    virtual void post_startup_inferior (ptid_t)
      TARGET_DEFAULT_IGNORE ();
    virtual int insert_fork_catchpoint (int)
      TARGET_DEFAULT_RETURN (1);
    virtual int remove_fork_catchpoint (int)
      TARGET_DEFAULT_RETURN (1);
    virtual int insert_vfork_catchpoint (int)
      TARGET_DEFAULT_RETURN (1);
    virtual int remove_vfork_catchpoint (int)
      TARGET_DEFAULT_RETURN (1);
    virtual void follow_fork (bool, bool)
      TARGET_DEFAULT_FUNC (default_follow_fork);
    virtual int insert_exec_catchpoint (int)
      TARGET_DEFAULT_RETURN (1);
    virtual int remove_exec_catchpoint (int)
      TARGET_DEFAULT_RETURN (1);
    virtual void follow_exec (inferior *, ptid_t, const char *)
      TARGET_DEFAULT_IGNORE ();
    virtual int set_syscall_catchpoint (int, bool, int,
					gdb::array_view<const int>)
      TARGET_DEFAULT_RETURN (1);
    virtual void mourn_inferior ()
      TARGET_DEFAULT_FUNC (default_mourn_inferior);

    /* Note that can_run is special and can be invoked on an unpushed
       target.  Targets defining this method must also define
       to_can_async_p and to_supports_non_stop.  */
    virtual bool can_run ();

    /* Documentation of this routine is provided with the corresponding
       target_* macro.  */
    virtual void pass_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
      TARGET_DEFAULT_IGNORE ();

    /* Documentation of this routine is provided with the
       corresponding target_* function.  */
    virtual void program_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
      TARGET_DEFAULT_IGNORE ();

    virtual bool thread_alive (ptid_t ptid)
      TARGET_DEFAULT_RETURN (false);
    virtual void update_thread_list ()
      TARGET_DEFAULT_IGNORE ();
    virtual std::string pid_to_str (ptid_t)
      TARGET_DEFAULT_FUNC (default_pid_to_str);
    virtual const char *extra_thread_info (thread_info *)
      TARGET_DEFAULT_RETURN (NULL);
    virtual const char *thread_name (thread_info *)
      TARGET_DEFAULT_RETURN (NULL);
    virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
						       int,
						       inferior *inf)
      TARGET_DEFAULT_RETURN (NULL);
    /* See target_thread_info_to_thread_handle.  */
    virtual gdb::byte_vector thread_info_to_thread_handle (struct thread_info *)
      TARGET_DEFAULT_RETURN (gdb::byte_vector ());
    virtual void stop (ptid_t)
      TARGET_DEFAULT_IGNORE ();
    virtual void interrupt ()
      TARGET_DEFAULT_IGNORE ();
    virtual void pass_ctrlc ()
      TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
    virtual void rcmd (const char *command, struct ui_file *output)
      TARGET_DEFAULT_FUNC (default_rcmd);
    virtual char *pid_to_exec_file (int pid)
      TARGET_DEFAULT_RETURN (NULL);
    virtual void log_command (const char *)
      TARGET_DEFAULT_IGNORE ();
    virtual const target_section_table *get_section_table ()
      TARGET_DEFAULT_RETURN (default_get_section_table ());

    /* Provide default values for all "must have" methods.  */
    virtual bool has_all_memory () { return false; }
    virtual bool has_memory () { return false; }
    virtual bool has_stack () { return false; }
    virtual bool has_registers () { return false; }
    virtual bool has_execution (inferior *inf) { return false; }

    /* Control thread execution.  */
    virtual thread_control_capabilities get_thread_control_capabilities ()
      TARGET_DEFAULT_RETURN (tc_none);
    virtual bool attach_no_wait ()
      TARGET_DEFAULT_RETURN (0);
    /* This method must be implemented in some situations.  See the
       comment on 'can_run'.  */
    virtual bool can_async_p ()
      TARGET_DEFAULT_RETURN (false);
    virtual bool is_async_p ()
      TARGET_DEFAULT_RETURN (false);
    virtual void async (int)
      TARGET_DEFAULT_NORETURN (tcomplain ());
    virtual int async_wait_fd ()
      TARGET_DEFAULT_NORETURN (noprocess ());
    /* Return true if the target has pending events to report to the
       core.  If true, then GDB avoids resuming the target until all
       pending events are consumed, so that multiple resumptions can
       be coalesced as an optimization.  Most targets can't tell
       whether they have pending events without calling target_wait,
       so we default to returning false.  The only downside is that a
       potential optimization is missed.  */
    virtual bool has_pending_events ()
      TARGET_DEFAULT_RETURN (false);
    virtual void thread_events (int)
      TARGET_DEFAULT_IGNORE ();
    /* This method must be implemented in some situations.  See the
       comment on 'can_run'.  */
    virtual bool supports_non_stop ()
      TARGET_DEFAULT_RETURN (false);
    /* Return true if the target operates in non-stop mode even with
       "set non-stop off".  */
    virtual bool always_non_stop_p ()
      TARGET_DEFAULT_RETURN (false);
    /* find_memory_regions support method for gcore */
    virtual int find_memory_regions (find_memory_region_ftype func, void *data)
      TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
    /* make_corefile_notes support method for gcore */
    virtual gdb::unique_xmalloc_ptr<char> make_corefile_notes (bfd *, int *)
      TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
    /* get_bookmark support method for bookmarks */
    virtual gdb_byte *get_bookmark (const char *, int)
      TARGET_DEFAULT_NORETURN (tcomplain ());
    /* goto_bookmark support method for bookmarks */
    virtual void goto_bookmark (const gdb_byte *, int)
      TARGET_DEFAULT_NORETURN (tcomplain ());
    /* Return the thread-local address at OFFSET in the
       thread-local storage for the thread PTID and the shared library
       or executable file given by LOAD_MODULE_ADDR.  If that block of
       thread-local storage hasn't been allocated yet, this function
       may throw an error.  LOAD_MODULE_ADDR may be zero for statically
       linked multithreaded inferiors.  */
    virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
						CORE_ADDR load_module_addr,
						CORE_ADDR offset)
      TARGET_DEFAULT_NORETURN (generic_tls_error ());

    /* Request that OPS transfer up to LEN addressable units of the target's
       OBJECT.  When reading from a memory object, the size of an addressable
       unit is architecture dependent and can be found using
       gdbarch_addressable_memory_unit_size.  Otherwise, an addressable unit is
       1 byte long.  The OFFSET, for a seekable object, specifies the
       starting point.  The ANNEX can be used to provide additional
       data-specific information to the target.

       Return the transferred status, error or OK (an
       'enum target_xfer_status' value).  Save the number of addressable units
       actually transferred in *XFERED_LEN if transfer is successful
       (TARGET_XFER_OK) or the number unavailable units if the requested
       data is unavailable (TARGET_XFER_UNAVAILABLE).  *XFERED_LEN
       smaller than LEN does not indicate the end of the object, only
       the end of the transfer; higher level code should continue
       transferring if desired.  This is handled in target.c.

       The interface does not support a "retry" mechanism.  Instead it
       assumes that at least one addressable unit will be transfered on each
       successful call.

       NOTE: cagney/2003-10-17: The current interface can lead to
       fragmented transfers.  Lower target levels should not implement
       hacks, such as enlarging the transfer, in an attempt to
       compensate for this.  Instead, the target stack should be
       extended so that it implements supply/collect methods and a
       look-aside object cache.  With that available, the lowest
       target can safely and freely "push" data up the stack.

       See target_read and target_write for more information.  One,
       and only one, of readbuf or writebuf must be non-NULL.  */

    virtual enum target_xfer_status xfer_partial (enum target_object object,
						  const char *annex,
						  gdb_byte *readbuf,
						  const gdb_byte *writebuf,
						  ULONGEST offset, ULONGEST len,
						  ULONGEST *xfered_len)
      TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);

    /* Return the limit on the size of any single memory transfer
       for the target.  */

    virtual ULONGEST get_memory_xfer_limit ()
      TARGET_DEFAULT_RETURN (ULONGEST_MAX);

    /* Returns the memory map for the target.  A return value of NULL
       means that no memory map is available.  If a memory address
       does not fall within any returned regions, it's assumed to be
       RAM.  The returned memory regions should not overlap.

       The order of regions does not matter; target_memory_map will
       sort regions by starting address.  For that reason, this
       function should not be called directly except via
       target_memory_map.

