1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
|
/* Target-dependent code for the S12Z, for the GDB.
Copyright (C) 2018-2019 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* Much of this file is shamelessly copied from or1k-tdep.c and others. */
#include "defs.h"
#include "arch-utils.h"
#include "dwarf2-frame.h"
#include "common/errors.h"
#include "frame-unwind.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "inferior.h"
#include "opcode/s12z.h"
#include "trad-frame.h"
#include "remote.h"
/* Two of the registers included in S12Z_N_REGISTERS are
the CCH and CCL "registers" which are just views into
the CCW register. */
#define N_PHYSICAL_REGISTERS (S12Z_N_REGISTERS - 2)
/* A permutation of all the physical registers. Indexing this array
with an integer from gdb's internal representation will return the
register enum. */
static const int reg_perm[N_PHYSICAL_REGISTERS] =
{
REG_D0,
REG_D1,
REG_D2,
REG_D3,
REG_D4,
REG_D5,
REG_D6,
REG_D7,
REG_X,
REG_Y,
REG_S,
REG_P,
REG_CCW
};
/* The inverse of the above permutation. Indexing this
array with a register enum (e.g. REG_D2) will return the register
number in gdb's internal representation. */
static const int inv_reg_perm[N_PHYSICAL_REGISTERS] =
{
2, 3, 4, 5, /* d2, d3, d4, d5 */
0, 1, /* d0, d1 */
6, 7, /* d6, d7 */
8, 9, 10, 11, 12 /* x, y, s, p, ccw */
};
/* Return the name of the register REGNUM. */
static const char *
s12z_register_name (struct gdbarch *gdbarch, int regnum)
{
/* Registers is declared in opcodes/s12z.h. */
return registers[reg_perm[regnum]].name;
}
static CORE_ADDR
s12z_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
CORE_ADDR start_pc = 0;
if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
{
CORE_ADDR prologue_end = skip_prologue_using_sal (gdbarch, pc);
if (prologue_end != 0)
return prologue_end;
}
warning (_("%s Failed to find end of prologue PC = %08x\n"),
__FUNCTION__, (unsigned int) pc);
return pc;
}
static struct type *
s12z_register_type (struct gdbarch *gdbarch, int reg_nr)
{
switch (registers[reg_perm[reg_nr]].bytes)
{
case 1:
return builtin_type (gdbarch)->builtin_uint8;
case 2:
return builtin_type (gdbarch)->builtin_uint16;
case 3:
return builtin_type (gdbarch)->builtin_uint24;
case 4:
return builtin_type (gdbarch)->builtin_uint32;
default:
return builtin_type (gdbarch)->builtin_uint32;
}
return builtin_type (gdbarch)->builtin_int0;
}
static int
s12z_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
{
switch (num)
{
case 15: return REG_S;
case 7: return REG_X;
case 8: return REG_Y;
case 42: return REG_D0;
case 43: return REG_D1;
case 44: return REG_D2;
case 45: return REG_D3;
case 46: return REG_D4;
case 47: return REG_D5;
case 48: return REG_D6;
case 49: return REG_D7;
}
return -1;
}
/* Support functions for frame handling. */
/* Copy of gdb_buffered_insn_length_fprintf from disasm.c. */
static int ATTRIBUTE_PRINTF (2, 3)
s12z_fprintf_disasm (void *stream, const char *format, ...)
