1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
|
/* Target-dependent code for GDB, the GNU debugger.
Copyright (C) 1986-2023 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "infrun.h"
#include "symtab.h"
#include "target.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "objfiles.h"
#include "arch-utils.h"
#include "regcache.h"
#include "regset.h"
#include "target-float.h"
#include "value.h"
#include "parser-defs.h"
#include "osabi.h"
#include "infcall.h"
#include "sim-regno.h"
#include "sim/sim-ppc.h"
#include "reggroups.h"
#include "dwarf2/frame.h"
#include "target-descriptions.h"
#include "user-regs.h"
#include "record-full.h"
#include "auxv.h"
#include "coff/internal.h" /* for libcoff.h */
#include "libcoff.h" /* for xcoff_data */
#include "coff/xcoff.h"
#include "libxcoff.h"
#include "elf-bfd.h"
#include "elf/ppc.h"
#include "elf/ppc64.h"
#include "solib-svr4.h"
#include "ppc-tdep.h"
#include "ppc-ravenscar-thread.h"
#include "dis-asm.h"
#include "trad-frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "ax.h"
#include "ax-gdb.h"
#include <algorithm>
#include "features/rs6000/powerpc-32.c"
#include "features/rs6000/powerpc-altivec32.c"
#include "features/rs6000/powerpc-vsx32.c"
#include "features/rs6000/powerpc-403.c"
#include "features/rs6000/powerpc-403gc.c"
#include "features/rs6000/powerpc-405.c"
#include "features/rs6000/powerpc-505.c"
#include "features/rs6000/powerpc-601.c"
#include "features/rs6000/powerpc-602.c"
#include "features/rs6000/powerpc-603.c"
#include "features/rs6000/powerpc-604.c"
#include "features/rs6000/powerpc-64.c"
#include "features/rs6000/powerpc-altivec64.c"
#include "features/rs6000/powerpc-vsx64.c"
#include "features/rs6000/powerpc-7400.c"
#include "features/rs6000/powerpc-750.c"
#include "features/rs6000/powerpc-860.c"
#include "features/rs6000/powerpc-e500.c"
#include "features/rs6000/rs6000.c"
/* Determine if regnum is an SPE pseudo-register. */
#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
&& (regnum) >= (tdep)->ppc_ev0_regnum \
&& (regnum) < (tdep)->ppc_ev0_regnum + 32)
/* Determine if regnum is a decimal float pseudo-register. */
#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
&& (regnum) >= (tdep)->ppc_dl0_regnum \
&& (regnum) < (tdep)->ppc_dl0_regnum + 16)
/* Determine if regnum is a "vX" alias for the raw "vrX" vector
registers. */
#define IS_V_ALIAS_PSEUDOREG(tdep, regnum) (\
(tdep)->ppc_v0_alias_regnum >= 0 \
&& (regnum) >= (tdep)->ppc_v0_alias_regnum \
&& (regnum) < (tdep)->ppc_v0_alias_regnum + ppc_num_vrs)
/* Determine if regnum is a POWER7 VSX register. */
#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
&& (regnum) >= (tdep)->ppc_vsr0_regnum \
&& (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
/* Determine if regnum is a POWER7 Extended FP register. */
#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
&& (regnum) >= (tdep)->ppc_efpr0_regnum \
&& (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
/* Determine if regnum is a checkpointed decimal float
pseudo-register. */
#define IS_CDFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cdl0_regnum >= 0 \
&& (regnum) >= (tdep)->ppc_cdl0_regnum \
&& (regnum) < (tdep)->ppc_cdl0_regnum + 16)
/* Determine if regnum is a Checkpointed POWER7 VSX register. */
#define IS_CVSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cvsr0_regnum >= 0 \
&& (regnum) >= (tdep)->ppc_cvsr0_regnum \
&& (regnum) < (tdep)->ppc_cvsr0_regnum + ppc_num_vsrs)
/* Determine if regnum is a Checkpointed POWER7 Extended FP register. */
#define IS_CEFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cefpr0_regnum >= 0 \
&& (regnum) >= (tdep)->ppc_cefpr0_regnum \
&& (regnum) < (tdep)->ppc_cefpr0_regnum + ppc_num_efprs)
/* Holds the current set of options to be passed to the disassembler. */
static char *powerpc_disassembler_options;
/* The list of available "set powerpc ..." and "show powerpc ..."