       This method should not cache data; if the memory map could
       change unexpectedly, it should be invalidated, and higher
       layers will re-fetch it.  */
    virtual std::vector<mem_region> memory_map ()
      TARGET_DEFAULT_RETURN (std::vector<mem_region> ());

    /* Erases the region of flash memory starting at ADDRESS, of
       length LENGTH.

       Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
       on flash block boundaries, as reported by 'to_memory_map'.  */
    virtual void flash_erase (ULONGEST address, LONGEST length)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Finishes a flash memory write sequence.  After this operation
       all flash memory should be available for writing and the result
       of reading from areas written by 'to_flash_write' should be
       equal to what was written.  */
    virtual void flash_done ()
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Describe the architecture-specific features of this target.  If
       OPS doesn't have a description, this should delegate to the
       "beneath" target.  Returns the description found, or NULL if no
       description was available.  */
    virtual const struct target_desc *read_description ()
	 TARGET_DEFAULT_RETURN (NULL);

    /* Build the PTID of the thread on which a given task is running,
       based on LWP and THREAD.  These values are extracted from the
       task Private_Data section of the Ada Task Control Block, and
       their interpretation depends on the target.  */
    virtual ptid_t get_ada_task_ptid (long lwp, long thread)
      TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);

    /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
       Return 0 if *READPTR is already at the end of the buffer.
       Return -1 if there is insufficient buffer for a whole entry.
       Return 1 if an entry was read into *TYPEP and *VALP.  */
    virtual int auxv_parse (gdb_byte **readptr,
			    gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
      TARGET_DEFAULT_FUNC (default_auxv_parse);

    /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
       sequence of bytes in PATTERN with length PATTERN_LEN.

       The result is 1 if found, 0 if not found, and -1 if there was an error
       requiring halting of the search (e.g. memory read error).
       If the pattern is found the address is recorded in FOUND_ADDRP.  */
    virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
			       const gdb_byte *pattern, ULONGEST pattern_len,
			       CORE_ADDR *found_addrp)
      TARGET_DEFAULT_FUNC (default_search_memory);

    /* Can target execute in reverse?  */
    virtual bool can_execute_reverse ()
      TARGET_DEFAULT_RETURN (false);

    /* The direction the target is currently executing.  Must be
       implemented on targets that support reverse execution and async
       mode.  The default simply returns forward execution.  */
    virtual enum exec_direction_kind execution_direction ()
      TARGET_DEFAULT_FUNC (default_execution_direction);

    /* Does this target support debugging multiple processes
       simultaneously?  */
    virtual bool supports_multi_process ()
      TARGET_DEFAULT_RETURN (false);

    /* Does this target support enabling and disabling tracepoints while a trace
       experiment is running?  */
    virtual bool supports_enable_disable_tracepoint ()
      TARGET_DEFAULT_RETURN (false);

    /* Does this target support disabling address space randomization?  */
    virtual bool supports_disable_randomization ()
      TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);

    /* Does this target support the tracenz bytecode for string collection?  */
    virtual bool supports_string_tracing ()
      TARGET_DEFAULT_RETURN (false);

    /* Does this target support evaluation of breakpoint conditions on its
       end?  */
    virtual bool supports_evaluation_of_breakpoint_conditions ()
      TARGET_DEFAULT_RETURN (false);

    /* Does this target support native dumpcore API?  */
    virtual bool supports_dumpcore ()
      TARGET_DEFAULT_RETURN (false);

    /* Generate the core file with native target API.  */
    virtual void dumpcore (const char *filename)
      TARGET_DEFAULT_IGNORE ();

    /* Does this target support evaluation of breakpoint commands on its
       end?  */
    virtual bool can_run_breakpoint_commands ()
      TARGET_DEFAULT_RETURN (false);

    /* Determine current architecture of thread PTID.

       The target is supposed to determine the architecture of the code where
       the target is currently stopped at.  The architecture information is
       used to perform decr_pc_after_break adjustment, and also to determine
       the frame architecture of the innermost frame.  ptrace operations need to
       operate according to target_gdbarch ().  */
    virtual struct gdbarch *thread_architecture (ptid_t)
      TARGET_DEFAULT_RETURN (NULL);

    /* Determine current address space of thread PTID.  */
    virtual struct address_space *thread_address_space (ptid_t)
      TARGET_DEFAULT_RETURN (NULL);

    /* Target file operations.  */

    /* Return true if the filesystem seen by the current inferior
       is the local filesystem, false otherwise.  */
    virtual bool filesystem_is_local ()
      TARGET_DEFAULT_RETURN (true);

    /* Open FILENAME on the target, in the filesystem as seen by INF,
       using FLAGS and MODE.  If INF is NULL, use the filesystem seen
       by the debugger (GDB or, for remote targets, the remote stub).
       If WARN_IF_SLOW is nonzero, print a warning message if the file
       is being accessed over a link that may be slow.  Return a
       target file descriptor, or -1 if an error occurs (and set
       *TARGET_ERRNO).  */
    virtual int fileio_open (struct inferior *inf, const char *filename,
			     int flags, int mode, int warn_if_slow,
			     int *target_errno);

    /* Write up to LEN bytes from WRITE_BUF to FD on the target.
       Return the number of bytes written, or -1 if an error occurs
       (and set *TARGET_ERRNO).  */
    virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
			       ULONGEST offset, int *target_errno);

    /* Read up to LEN bytes FD on the target into READ_BUF.
       Return the number of bytes read, or -1 if an error occurs
       (and set *TARGET_ERRNO).  */
    virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
			      ULONGEST offset, int *target_errno);

    /* Get information about the file opened as FD and put it in
       SB.  Return 0 on success, or -1 if an error occurs (and set
       *TARGET_ERRNO).  */
    virtual int fileio_fstat (int fd, struct stat *sb, int *target_errno);

    /* Close FD on the target.  Return 0, or -1 if an error occurs
       (and set *TARGET_ERRNO).  */
    virtual int fileio_close (int fd, int *target_errno);

    /* Unlink FILENAME on the target, in the filesystem as seen by
       INF.  If INF is NULL, use the filesystem seen by the debugger
       (GDB or, for remote targets, the remote stub).  Return 0, or
       -1 if an error occurs (and set *TARGET_ERRNO).  */
    virtual int fileio_unlink (struct inferior *inf,
			       const char *filename,
			       int *target_errno);

    /* Read value of symbolic link FILENAME on the target, in the
       filesystem as seen by INF.  If INF is NULL, use the filesystem
       seen by the debugger (GDB or, for remote targets, the remote
       stub).  Return a string, or an empty optional if an error
       occurs (and set *TARGET_ERRNO).  */
    virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
							const char *filename,
							int *target_errno);

    /* Implement the "info proc" command.  Returns true if the target
       actually implemented the command, false otherwise.  */
    virtual bool info_proc (const char *, enum info_proc_what);

    /* Tracepoint-related operations.  */

    /* Prepare the target for a tracing run.  */
    virtual void trace_init ()
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Send full details of a tracepoint location to the target.  */
    virtual void download_tracepoint (struct bp_location *location)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Is the target able to download tracepoint locations in current
       state?  */
    virtual bool can_download_tracepoint ()
      TARGET_DEFAULT_RETURN (false);

    /* Send full details of a trace state variable to the target.  */
    virtual void download_trace_state_variable (const trace_state_variable &tsv)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Enable a tracepoint on the target.  */
    virtual void enable_tracepoint (struct bp_location *location)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Disable a tracepoint on the target.  */
    virtual void disable_tracepoint (struct bp_location *location)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Inform the target info of memory regions that are readonly
       (such as text sections), and so it should return data from
       those rather than look in the trace buffer.  */
    virtual void trace_set_readonly_regions ()
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Start a trace run.  */
    virtual void trace_start ()
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Get the current status of a tracing run.  */
    virtual int get_trace_status (struct trace_status *ts)
      TARGET_DEFAULT_RETURN (-1);

    virtual void get_tracepoint_status (struct breakpoint *tp,
					struct uploaded_tp *utp)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Stop a trace run.  */
    virtual void trace_stop ()
      TARGET_DEFAULT_NORETURN (tcomplain ());