{
return 0;
}
struct disassemble_info
s12z_disassemble_info (struct gdbarch *gdbarch)
{
struct disassemble_info di;
init_disassemble_info (&di, &null_stream, s12z_fprintf_disasm);
di.arch = gdbarch_bfd_arch_info (gdbarch)->arch;
di.mach = gdbarch_bfd_arch_info (gdbarch)->mach;
di.endian = gdbarch_byte_order (gdbarch);
di.read_memory_func = [](bfd_vma memaddr, gdb_byte *myaddr,
unsigned int len, struct disassemble_info *info)
{
return target_read_code (memaddr, myaddr, len);
};
return di;
}
/* Initialize a prologue cache. */
static struct trad_frame_cache *
s12z_frame_cache (struct frame_info *this_frame, void **prologue_cache)
{
struct trad_frame_cache *info;
CORE_ADDR this_sp;
CORE_ADDR this_sp_for_id;
CORE_ADDR start_addr;
CORE_ADDR end_addr;
/* Nothing to do if we already have this info. */
if (NULL != *prologue_cache)
return (struct trad_frame_cache *) *prologue_cache;
/* Get a new prologue cache and populate it with default values. */
info = trad_frame_cache_zalloc (this_frame);
*prologue_cache = info;
/* Find the start address of this function (which is a normal frame, even
if the next frame is the sentinel frame) and the end of its prologue. */
CORE_ADDR this_pc = get_frame_pc (this_frame);
struct gdbarch *gdbarch = get_frame_arch (this_frame);
find_pc_partial_function (this_pc, NULL, &start_addr, NULL);
/* Get the stack pointer if we have one (if there's no process executing
yet we won't have a frame. */
this_sp = (NULL == this_frame) ? 0 :
get_frame_register_unsigned (this_frame, REG_S);
/* Return early if GDB couldn't find the function. */
if (start_addr == 0)
{
warning (_("Couldn't find function including address %s SP is %s\n"),
paddress (gdbarch, this_pc),
paddress (gdbarch, this_sp));
/* JPB: 28-Apr-11. This is a temporary patch, to get round GDB
crashing right at the beginning. Build the frame ID as best we
can. */
trad_frame_set_id (info, frame_id_build (this_sp, this_pc));
return info;
}
/* The default frame base of this frame (for ID purposes only - frame
base is an overloaded term) is its stack pointer. For now we use the
value of the SP register in this frame. However if the PC is in the
prologue of this frame, before the SP has been set up, then the value
will actually be that of the prev frame, and we'll need to adjust it
later. */
trad_frame_set_this_base (info, this_sp);
this_sp_for_id = this_sp;
/* We should only examine code that is in the prologue. This is all code
up to (but not including) end_addr. We should only populate the cache
while the address is up to (but not including) the PC or end_addr,
whichever is first. */
end_addr = s12z_skip_prologue (gdbarch, start_addr);
/* All the following analysis only occurs if we are in the prologue and
have executed the code. Check we have a sane prologue size, and if
zero we are frameless and can give up here. */
if (end_addr < start_addr)
error (_("end addr %s is less than start addr %s"),
paddress (gdbarch, end_addr), paddress (gdbarch, start_addr));
CORE_ADDR addr = start_addr; /* Where we have got to? */
int frame_size = 0;
int saved_frame_size = 0;
while (this_pc > addr)
{
struct disassemble_info di = s12z_disassemble_info (gdbarch);
/* No instruction can be more than 11 bytes long, I think. */
gdb_byte buf[11];
int nb = print_insn_s12z (addr, &di);
gdb_assert (nb <= 11);
if (0 != target_read_code (addr, buf, nb))
memory_error (TARGET_XFER_E_IO, addr);
if (buf[0] == 0x05) /* RTS */
{
frame_size = saved_frame_size;
}
/* Conditional Branches. If any of these are encountered, then
it is likely that a RTS will terminate it. So we need to save
the frame size so it can be restored. */