commands. */
static struct cmd_list_element *setpowerpccmdlist = NULL;
static struct cmd_list_element *showpowerpccmdlist = NULL;
static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
/* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
static const char *const powerpc_vector_strings[] =
{
"auto",
"generic",
"altivec",
"spe",
NULL
};
/* A variable that can be configured by the user. */
static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
static const char *powerpc_vector_abi_string = "auto";
/* PowerPC-related per-inferior data. */
static const registry<inferior>::key<ppc_inferior_data> ppc_inferior_data_key;
/* Get the per-inferior PowerPC data for INF. */
ppc_inferior_data *
get_ppc_per_inferior (inferior *inf)
{
ppc_inferior_data *per_inf = ppc_inferior_data_key.get (inf);
if (per_inf == nullptr)
per_inf = ppc_inferior_data_key.emplace (inf);
return per_inf;
}
/* To be used by skip_prologue. */
struct rs6000_framedata
{
int offset; /* total size of frame --- the distance
by which we decrement sp to allocate
the frame */
int saved_gpr; /* smallest # of saved gpr */
unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
int saved_fpr; /* smallest # of saved fpr */
int saved_vr; /* smallest # of saved vr */
int saved_ev; /* smallest # of saved ev */
int alloca_reg; /* alloca register number (frame ptr) */
char frameless; /* true if frameless functions. */
char nosavedpc; /* true if pc not saved. */
char used_bl; /* true if link register clobbered */
int gpr_offset; /* offset of saved gprs from prev sp */
int fpr_offset; /* offset of saved fprs from prev sp */
int vr_offset; /* offset of saved vrs from prev sp */
int ev_offset; /* offset of saved evs from prev sp */
int lr_offset; /* offset of saved lr */
int lr_register; /* register of saved lr, if trustworthy */
int cr_offset; /* offset of saved cr */
int vrsave_offset; /* offset of saved vrsave register */
};
/* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
int
vsx_register_p (struct gdbarch *gdbarch, int regno)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
if (tdep->ppc_vsr0_regnum < 0)
return 0;
else
return (regno >= tdep->ppc_vsr0_upper_regnum && regno
<= tdep->ppc_vsr0_upper_regnum + 31);
}
/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
int
altivec_register_p (struct gdbarch *gdbarch, int regno)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
return 0;
else
return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
}
/* Return true if REGNO is an SPE register, false otherwise. */
int
spe_register_p (struct gdbarch *gdbarch, int regno)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
/* Is it a reference to EV0 -- EV31, and do we have those? */
if (IS_SPE_PSEUDOREG (tdep, regno))
return 1;
/* Is it a reference to one of the raw upper GPR halves? */
if (tdep->ppc_ev0_upper_regnum >= 0
&& tdep->ppc_ev0_upper_regnum <= regno
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
return 1;
/* Is it a reference to the 64-bit accumulator, and do we have that? */
if (tdep->ppc_acc_regnum >= 0
&& tdep->ppc_acc_regnum == regno)
return 1;
/* Is it a reference to the SPE floating-point status and control register,
and do we have that? */
if (tdep->ppc_spefscr_regnum >= 0
&& tdep->ppc_spefscr_regnum == regno)
return 1;
return 0;
}
/* Return non-zero if the architecture described by GDBARCH has
floating-point registers (f0 --- f31 and fpscr). */
int
ppc_floating_point_unit_p (struct gdbarch *gdbarch)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
return (tdep->ppc_fp0_regnum >= 0
&& tdep->ppc_fpscr_regnum >= 0);
}
/* Return non-zero if the architecture described by GDBARCH has
Altivec registers (vr0 --- vr31, vrsave and vscr). */
int
ppc_altivec_support_p (struct gdbarch *gdbarch)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
return (tdep->ppc_vr0_regnum >= 0
&& tdep->ppc_vrsave_regnum >= 0);
}
/* Check that TABLE[GDB_REGNO] is not already initialized, and then
set it to SIM_REGNO.