   /* Ask the target to find a trace frame of the given type TYPE,
      using NUM, ADDR1, and ADDR2 as search parameters.  Returns the
      number of the trace frame, and also the tracepoint number at
      TPP.  If no trace frame matches, return -1.  May throw if the
      operation fails.  */
    virtual int trace_find (enum trace_find_type type, int num,
			    CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
      TARGET_DEFAULT_RETURN (-1);

    /* Get the value of the trace state variable number TSV, returning
       1 if the value is known and writing the value itself into the
       location pointed to by VAL, else returning 0.  */
    virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
      TARGET_DEFAULT_RETURN (false);

    virtual int save_trace_data (const char *filename)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    virtual int upload_tracepoints (struct uploaded_tp **utpp)
      TARGET_DEFAULT_RETURN (0);

    virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
      TARGET_DEFAULT_RETURN (0);

    virtual LONGEST get_raw_trace_data (gdb_byte *buf,
					ULONGEST offset, LONGEST len)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Get the minimum length of instruction on which a fast tracepoint
       may be set on the target.  If this operation is unsupported,
       return -1.  If for some reason the minimum length cannot be
       determined, return 0.  */
    virtual int get_min_fast_tracepoint_insn_len ()
      TARGET_DEFAULT_RETURN (-1);

    /* Set the target's tracing behavior in response to unexpected
       disconnection - set VAL to 1 to keep tracing, 0 to stop.  */
    virtual void set_disconnected_tracing (int val)
      TARGET_DEFAULT_IGNORE ();
    virtual void set_circular_trace_buffer (int val)
      TARGET_DEFAULT_IGNORE ();
    /* Set the size of trace buffer in the target.  */
    virtual void set_trace_buffer_size (LONGEST val)
      TARGET_DEFAULT_IGNORE ();

    /* Add/change textual notes about the trace run, returning true if
       successful, false otherwise.  */
    virtual bool set_trace_notes (const char *user, const char *notes,
				  const char *stopnotes)
      TARGET_DEFAULT_RETURN (false);

    /* Return the processor core that thread PTID was last seen on.
       This information is updated only when:
       - update_thread_list is called
       - thread stops
       If the core cannot be determined -- either for the specified
       thread, or right now, or in this debug session, or for this
       target -- return -1.  */
    virtual int core_of_thread (ptid_t ptid)
      TARGET_DEFAULT_RETURN (-1);

    /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
       matches the contents of [DATA,DATA+SIZE).  Returns 1 if there's
       a match, 0 if there's a mismatch, and -1 if an error is
       encountered while reading memory.  */
    virtual int verify_memory (const gdb_byte *data,
			       CORE_ADDR memaddr, ULONGEST size)
      TARGET_DEFAULT_FUNC (default_verify_memory);

    /* Return the address of the start of the Thread Information Block
       a Windows OS specific feature.  */
    virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Send the new settings of write permission variables.  */
    virtual void set_permissions ()
      TARGET_DEFAULT_IGNORE ();

    /* Look for a static tracepoint marker at ADDR, and fill in MARKER
       with its details.  Return true on success, false on failure.  */
    virtual bool static_tracepoint_marker_at (CORE_ADDR,
					      static_tracepoint_marker *marker)
      TARGET_DEFAULT_RETURN (false);

    /* Return a vector of all tracepoints markers string id ID, or all
       markers if ID is NULL.  */
    virtual std::vector<static_tracepoint_marker>
      static_tracepoint_markers_by_strid (const char *id)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Return a traceframe info object describing the current
       traceframe's contents.  This method should not cache data;
       higher layers take care of caching, invalidating, and
       re-fetching when necessary.  */
    virtual traceframe_info_up traceframe_info ()
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Ask the target to use or not to use agent according to USE.
       Return true if successful, false otherwise.  */
    virtual bool use_agent (bool use)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Is the target able to use agent in current state?  */
    virtual bool can_use_agent ()
      TARGET_DEFAULT_RETURN (false);

    /* Enable branch tracing for PTID using CONF configuration.
       Return a branch trace target information struct for reading and for
       disabling branch trace.  */
    virtual struct btrace_target_info *enable_btrace (ptid_t ptid,
						      const struct btrace_config *conf)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Disable branch tracing and deallocate TINFO.  */
    virtual void disable_btrace (struct btrace_target_info *tinfo)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Disable branch tracing and deallocate TINFO.  This function is similar
       to to_disable_btrace, except that it is called during teardown and is
       only allowed to perform actions that are safe.  A counter-example would
       be attempting to talk to a remote target.  */
    virtual void teardown_btrace (struct btrace_target_info *tinfo)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Read branch trace data for the thread indicated by BTINFO into DATA.
       DATA is cleared before new trace is added.  */
    virtual enum btrace_error read_btrace (struct btrace_data *data,
					   struct btrace_target_info *btinfo,
					   enum btrace_read_type type)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Get the branch trace configuration.  */
    virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
      TARGET_DEFAULT_RETURN (NULL);

    /* Current recording method.  */
    virtual enum record_method record_method (ptid_t ptid)
      TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);

    /* Stop trace recording.  */
    virtual void stop_recording ()
      TARGET_DEFAULT_IGNORE ();

    /* Print information about the recording.  */
    virtual void info_record ()
      TARGET_DEFAULT_IGNORE ();

    /* Save the recorded execution trace into a file.  */
    virtual void save_record (const char *filename)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Delete the recorded execution trace from the current position
       onwards.  */
    virtual bool supports_delete_record ()
      TARGET_DEFAULT_RETURN (false);
    virtual void delete_record ()
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Query if the record target is currently replaying PTID.  */
    virtual bool record_is_replaying (ptid_t ptid)
      TARGET_DEFAULT_RETURN (false);

    /* Query if the record target will replay PTID if it were resumed in
       execution direction DIR.  */
    virtual bool record_will_replay (ptid_t ptid, int dir)
      TARGET_DEFAULT_RETURN (false);

    /* Stop replaying.  */
    virtual void record_stop_replaying ()
      TARGET_DEFAULT_IGNORE ();

    /* Go to the begin of the execution trace.  */
    virtual void goto_record_begin ()
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Go to the end of the execution trace.  */
    virtual void goto_record_end ()
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Go to a specific location in the recorded execution trace.  */
    virtual void goto_record (ULONGEST insn)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Disassemble SIZE instructions in the recorded execution trace from
       the current position.
       If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
       disassemble SIZE succeeding instructions.  */
    virtual void insn_history (int size, gdb_disassembly_flags flags)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Disassemble SIZE instructions in the recorded execution trace around
       FROM.
       If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
       disassemble SIZE instructions after FROM.  */
    virtual void insn_history_from (ULONGEST from, int size,
				    gdb_disassembly_flags flags)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Disassemble a section of the recorded execution trace from instruction
       BEGIN (inclusive) to instruction END (inclusive).  */
    virtual void insn_history_range (ULONGEST begin, ULONGEST end,
				     gdb_disassembly_flags flags)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Print a function trace of the recorded execution trace.
       If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
       succeeding functions.  */
    virtual void call_history (int size, record_print_flags flags)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Print a function trace of the recorded execution trace starting
       at function FROM.
       If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
       SIZE functions after FROM.  */
    virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Print a function trace of an execution trace section from function BEGIN
       (inclusive) to function END (inclusive).  */
    virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
       non-empty annex.  */
    virtual bool augmented_libraries_svr4_read ()
      TARGET_DEFAULT_RETURN (false);

    /* Those unwinders are tried before any other arch unwinders.  If
       SELF doesn't have unwinders, it should delegate to the
       "beneath" target.  */
    virtual const struct frame_unwind *get_unwinder ()
      TARGET_DEFAULT_RETURN (NULL);

    virtual const struct frame_unwind *get_tailcall_unwinder ()
      TARGET_DEFAULT_RETURN (NULL);

    /* Prepare to generate a core file.  */
    virtual void prepare_to_generate_core ()
      TARGET_DEFAULT_IGNORE ();

    /* Cleanup after generating a core file.  */
    virtual void done_generating_core ()
      TARGET_DEFAULT_IGNORE ();

    /* Returns true if the target supports memory tagging, false otherwise.  */
    virtual bool supports_memory_tagging ()
      TARGET_DEFAULT_RETURN (false);

    /* Return the allocated memory tags of type TYPE associated with
       [ADDRESS, ADDRESS + LEN) in TAGS.

       LEN is the number of bytes in the memory range.  TAGS is a vector of
       bytes containing the tags found in the above memory range.