else if ( (buf[0] == 0x02) /* BRSET */
|| (buf[0] == 0x0B) /* DBcc / TBcc */
|| (buf[0] == 0x03)) /* BRCLR */
{
saved_frame_size = frame_size;
}
else if (buf[0] == 0x04) /* PUL/ PSH .. */
{
bool pull = buf[1] & 0x80;
int stack_adjustment = 0;
if (buf[1] & 0x40)
{
if (buf[1] & 0x01) stack_adjustment += 3; /* Y */
if (buf[1] & 0x02) stack_adjustment += 3; /* X */
if (buf[1] & 0x04) stack_adjustment += 4; /* D7 */
if (buf[1] & 0x08) stack_adjustment += 4; /* D6 */
if (buf[1] & 0x10) stack_adjustment += 2; /* D5 */
if (buf[1] & 0x20) stack_adjustment += 2; /* D4 */
}
else
{
if (buf[1] & 0x01) stack_adjustment += 2; /* D3 */
if (buf[1] & 0x02) stack_adjustment += 2; /* D2 */
if (buf[1] & 0x04) stack_adjustment += 1; /* D1 */
if (buf[1] & 0x08) stack_adjustment += 1; /* D0 */
if (buf[1] & 0x10) stack_adjustment += 1; /* CCL */
if (buf[1] & 0x20) stack_adjustment += 1; /* CCH */
}
if (!pull)
stack_adjustment = -stack_adjustment;
frame_size -= stack_adjustment;
}
else if (buf[0] == 0x0a) /* LEA S, (xxx, S) */
{
if (0x06 == (buf[1] >> 4))
{
int simm = (signed char) (buf[1] & 0x0F);
frame_size -= simm;
}
}
else if (buf[0] == 0x1a) /* LEA S, (S, xxxx) */
{
int simm = (signed char) buf[1];
frame_size -= simm;
}
addr += nb;
}
/* If the PC has not actually got to this point, then the frame
base will be wrong, and we adjust it. */
if (this_pc < addr)
{
/* Only do if executing. */
if (0 != this_sp)
{
this_sp_for_id = this_sp - frame_size;
trad_frame_set_this_base (info, this_sp_for_id);
}
trad_frame_set_reg_value (info, REG_S, this_sp + 3);
trad_frame_set_reg_addr (info, REG_P, this_sp);
}
else
{
gdb_assert (this_sp == this_sp_for_id);
/* The stack pointer of the prev frame is frame_size greater
than the stack pointer of this frame plus one address
size (caused by the JSR or BSR). */
trad_frame_set_reg_value (info, REG_S,
this_sp + frame_size + 3);
trad_frame_set_reg_addr (info, REG_P, this_sp + frame_size);
}
/* Build the frame ID. */
trad_frame_set_id (info, frame_id_build (this_sp_for_id, start_addr));
return info;
}
/* Implement the this_id function for the stub unwinder. */
static void
s12z_frame_this_id (struct frame_info *this_frame,
void **prologue_cache, struct frame_id *this_id)
{
struct trad_frame_cache *info = s12z_frame_cache (this_frame,
prologue_cache);
trad_frame_get_id (info, this_id);
}
/* Implement the prev_register function for the stub unwinder. */
static struct value *
s12z_frame_prev_register (struct frame_info *this_frame,
void **prologue_cache, int regnum)
{
struct trad_frame_cache *info = s12z_frame_cache (this_frame,
prologue_cache);
return trad_frame_get_register (info, this_frame, regnum);
}
/* Data structures for the normal prologue-analysis-based unwinder. */
static const struct frame_unwind s12z_frame_unwind = {
NORMAL_FRAME,
default_frame_unwind_stop_reason,
s12z_frame_this_id,
s12z_frame_prev_register,
NULL,
default_frame_sniffer,
NULL,
};
constexpr gdb_byte s12z_break_insn[] = {0x00};
typedef BP_MANIPULATION (s12z_break_insn) s12z_breakpoint;
struct gdbarch_tdep
{
};
/* A vector of human readable characters representing the
bits in the CCW register. Unused bits are represented as '-'.
Lowest significant bit comes first. */
static const char ccw_bits[] =
{
'C', /* Carry */
'V', /* Two's Complement Overflow */
'Z', /* Zero */
'N', /* Negative */
'I', /* Interrupt */
'-',
'X', /* Non-Maskable Interrupt */
'S', /* STOP Disable */
'0', /* Interrupt priority level */
'0', /* ditto */
'0', /* ditto */
'-',
'-',
'-',
'-',
'U' /* User/Supervisor State. */
};
/* Print a human readable representation of the CCW register.
For example: "u----000SX-Inzvc" corresponds to the value
0xD0. */
static void
s12z_print_ccw_info (struct gdbarch *gdbarch,
struct ui_file *file,
struct frame_info *frame,
int reg)
{
struct value *v = value_of_register (reg, frame);
const char *name = gdbarch_register_name (gdbarch, reg);
uint32_t ccw = value_as_long (v);
fputs_filtered (name, file);
size_t len = strlen (name);
const int stop_1 = 15;
const int stop_2 = 17;
for (int i = 0; i < stop_1 - len; ++i)
fputc_filtered (' ', file);
fprintf_filtered (file, "0x%04x", ccw);
for (int i = 0; i < stop_2 - len; ++i)
fputc_filtered (' ', file);
for (int b = 15; b >= 0; --b)
{
if (ccw & (0x1u << b))
{
if (ccw_bits[b] == 0)
fputc_filtered ('1', file);
else
fputc_filtered (ccw_bits[b], file);
}
else
fputc_filtered (tolower (ccw_bits[b]), file);
}
fputc_filtered ('\n', file);
}
static void
s12z_print_registers_info (struct gdbarch *gdbarch,
struct ui_file *file,
struct frame_info *frame,
int regnum, int print_all)
{
const int numregs = (gdbarch_num_regs (gdbarch)
+ gdbarch_num_pseudo_regs (gdbarch));
if (regnum == -1)
{
for (int reg = 0; reg < numregs; reg++)
{
if (REG_CCW == reg_perm[reg])
{
s12z_print_ccw_info (gdbarch, file, frame, reg);
continue;
}
default_print_registers_info (gdbarch, file, frame, reg, print_all);
}
}
else if (REG_CCW == reg_perm[regnum])
s12z_print_ccw_info (gdbarch, file, frame, regnum);
else
default_print_registers_info (gdbarch, file, frame, regnum, print_all);
}
static void
s12z_extract_return_value (struct type *type, struct regcache *regcache,
void *valbuf)
{
int reg = -1;
switch (TYPE_LENGTH (type))
{
case 0: /* Nothing to do */
return;
case 1:
reg = REG_D0;
break;
case 2:
reg = REG_D2;
break;
case 3:
reg = REG_X;
break;
case 4:
reg = REG_D6;
break;
default:
error (_("bad size for return value"));
return;
}
regcache->cooked_read (inv_reg_perm[reg], (gdb_byte *) valbuf);
}
static enum return_value_convention
s12z_return_value (struct gdbarch *gdbarch, struct value *function,
struct type *type, struct regcache *regcache,
gdb_byte *readbuf, const gdb_byte *writebuf)
{
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION
|| TYPE_CODE (type) == TYPE_CODE_ARRAY
|| TYPE_LENGTH (type) > 4)
return RETURN_VALUE_STRUCT_CONVENTION;
if (readbuf)
s12z_extract_return_value (type, regcache, readbuf);
return RETURN_VALUE_REGISTER_CONVENTION;
}
static void
show_bdccsr_command (const char *args, int from_tty)
{
struct string_file output;
target_rcmd ("bdccsr", &output);
printf_unfiltered ("The current BDCCSR value is %s\n", output.string().c_str());
}
static struct gdbarch *
s12z_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
struct gdbarch_tdep *tdep = XNEW (struct gdbarch_tdep);
struct gdbarch *gdbarch = gdbarch_alloc (&info, tdep);
add_cmd ("bdccsr", class_support, show_bdccsr_command,
_("Show the current value of the microcontroller's BDCCSR."),
&maintenanceinfolist);
/* Target data types. */
set_gdbarch_short_bit (gdbarch, 16);
set_gdbarch_int_bit (gdbarch, 16);
set_gdbarch_long_bit (gdbarch, 32);
set_gdbarch_long_long_bit (gdbarch, 32);
set_gdbarch_ptr_bit (gdbarch, 24);
set_gdbarch_addr_bit (gdbarch, 24);
set_gdbarch_char_signed (gdbarch, 0);
set_gdbarch_ps_regnum (gdbarch, REG_CCW);
set_gdbarch_pc_regnum (gdbarch, REG_P);
set_gdbarch_sp_regnum (gdbarch, REG_S);
set_gdbarch_print_registers_info (gdbarch, s12z_print_registers_info);
set_gdbarch_breakpoint_kind_from_pc (gdbarch,
s12z_breakpoint::kind_from_pc);
set_gdbarch_sw_breakpoint_from_kind (gdbarch,
s12z_breakpoint::bp_from_kind);
set_gdbarch_num_regs (gdbarch, N_PHYSICAL_REGISTERS);
set_gdbarch_register_name (gdbarch, s12z_register_name);
set_gdbarch_skip_prologue (gdbarch, s12z_skip_prologue);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s12z_dwarf_reg_to_regnum);
set_gdbarch_register_type (gdbarch, s12z_register_type);
frame_unwind_append_unwinder (gdbarch, &s12z_frame_unwind);
/* Currently, the only known producer for this archtecture, produces buggy
dwarf CFI. So don't append a dwarf unwinder until the situation is
better understood. */
set_gdbarch_return_value (gdbarch, s12z_return_value);
return gdbarch;
}
void
_initialize_s12z_tdep (void)
{
gdbarch_register (bfd_arch_s12z, s12z_gdbarch_init, NULL);
}
|