       It is up to the architecture/target to interpret the bytes in the TAGS
       vector and read the tags appropriately.

       Returns true if fetching the tags succeeded and false otherwise.  */
    virtual bool fetch_memtags (CORE_ADDR address, size_t len,
				gdb::byte_vector &tags, int type)
      TARGET_DEFAULT_NORETURN (tcomplain ());

    /* Write the allocation tags of type TYPE contained in TAGS to the memory
       range [ADDRESS, ADDRESS + LEN).

       LEN is the number of bytes in the memory range.  TAGS is a vector of
       bytes containing the tags to be stored to the memory range.

       It is up to the architecture/target to interpret the bytes in the TAGS
       vector and store them appropriately.

       Returns true if storing the tags succeeded and false otherwise.  */
    virtual bool store_memtags (CORE_ADDR address, size_t len,
				const gdb::byte_vector &tags, int type)
      TARGET_DEFAULT_NORETURN (tcomplain ());
  };

/* Deleter for std::unique_ptr.  See comments in
   target_ops::~target_ops and target_ops::close about heap-allocated
   targets.  */
struct target_ops_deleter
{
  void operator() (target_ops *target)
  {
    target->close ();
  }
};

/* A unique pointer for target_ops.  */
typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;

/* Decref a target and close if, if there are no references left.  */
extern void decref_target (target_ops *t);

/* A policy class to interface gdb::ref_ptr with target_ops.  */

struct target_ops_ref_policy
{
  static void incref (target_ops *t)
  {
    t->incref ();
  }

  static void decref (target_ops *t)
  {
    decref_target (t);
  }
};

/* A gdb::ref_ptr pointer to a target_ops.  */
typedef gdb::ref_ptr<target_ops, target_ops_ref_policy> target_ops_ref;

/* Native target backends call this once at initialization time to
   inform the core about which is the target that can respond to "run"
   or "attach".  Note: native targets are always singletons.  */
extern void set_native_target (target_ops *target);

/* Get the registered native target, if there's one.  Otherwise return
   NULL.  */
extern target_ops *get_native_target ();

/* Type that manages a target stack.  See description of target stacks
   and strata at the top of the file.  */

class target_stack
{
public:
  target_stack () = default;
  DISABLE_COPY_AND_ASSIGN (target_stack);

  /* Push a new target into the stack of the existing target
     accessors, possibly superseding some existing accessor.  */
  void push (target_ops *t);

  /* Remove a target from the stack, wherever it may be.  Return true
     if it was removed, false otherwise.  */
  bool unpush (target_ops *t);

  /* Returns true if T is pushed on the target stack.  */
  bool is_pushed (target_ops *t) const
  { return at (t->stratum ()) == t; }

  /* Return the target at STRATUM.  */
  target_ops *at (strata stratum) const { return m_stack[stratum]; }

  /* Return the target at the top of the stack.  */
  target_ops *top () const { return at (m_top); }

  /* Find the next target down the stack from the specified target.  */
  target_ops *find_beneath (const target_ops *t) const;

private:
  /* The stratum of the top target.  */
  enum strata m_top {};

  /* The stack, represented as an array, with one slot per stratum.
     If no target is pushed at some stratum, the corresponding slot is
     null.  */
  target_ops *m_stack[(int) debug_stratum + 1] {};
};

/* Return the dummy target.  */
extern target_ops *get_dummy_target ();

/* Define easy words for doing these operations on our current target.  */

extern const char *target_shortname ();

/* Does whatever cleanup is required for a target that we are no
   longer going to be calling.  This routine is automatically always
   called after popping the target off the target stack - the target's
   own methods are no longer available through the target vector.
   Closing file descriptors and freeing all memory allocated memory are
   typical things it should do.  */

void target_close (struct target_ops *targ);

/* Find the correct target to use for "attach".  If a target on the
   current stack supports attaching, then it is returned.  Otherwise,
   the default run target is returned.  */

extern struct target_ops *find_attach_target (void);

/* Find the correct target to use for "run".  If a target on the
   current stack supports creating a new inferior, then it is
   returned.  Otherwise, the default run target is returned.  */

extern struct target_ops *find_run_target (void);

/* Some targets don't generate traps when attaching to the inferior,
   or their target_attach implementation takes care of the waiting.
   These targets must set to_attach_no_wait.  */

extern bool target_attach_no_wait ();

/* The target_attach operation places a process under debugger control,
   and stops the process.

   This operation provides a target-specific hook that allows the
   necessary bookkeeping to be performed after an attach completes.  */

extern void target_post_attach (int pid);

/* Display a message indicating we're about to detach from the current
   inferior process.  */

extern void target_announce_detach (int from_tty);

/* Takes a program previously attached to and detaches it.
   The program may resume execution (some targets do, some don't) and will
   no longer stop on signals, etc.  We better not have left any breakpoints
   in the program or it'll die when it hits one.  FROM_TTY says whether to be
   verbose or not.  */

extern void target_detach (inferior *inf, int from_tty);

/* Disconnect from the current target without resuming it (leaving it
   waiting for a debugger).  */

extern void target_disconnect (const char *, int);

/* Resume execution (or prepare for execution) of a target thread,
   process or all processes.  STEP says whether to hardware
   single-step or to run free; SIGGNAL is the signal to be given to
   the target, or GDB_SIGNAL_0 for no signal.  The caller may not pass
   GDB_SIGNAL_DEFAULT.  A specific PTID means `step/resume only this
   process id'.  A wildcard PTID (all threads, or all threads of
   process) means `step/resume INFERIOR_PTID, and let other threads
   (for which the wildcard PTID matches) resume with their
   'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
   is in "pass" state, or with no signal if in "no pass" state.

   In order to efficiently handle batches of resumption requests,
   targets may implement this method such that it records the
   resumption request, but defers the actual resumption to the
   target_commit_resume method implementation.  See
   target_commit_resume below.  */
extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);

/* Ensure that all resumed threads are committed to the target.

   See the description of process_stratum_target::commit_resumed_state
   for more details.  */
extern void target_commit_resumed ();

/* For target_read_memory see target/target.h.  */

/* The default target_ops::to_wait implementation.  */

extern ptid_t default_target_wait (struct target_ops *ops,
				   ptid_t ptid,
				   struct target_waitstatus *status,
				   target_wait_flags options);

/* Return true if the target has pending events to report to the core.
   See target_ops::has_pending_events().  */

extern bool target_has_pending_events ();

/* Fetch at least register REGNO, or all regs if regno == -1.  No result.  */

extern void target_fetch_registers (struct regcache *regcache, int regno);

/* Store at least register REGNO, or all regs if REGNO == -1.
   It can store as many registers as it wants to, so target_prepare_to_store
   must have been previously called.  Calls error() if there are problems.  */

extern void target_store_registers (struct regcache *regcache, int regs);

/* Get ready to modify the registers array.  On machines which store
   individual registers, this doesn't need to do anything.  On machines
   which store all the registers in one fell swoop, this makes sure
   that REGISTERS contains all the registers from the program being
   debugged.  */

extern void target_prepare_to_store (regcache *regcache);

/* Determine current address space of thread PTID.  */

struct address_space *target_thread_address_space (ptid_t);

/* Implement the "info proc" command.  This returns one if the request
   was handled, and zero otherwise.  It can also throw an exception if
   an error was encountered while attempting to handle the
   request.  */

int target_info_proc (const char *, enum info_proc_what);

/* Returns true if this target can disable address space randomization.  */

int target_supports_disable_randomization (void);

/* Returns true if this target can enable and disable tracepoints
   while a trace experiment is running.  */

extern bool target_supports_enable_disable_tracepoint ();

extern bool target_supports_string_tracing ();

/* Returns true if this target can handle breakpoint conditions
   on its end.  */

extern bool target_supports_evaluation_of_breakpoint_conditions ();

/* Does this target support dumpcore API?  */

extern bool target_supports_dumpcore ();

/* Generate the core file with target API.  */

extern void target_dumpcore (const char *filename);

/* Returns true if this target can handle breakpoint commands
   on its end.  */

extern bool target_can_run_breakpoint_commands ();

/* Read a string from target memory at address MEMADDR.  The string
   will be at most LEN bytes long (note that excess bytes may be read
   in some cases -- but these will not be returned).  Returns nullptr
   on error.  */

extern gdb::unique_xmalloc_ptr<char> target_read_string
  (CORE_ADDR memaddr, int len, int *bytes_read = nullptr);

/* For target_read_memory see target/target.h.  */

extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
				   ssize_t len);

extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);

extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);

/* For target_write_memory see target/target.h.  */

extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
				    ssize_t len);

/* Fetches the target's memory map.  If one is found it is sorted
   and returned, after some consistency checking.  Otherwise, NULL
   is returned.  */
std::vector<mem_region> target_memory_map (void);

/* Erases all flash memory regions on the target.  */
void flash_erase_command (const char *cmd, int from_tty);

/* Erase the specified flash region.  */
void target_flash_erase (ULONGEST address, LONGEST length);

/* Finish a sequence of flash operations.  */
void target_flash_done (void);

/* Describes a request for a memory write operation.  */
struct memory_write_request
{
  memory_write_request (ULONGEST begin_, ULONGEST end_,
			gdb_byte *data_ = nullptr, void *baton_ = nullptr)
    : begin (begin_), end (end_), data (data_), baton (baton_)
  {}

  /* Begining address that must be written.  */
  ULONGEST begin;
  /* Past-the-end address.  */
  ULONGEST end;
  /* The data to write.  */
  gdb_byte *data;
  /* A callback baton for progress reporting for this request.  */
  void *baton;
};

/* Enumeration specifying different flash preservation behaviour.  */
enum flash_preserve_mode
  {
    flash_preserve,
    flash_discard
  };

/* Write several memory blocks at once.  This version can be more
   efficient than making several calls to target_write_memory, in
   particular because it can optimize accesses to flash memory.

   Moreover, this is currently the only memory access function in gdb
   that supports writing to flash memory, and it should be used for
   all cases where access to flash memory is desirable.

   REQUESTS is the vector of memory_write_request.
   PRESERVE_FLASH_P indicates what to do with blocks which must be
     erased, but not completely rewritten.
   PROGRESS_CB is a function that will be periodically called to provide
     feedback to user.  It will be called with the baton corresponding
     to the request currently being written.  It may also be called
     with a NULL baton, when preserved flash sectors are being rewritten.

   The function returns 0 on success, and error otherwise.  */
int target_write_memory_blocks
    (const std::vector<memory_write_request> &requests,
     enum flash_preserve_mode preserve_flash_p,
     void (*progress_cb) (ULONGEST, void *));

/* Print a line about the current target.  */

extern void target_files_info ();

/* Insert a breakpoint at address BP_TGT->placed_address in
   the target machine.  Returns 0 for success, and returns non-zero or
   throws an error (with a detailed failure reason error code and
   message) otherwise.  */

extern int target_insert_breakpoint (struct gdbarch *gdbarch,
				     struct bp_target_info *bp_tgt);

/* Remove a breakpoint at address BP_TGT->placed_address in the target
   machine.  Result is 0 for success, non-zero for error.  */

extern int target_remove_breakpoint (struct gdbarch *gdbarch,
				     struct bp_target_info *bp_tgt,
				     enum remove_bp_reason reason);

/* Return true if the target stack has a non-default
  "terminal_ours" method.  */

extern bool target_supports_terminal_ours (void);

/* Kill the inferior process.   Make it go away.  */

extern void target_kill (void);

/* Load an executable file into the target process.  This is expected
   to not only bring new code into the target process, but also to
   update GDB's symbol tables to match.

   ARG contains command-line arguments, to be broken down with
   buildargv ().  The first non-switch argument is the filename to
   load, FILE; the second is a number (as parsed by strtoul (..., ...,
   0)), which is an offset to apply to the load addresses of FILE's
   sections.  The target may define switches, or other non-switch
   arguments, as it pleases.  */

extern void target_load (const char *arg, int from_tty);

/* Some targets (such as ttrace-based HPUX) don't allow us to request
   notification of inferior events such as fork and vork immediately
   after the inferior is created.  (This because of how gdb gets an
   inferior created via invoking a shell to do it.  In such a scenario,
   if the shell init file has commands in it, the shell will fork and
   exec for each of those commands, and we will see each such fork
   event.  Very bad.)

   Such targets will supply an appropriate definition for this function.  */

extern void target_post_startup_inferior (ptid_t ptid);

/* On some targets, we can catch an inferior fork or vfork event when
   it occurs.  These functions insert/remove an already-created
   catchpoint for such events.  They return  0 for success, 1 if the
   catchpoint type is not supported and -1 for failure.  */

extern int target_insert_fork_catchpoint (int pid);

extern int target_remove_fork_catchpoint (int pid);

extern int target_insert_vfork_catchpoint (int pid);

extern int target_remove_vfork_catchpoint (int pid);

/* If the inferior forks or vforks, this function will be called at
   the next resume in order to perform any bookkeeping and fiddling
   necessary to continue debugging either the parent or child, as
   requested, and releasing the other.  Information about the fork
   or vfork event is available via get_last_target_status ().  */

void target_follow_fork (bool follow_child, bool detach_fork);

/* Handle the target-specific bookkeeping required when the inferior makes an
   exec call.

   The current inferior at the time of the call is the inferior that did the
   exec.  FOLLOW_INF is the inferior in which execution continues post-exec.
   If "follow-exec-mode" is "same", FOLLOW_INF is the same as the current
   inferior, meaning that execution continues with the same inferior.  If
   "follow-exec-mode" is "new", FOLLOW_INF is a different inferior, meaning
   that execution continues in a new inferior.

   On exit, the target must leave FOLLOW_INF as the current inferior.  */

void target_follow_exec (inferior *follow_inf, ptid_t ptid,
			 const char *execd_pathname);

/* On some targets, we can catch an inferior exec event when it
   occurs.  These functions insert/remove an already-created
   catchpoint for such events.  They return  0 for success, 1 if the
   catchpoint type is not supported and -1 for failure.  */

extern int target_insert_exec_catchpoint (int pid);

extern int target_remove_exec_catchpoint (int pid);

/* Syscall catch.

   NEEDED is true if any syscall catch (of any kind) is requested.
   If NEEDED is false, it means the target can disable the mechanism to
   catch system calls because there are no more catchpoints of this type.

   ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
   being requested.  In this case, SYSCALL_COUNTS should be ignored.

   SYSCALL_COUNTS is an array of ints, indexed by syscall number.  An
   element in this array is nonzero if that syscall should be caught.
   This argument only matters if ANY_COUNT is zero.

   Return 0 for success, 1 if syscall catchpoints are not supported or -1
   for failure.  */

extern int target_set_syscall_catchpoint
  (int pid, bool needed, int any_count,
   gdb::array_view<const int> syscall_counts);

/* The debugger has completed a blocking wait() call.  There is now
   some process event that must be processed.  This function should
   be defined by those targets that require the debugger to perform
   cleanup or internal state changes in response to the process event.  */

/* For target_mourn_inferior see target/target.h.  */

/* Does target have enough data to do a run or attach command?  */

extern int target_can_run ();

/* Set list of signals to be handled in the target.

   PASS_SIGNALS is an array indexed by target signal number
   (enum gdb_signal).  For every signal whose entry in this array is
   non-zero, the target is allowed -but not required- to skip reporting
   arrival of the signal to the GDB core by returning from target_wait,
   and to pass the signal directly to the inferior instead.

   However, if the target is hardware single-stepping a thread that is
   about to receive a signal, it needs to be reported in any case, even
   if mentioned in a previous target_pass_signals call.   */

extern void target_pass_signals
  (gdb::array_view<const unsigned char> pass_signals);

/* Set list of signals the target may pass to the inferior.  This
   directly maps to the "handle SIGNAL pass/nopass" setting.

   PROGRAM_SIGNALS is an array indexed by target signal
   number (enum gdb_signal).  For every signal whose entry in this
   array is non-zero, the target is allowed to pass the signal to the
   inferior.  Signals not present in the array shall be silently
   discarded.  This does not influence whether to pass signals to the
   inferior as a result of a target_resume call.  This is useful in
   scenarios where the target needs to decide whether to pass or not a
   signal to the inferior without GDB core involvement, such as for
   example, when detaching (as threads may have been suspended with
   pending signals not reported to GDB).  */

extern void target_program_signals
  (gdb::array_view<const unsigned char> program_signals);

/* Check to see if a thread is still alive.  */

extern int target_thread_alive (ptid_t ptid);

/* Sync the target's threads with GDB's thread list.  */

extern void target_update_thread_list (void);

/* Make target stop in a continuable fashion.  (For instance, under
   Unix, this should act like SIGSTOP).  Note that this function is
   asynchronous: it does not wait for the target to become stopped
   before returning.  If this is the behavior you want please use
   target_stop_and_wait.  */

extern void target_stop (ptid_t ptid);

/* Interrupt the target.  Unlike target_stop, this does not specify
   which thread/process reports the stop.  For most target this acts
   like raising a SIGINT, though that's not absolutely required.  This
   function is asynchronous.  */

extern void target_interrupt ();

/* Pass a ^C, as determined to have been pressed by checking the quit
   flag, to the target, as if the user had typed the ^C on the
   inferior's controlling terminal while the inferior was in the
   foreground.  Remote targets may take the opportunity to detect the
   remote side is not responding and offer to disconnect.  */

extern void target_pass_ctrlc (void);

/* The default target_ops::to_pass_ctrlc implementation.  Simply calls
   target_interrupt.  */
extern void default_target_pass_ctrlc (struct target_ops *ops);

/* Send the specified COMMAND to the target's monitor
   (shell,interpreter) for execution.  The result of the query is
   placed in OUTBUF.  */

extern void target_rcmd (const char *command, struct ui_file *outbuf);

/* Does the target include memory?  (Dummy targets don't.)  */

extern int target_has_memory ();

/* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
   we start a process.)  */

extern int target_has_stack ();

/* Does the target have registers?  (Exec files don't.)  */

extern int target_has_registers ();

/* Does the target have execution?  Can we make it jump (through
   hoops), or pop its stack a few times?  This means that the current
   target is currently executing; for some targets, that's the same as
   whether or not the target is capable of execution, but there are
   also targets which can be current while not executing.  In that
   case this will become true after to_create_inferior or
   to_attach.  INF is the inferior to use; nullptr means to use the
   current inferior.  */

extern bool target_has_execution (inferior *inf = nullptr);

/* Can the target support the debugger control of thread execution?
   Can it lock the thread scheduler?  */

extern bool target_can_lock_scheduler ();

/* Controls whether async mode is permitted.  */
extern bool target_async_permitted;

/* Can the target support asynchronous execution?  */
extern bool target_can_async_p ();

/* Is the target in asynchronous execution mode?  */
extern bool target_is_async_p ();

/* Enables/disabled async target events.  */
extern void target_async (int enable);

/* Enables/disables thread create and exit events.  */
extern void target_thread_events (int enable);

/* Whether support for controlling the target backends always in
   non-stop mode is enabled.  */
extern enum auto_boolean target_non_stop_enabled;

/* Is the target in non-stop mode?  Some targets control the inferior
   in non-stop mode even with "set non-stop off".  Always true if "set
   non-stop" is on.  */
extern bool target_is_non_stop_p ();

/* Return true if at least one inferior has a non-stop target.  */
extern bool exists_non_stop_target ();

extern exec_direction_kind target_execution_direction ();

/* Converts a process id to a string.  Usually, the string just contains
   `process xyz', but on some systems it may contain
   `process xyz thread abc'.  */

extern std::string target_pid_to_str (ptid_t ptid);

extern std::string normal_pid_to_str (ptid_t ptid);

/* Return a short string describing extra information about PID,
   e.g. "sleeping", "runnable", "running on LWP 3".  Null return value
   is okay.  */

extern const char *target_extra_thread_info (thread_info *tp);

/* Return the thread's name, or NULL if the target is unable to determine it.
   The returned value must not be freed by the caller.  */

extern const char *target_thread_name (struct thread_info *);

/* Given a pointer to a thread library specific thread handle and
   its length, return a pointer to the corresponding thread_info struct.  */

extern struct thread_info *target_thread_handle_to_thread_info
  (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);

/* Given a thread, return the thread handle, a target-specific sequence of
   bytes which serves as a thread identifier within the program being
   debugged.  */
extern gdb::byte_vector target_thread_info_to_thread_handle
  (struct thread_info *);

/* Attempts to find the pathname of the executable file
   that was run to create a specified process.

   The process PID must be stopped when this operation is used.

   If the executable file cannot be determined, NULL is returned.

   Else, a pointer to a character string containing the pathname
   is returned.  This string should be copied into a buffer by
   the client if the string will not be immediately used, or if
   it must persist.  */

extern char *target_pid_to_exec_file (int pid);

/* See the to_thread_architecture description in struct target_ops.  */

extern gdbarch *target_thread_architecture (ptid_t ptid);

/*
 * Iterator function for target memory regions.
 * Calls a callback function once for each memory region 'mapped'
 * in the child process.  Defined as a simple macro rather than
 * as a function macro so that it can be tested for nullity.
 */

extern int target_find_memory_regions (find_memory_region_ftype func,
				       void *data);

/*
 * Compose corefile .note section.
 */

extern gdb::unique_xmalloc_ptr<char> target_make_corefile_notes (bfd *bfd,
								 int *size_p);

/* Bookmark interfaces.  */
extern gdb_byte *target_get_bookmark (const char *args, int from_tty);

extern void target_goto_bookmark (const gdb_byte *arg, int from_tty);

/* Hardware watchpoint interfaces.  */

/* GDB's current model is that there are three "kinds" of watchpoints,
   with respect to when they trigger and how you can move past them.

   Those are: continuable, steppable, and non-steppable.

   Continuable watchpoints are like x86's -- those trigger after the
   memory access's side effects are fully committed to memory.  I.e.,
   they trap with the PC pointing at the next instruction already.
   Continuing past such a watchpoint is doable by just normally
   continuing, hence the name.

   Both steppable and non-steppable watchpoints trap before the memory
   access.  I.e, the PC points at the instruction that is accessing
   the memory.  So GDB needs to single-step once past the current
   instruction in order to make the access effective and check whether
   the instruction's side effects change the watched expression.

   Now, in order to step past that instruction, depending on
   architecture and target, you can have two situations:

   - steppable watchpoints: you can single-step with the watchpoint
     still armed, and the watchpoint won't trigger again.

   - non-steppable watchpoints: if you try to single-step with the
     watchpoint still armed, you'd trap the watchpoint again and the
     thread wouldn't make any progress.  So GDB needs to temporarily
     remove the watchpoint in order to step past it.

   If your target/architecture does not signal that it has either
   steppable or non-steppable watchpoints via either
   target_have_steppable_watchpoint or
   gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
   watchpoints.  */

/* Returns true if we were stopped by a hardware watchpoint (memory read or
   write).  Only the INFERIOR_PTID task is being queried.  */

extern bool target_stopped_by_watchpoint ();

/* Returns true if the target stopped because it executed a
   software breakpoint instruction.  */

extern bool target_stopped_by_sw_breakpoint ();

extern bool target_supports_stopped_by_sw_breakpoint ();

extern bool target_stopped_by_hw_breakpoint ();

extern bool target_supports_stopped_by_hw_breakpoint ();

/* True if we have steppable watchpoints  */

extern bool target_have_steppable_watchpoint ();

/* Provide defaults for hardware watchpoint functions.  */

/* If the *_hw_beakpoint functions have not been defined
   elsewhere use the definitions in the target vector.  */

/* Returns positive if we can set a hardware watchpoint of type TYPE.
   Returns negative if the target doesn't have enough hardware debug
   registers available.  Return zero if hardware watchpoint of type
   TYPE isn't supported.  TYPE is one of bp_hardware_watchpoint,
   bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
   CNT is the number of such watchpoints used so far, including this
   one.  OTHERTYPE is the number of watchpoints of other types than
   this one used so far.  */

extern int target_can_use_hardware_watchpoint (bptype type, int cnt,
					       int othertype);

/* Returns the number of debug registers needed to watch the given
   memory region, or zero if not supported.  */

extern int target_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len);

extern int target_can_do_single_step ();

/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
   TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
   COND is the expression for its condition, or NULL if there's none.
   Returns 0 for success, 1 if the watchpoint type is not supported,
   -1 for failure.  */

extern int target_insert_watchpoint (CORE_ADDR addr, int len,
				     target_hw_bp_type type, expression *cond);

extern int target_remove_watchpoint (CORE_ADDR addr, int len,
				     target_hw_bp_type type, expression *cond);

/* Insert a new masked watchpoint at ADDR using the mask MASK.
   RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
   or hw_access for an access watchpoint.  Returns 0 for success, 1 if
   masked watchpoints are not supported, -1 for failure.  */

extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
					  enum target_hw_bp_type);

/* Remove a masked watchpoint at ADDR with the mask MASK.
   RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
   or hw_access for an access watchpoint.  Returns 0 for success, non-zero
   for failure.  */

extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
					  enum target_hw_bp_type);

/* Insert a hardware breakpoint at address BP_TGT->placed_address in
   the target machine.  Returns 0 for success, and returns non-zero or
   throws an error (with a detailed failure reason error code and
   message) otherwise.  */

extern int target_insert_hw_breakpoint (gdbarch *gdbarch,
					bp_target_info *bp_tgt);

extern int target_remove_hw_breakpoint (gdbarch *gdbarch,
					bp_target_info *bp_tgt);

/* Return number of debug registers needed for a ranged breakpoint,
   or -1 if ranged breakpoints are not supported.  */

extern int target_ranged_break_num_registers (void);

/* Return non-zero if target knows the data address which triggered this
   target_stopped_by_watchpoint, in such case place it to *ADDR_P.  Only the
   INFERIOR_PTID task is being queried.  */
#define target_stopped_data_address(target, addr_p) \
  (target)->stopped_data_address (addr_p)

/* Return non-zero if ADDR is within the range of a watchpoint spanning
   LENGTH bytes beginning at START.  */
#define target_watchpoint_addr_within_range(target, addr, start, length) \
  (target)->watchpoint_addr_within_range (addr, start, length)

/* Return non-zero if the target is capable of using hardware to evaluate
   the condition expression.  In this case, if the condition is false when
   the watched memory location changes, execution may continue without the
   debugger being notified.

   Due to limitations in the hardware implementation, it may be capable of
   avoiding triggering the watchpoint in some cases where the condition
   expression is false, but may report some false positives as well.
   For this reason, GDB will still evaluate the condition expression when
   the watchpoint triggers.  */

extern bool target_can_accel_watchpoint_condition (CORE_ADDR addr, int len,
						   int type, expression *cond);

/* Return number of debug registers needed for a masked watchpoint,
   -1 if masked watchpoints are not supported or -2 if the given address
   and mask combination cannot be used.  */

extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);

/* Target can execute in reverse?  */

extern bool target_can_execute_reverse ();

extern const struct target_desc *target_read_description (struct target_ops *);

extern ptid_t target_get_ada_task_ptid (long lwp, long tid);

/* Main entry point for searching memory.  */
extern int target_search_memory (CORE_ADDR start_addr,
				 ULONGEST search_space_len,
				 const gdb_byte *pattern,
				 ULONGEST pattern_len,
				 CORE_ADDR *found_addrp);

/* Target file operations.  */

/* Return true if the filesystem seen by the current inferior
   is the local filesystem, zero otherwise.  */

extern bool target_filesystem_is_local ();

/* Open FILENAME on the target, in the filesystem as seen by INF,
   using FLAGS and MODE.  If INF is NULL, use the filesystem seen by
   the debugger (GDB or, for remote targets, the remote stub).  Return
   a target file descriptor, or -1 if an error occurs (and set
   *TARGET_ERRNO).  If WARN_IF_SLOW is true, print a warning message
   if the file is being accessed over a link that may be slow.  */
extern int target_fileio_open (struct inferior *inf,
			       const char *filename, int flags,
			       int mode, bool warn_if_slow,
			       int *target_errno);

/* Write up to LEN bytes from WRITE_BUF to FD on the target.
   Return the number of bytes written, or -1 if an error occurs
   (and set *TARGET_ERRNO).  */
extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
				 ULONGEST offset, int *target_errno);

/* Read up to LEN bytes FD on the target into READ_BUF.
   Return the number of bytes read, or -1 if an error occurs
   (and set *TARGET_ERRNO).  */
extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
				ULONGEST offset, int *target_errno);

/* Get information about the file opened as FD on the target
   and put it in SB.  Return 0 on success, or -1 if an error
   occurs (and set *TARGET_ERRNO).  */
extern int target_fileio_fstat (int fd, struct stat *sb,
				int *target_errno);

/* Close FD on the target.  Return 0, or -1 if an error occurs
   (and set *TARGET_ERRNO).  */
extern int target_fileio_close (int fd, int *target_errno);

/* Unlink FILENAME on the target, in the filesystem as seen by INF.
   If INF is NULL, use the filesystem seen by the debugger (GDB or,
   for remote targets, the remote stub).  Return 0, or -1 if an error
   occurs (and set *TARGET_ERRNO).  */
extern int target_fileio_unlink (struct inferior *inf,
				 const char *filename,
				 int *target_errno);

/* Read value of symbolic link FILENAME on the target, in the
   filesystem as seen by INF.  If INF is NULL, use the filesystem seen
   by the debugger (GDB or, for remote targets, the remote stub).
   Return a null-terminated string allocated via xmalloc, or NULL if
   an error occurs (and set *TARGET_ERRNO).  */
extern gdb::optional<std::string> target_fileio_readlink
    (struct inferior *inf, const char *filename, int *target_errno);

/* Read target file FILENAME, in the filesystem as seen by INF.  If
   INF is NULL, use the filesystem seen by the debugger (GDB or, for
   remote targets, the remote stub).  The return value will be -1 if
   the transfer fails or is not supported; 0 if the object is empty;
   or the length of the object otherwise.  If a positive value is
   returned, a sufficiently large buffer will be allocated using
   xmalloc and returned in *BUF_P containing the contents of the
   object.

   This method should be used for objects sufficiently small to store
   in a single xmalloc'd buffer, when no fixed bound on the object's
   size is known in advance.  */
extern LONGEST target_fileio_read_alloc (struct inferior *inf,
					 const char *filename,
					 gdb_byte **buf_p);

/* Read target file FILENAME, in the filesystem as seen by INF.  If
   INF is NULL, use the filesystem seen by the debugger (GDB or, for
   remote targets, the remote stub).  The result is NUL-terminated and
   returned as a string, allocated using xmalloc.  If an error occurs
   or the transfer is unsupported, NULL is returned.  Empty objects
   are returned as allocated but empty strings.  A warning is issued
   if the result contains any embedded NUL bytes.  */
extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
    (struct inferior *inf, const char *filename);


/* Tracepoint-related operations.  */

extern void target_trace_init ();

extern void target_download_tracepoint (bp_location *location);

extern bool target_can_download_tracepoint ();

extern void target_download_trace_state_variable (const trace_state_variable &tsv);

extern void target_enable_tracepoint (bp_location *loc);

extern void target_disable_tracepoint (bp_location *loc);

extern void target_trace_start ();

extern void target_trace_set_readonly_regions ();

extern int target_get_trace_status (trace_status *ts);

extern void target_get_tracepoint_status (breakpoint *tp, uploaded_tp *utp);

extern void target_trace_stop ();

extern int target_trace_find (trace_find_type type, int num, CORE_ADDR addr1,
			      CORE_ADDR addr2, int *tpp);

extern bool target_get_trace_state_variable_value (int tsv, LONGEST *val);

extern int target_save_trace_data (const char *filename);

extern int target_upload_tracepoints (uploaded_tp **utpp);

extern int target_upload_trace_state_variables (uploaded_tsv **utsvp);

extern LONGEST target_get_raw_trace_data (gdb_byte *buf, ULONGEST offset,
					  LONGEST len);

extern int target_get_min_fast_tracepoint_insn_len ();

extern void target_set_disconnected_tracing (int val);

extern void target_set_circular_trace_buffer (int val);

extern void target_set_trace_buffer_size (LONGEST val);

extern bool target_set_trace_notes (const char *user, const char *notes,
				    const char *stopnotes);

extern bool target_get_tib_address (ptid_t ptid, CORE_ADDR *addr);

extern void target_set_permissions ();

extern bool target_static_tracepoint_marker_at
  (CORE_ADDR addr, static_tracepoint_marker *marker);

extern std::vector<static_tracepoint_marker>
  target_static_tracepoint_markers_by_strid (const char *marker_id);

extern traceframe_info_up target_traceframe_info ();

extern bool target_use_agent (bool use);

extern bool target_can_use_agent ();

extern bool target_augmented_libraries_svr4_read ();

extern bool target_supports_memory_tagging ();

extern bool target_fetch_memtags (CORE_ADDR address, size_t len,
				  gdb::byte_vector &tags, int type);

extern bool target_store_memtags (CORE_ADDR address, size_t len,
				  const gdb::byte_vector &tags, int type);

/* Command logging facility.  */

extern void target_log_command (const char *p);

extern int target_core_of_thread (ptid_t ptid);

/* See to_get_unwinder in struct target_ops.  */
extern const struct frame_unwind *target_get_unwinder (void);

/* See to_get_tailcall_unwinder in struct target_ops.  */
extern const struct frame_unwind *target_get_tailcall_unwinder (void);

/* This implements basic memory verification, reading target memory
   and performing the comparison here (as opposed to accelerated
   verification making use of the qCRC packet, for example).  */

extern int simple_verify_memory (struct target_ops* ops,
				 const gdb_byte *data,
				 CORE_ADDR memaddr, ULONGEST size);

/* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
   the contents of [DATA,DATA+SIZE).  Returns 1 if there's a match, 0
   if there's a mismatch, and -1 if an error is encountered while
   reading memory.  Throws an error if the functionality is found not
   to be supported by the current target.  */
int target_verify_memory (const gdb_byte *data,
			  CORE_ADDR memaddr, ULONGEST size);

/* Routines for maintenance of the target structures...

   add_target:   Add a target to the list of all possible targets.
   This only makes sense for targets that should be activated using
   the "target TARGET_NAME ..." command.

   push_target:  Make this target the top of the stack of currently used
   targets, within its particular stratum of the stack.  Result
   is 0 if now atop the stack, nonzero if not on top (maybe
   should warn user).

   unpush_target: Remove this from the stack of currently used targets,
   no matter where it is on the list.  Returns 0 if no
   change, 1 if removed from stack.  */

/* Type of callback called when the user activates a target with
   "target TARGET_NAME".  The callback routine takes the rest of the
   parameters from the command, and (if successful) pushes a new
   target onto the stack.  */
typedef void target_open_ftype (const char *args, int from_tty);

/* Add the target described by INFO to the list of possible targets
   and add a new command 'target $(INFO->shortname)'.  Set COMPLETER
   as the command's completer if not NULL.  */

extern void add_target (const target_info &info,
			target_open_ftype *func,
			completer_ftype *completer = NULL);

/* Adds a command ALIAS for the target described by INFO and marks it
   deprecated.  This is useful for maintaining backwards compatibility
   when renaming targets.  */

extern void add_deprecated_target_alias (const target_info &info,
					 const char *alias);

/* A unique_ptr helper to unpush a target.  */

struct target_unpusher
{
  void operator() (struct target_ops *ops) const;
};

/* A unique_ptr that unpushes a target on destruction.  */

typedef std::unique_ptr<struct target_ops, target_unpusher> target_unpush_up;

extern void target_pre_inferior (int);

extern void target_preopen (int);

/* Does whatever cleanup is required to get rid of all pushed targets.  */
extern void pop_all_targets (void);

/* Like pop_all_targets, but pops only targets whose stratum is at or
   above STRATUM.  */
extern void pop_all_targets_at_and_above (enum strata stratum);

/* Like pop_all_targets, but pops only targets whose stratum is
   strictly above ABOVE_STRATUM.  */
extern void pop_all_targets_above (enum strata above_stratum);

extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
					       CORE_ADDR offset);

/* Return the "section" containing the specified address.  */
const struct target_section *target_section_by_addr (struct target_ops *target,
						     CORE_ADDR addr);

/* Return the target section table this target (or the targets
   beneath) currently manipulate.  */

extern const target_section_table *target_get_section_table
  (struct target_ops *target);

/* Default implementation of get_section_table for dummy_target.  */

extern const target_section_table *default_get_section_table ();

/* From mem-break.c */

extern int memory_remove_breakpoint (struct target_ops *,
				     struct gdbarch *, struct bp_target_info *,
				     enum remove_bp_reason);

extern int memory_insert_breakpoint (struct target_ops *,
				     struct gdbarch *, struct bp_target_info *);

/* Convenience template use to add memory breakpoints support to a
   target.  */

template <typename BaseTarget>
struct memory_breakpoint_target : public BaseTarget
{
  int insert_breakpoint (struct gdbarch *gdbarch,
			 struct bp_target_info *bp_tgt) override
  { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }

  int remove_breakpoint (struct gdbarch *gdbarch,
			 struct bp_target_info *bp_tgt,
			 enum remove_bp_reason reason) override
  { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
};

/* Check whether the memory at the breakpoint's placed address still
   contains the expected breakpoint instruction.  */

extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
				       struct bp_target_info *bp_tgt);

extern int default_memory_remove_breakpoint (struct gdbarch *,
					     struct bp_target_info *);

extern int default_memory_insert_breakpoint (struct gdbarch *,
					     struct bp_target_info *);


/* From target.c */

extern void initialize_targets (void);

extern void noprocess (void) ATTRIBUTE_NORETURN;

extern void target_require_runnable (void);

/* Find the target at STRATUM.  If no target is at that stratum,
   return NULL.  */

struct target_ops *find_target_at (enum strata stratum);

/* Read OS data object of type TYPE from the target, and return it in XML
   format.  The return value follows the same rules as target_read_stralloc.  */

extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);

/* Stuff that should be shared among the various remote targets.  */


/* Timeout limit for response from target.  */
extern int remote_timeout;



/* Set the show memory breakpoints mode to show, and return a
   scoped_restore to restore it back to the current value.  */
extern scoped_restore_tmpl<int>
    make_scoped_restore_show_memory_breakpoints (int show);

extern bool may_write_registers;
extern bool may_write_memory;
extern bool may_insert_breakpoints;
extern bool may_insert_tracepoints;
extern bool may_insert_fast_tracepoints;
extern bool may_stop;

extern void update_target_permissions (void);


/* Imported from machine dependent code.  */

/* See to_enable_btrace in struct target_ops.  */
extern struct btrace_target_info *
  target_enable_btrace (ptid_t ptid, const struct btrace_config *);

/* See to_disable_btrace in struct target_ops.  */
extern void target_disable_btrace (struct btrace_target_info *btinfo);

/* See to_teardown_btrace in struct target_ops.  */
extern void target_teardown_btrace (struct btrace_target_info *btinfo);

/* See to_read_btrace in struct target_ops.  */
extern enum btrace_error target_read_btrace (struct btrace_data *,
					     struct btrace_target_info *,
					     enum btrace_read_type);

/* See to_btrace_conf in struct target_ops.  */
extern const struct btrace_config *
  target_btrace_conf (const struct btrace_target_info *);

/* See to_stop_recording in struct target_ops.  */
extern void target_stop_recording (void);

/* See to_save_record in struct target_ops.  */
extern void target_save_record (const char *filename);

/* Query if the target supports deleting the execution log.  */
extern int target_supports_delete_record (void);

/* See to_delete_record in struct target_ops.  */
extern void target_delete_record (void);

/* See to_record_method.  */
extern enum record_method target_record_method (ptid_t ptid);

/* See to_record_is_replaying in struct target_ops.  */
extern int target_record_is_replaying (ptid_t ptid);

/* See to_record_will_replay in struct target_ops.  */
extern int target_record_will_replay (ptid_t ptid, int dir);

/* See to_record_stop_replaying in struct target_ops.  */
extern void target_record_stop_replaying (void);

/* See to_goto_record_begin in struct target_ops.  */
extern void target_goto_record_begin (void);

/* See to_goto_record_end in struct target_ops.  */
extern void target_goto_record_end (void);

/* See to_goto_record in struct target_ops.  */
extern void target_goto_record (ULONGEST insn);

/* See to_insn_history.  */
extern void target_insn_history (int size, gdb_disassembly_flags flags);

/* See to_insn_history_from.  */
extern void target_insn_history_from (ULONGEST from, int size,
				      gdb_disassembly_flags flags);

/* See to_insn_history_range.  */
extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
				       gdb_disassembly_flags flags);

/* See to_call_history.  */
extern void target_call_history (int size, record_print_flags flags);

/* See to_call_history_from.  */
extern void target_call_history_from (ULONGEST begin, int size,
				      record_print_flags flags);

/* See to_call_history_range.  */
extern void target_call_history_range (ULONGEST begin, ULONGEST end,
				       record_print_flags flags);

/* See to_prepare_to_generate_core.  */
extern void target_prepare_to_generate_core (void);

/* See to_done_generating_core.  */
extern void target_done_generating_core (void);

#endif /* !defined (TARGET_H) */