This is a helper function for init_sim_regno_table, constructing
the table mapping GDB register numbers to sim register numbers; we
initialize every element in that table to -1 before we start
filling it in. */
static void
set_sim_regno (int *table, int gdb_regno, int sim_regno)
{
/* Make sure we don't try to assign any given GDB register a sim
register number more than once. */
gdb_assert (table[gdb_regno] == -1);
table[gdb_regno] = sim_regno;
}
/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
numbers to simulator register numbers, based on the values placed
in the ARCH->tdep->ppc_foo_regnum members. */
static void
init_sim_regno_table (struct gdbarch *arch)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (arch);
int total_regs = gdbarch_num_regs (arch);
int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
int i;
static const char *const segment_regs[] = {
"sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
"sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
};
/* Presume that all registers not explicitly mentioned below are
unavailable from the sim. */
for (i = 0; i < total_regs; i++)
sim_regno[i] = -1;
/* General-purpose registers. */
for (i = 0; i < ppc_num_gprs; i++)
set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
/* Floating-point registers. */
if (tdep->ppc_fp0_regnum >= 0)
for (i = 0; i < ppc_num_fprs; i++)
set_sim_regno (sim_regno,
tdep->ppc_fp0_regnum + i,
sim_ppc_f0_regnum + i);
if (tdep->ppc_fpscr_regnum >= 0)
set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
/* Segment registers. */
for (i = 0; i < ppc_num_srs; i++)
{
int gdb_regno;
gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
if (gdb_regno >= 0)
set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
}
/* Altivec registers. */
if (tdep->ppc_vr0_regnum >= 0)
{
for (i = 0; i < ppc_num_vrs; i++)
set_sim_regno (sim_regno,
tdep->ppc_vr0_regnum + i,
sim_ppc_vr0_regnum + i);
/* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
we can treat this more like the other cases. */
set_sim_regno (sim_regno,
tdep->ppc_vr0_regnum + ppc_num_vrs,
sim_ppc_vscr_regnum);
}
/* vsave is a special-purpose register, so the code below handles it. */
/* SPE APU (E500) registers. */
if (tdep->ppc_ev0_upper_regnum >= 0)
for (i = 0; i < ppc_num_gprs; i++)
set_sim_regno (sim_regno,
tdep->ppc_ev0_upper_regnum + i,
sim_ppc_rh0_regnum + i);
if (tdep->ppc_acc_regnum >= 0)
set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
/* spefscr is a special-purpose register, so the code below handles it. */
#ifdef WITH_PPC_SIM
/* Now handle all special-purpose registers. Verify that they
haven't mistakenly been assigned numbers by any of the above
code. */
for (i = 0; i < sim_ppc_num_sprs; i++)
{
const char *spr_name = sim_spr_register_name (i);
int gdb_regno = -1;
if (spr_name != NULL)
gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
if (gdb_regno != -1)
set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
}
#endif
/* Drop the initialized array into place. */
tdep->sim_regno = sim_regno;
}
/* Given a GDB register number REG, return the corresponding SIM
register number. */
static int
rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int sim_regno;
if (tdep->sim_regno == NULL)
init_sim_regno_table (gdbarch);
gdb_assert (0 <= reg && reg <= gdbarch_num_cooked_regs (gdbarch));
sim_regno = tdep->sim_regno[reg];
if (sim_regno >= 0)
return sim_regno;
else
return LEGACY_SIM_REGNO_IGNORE;
}
/* Register set support functions. */
/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
Write the register to REGCACHE. */
void
ppc_supply_reg (struct regcache *regcache, int regnum,
const gdb_byte *regs, size_t offset, int regsize)
{
if (regnum != -1 && offset != -1)
{
if (regsize > 4)
{
struct gdbarch *gdbarch = regcache->arch ();
int gdb_regsize = register_size (gdbarch, regnum);
if (gdb_regsize < regsize
&& gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
offset += regsize - gdb_regsize;
}
regcache->raw_supply (regnum, regs + offset);
}
}
/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
in a field REGSIZE wide. Zero pad as necessary. */
void
ppc_collect_reg (const struct regcache *regcache, int regnum,
gdb_byte *regs, size_t offset, int regsize)
{
if (regnum != -1 && offset != -1)
{
if (regsize > 4)
{
struct gdbarch *gdbarch = regcache->arch ();
int gdb_regsize = register_size (gdbarch, regnum);
if (gdb_regsize < regsize)
{
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
{
memset (regs + offset, 0, regsize - gdb_regsize);
offset += regsize - gdb_regsize;
}
else
memset (regs + offset + regsize - gdb_regsize, 0,
regsize - gdb_regsize);
}
}
regcache->raw_collect (regnum, regs + offset);
}
}
static int
ppc_greg_offset (struct gdbarch *gdbarch,
ppc_gdbarch_tdep *tdep,
const struct ppc_reg_offsets *offsets,
int regnum,
int *regsize)
{
*regsize = offsets->gpr_size;
if (regnum >= tdep->ppc_gp0_regnum
&& regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
return (offsets->r0_offset
+ (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
if (regnum == gdbarch_pc_regnum (gdbarch))
return offsets->pc_offset;
if (regnum == tdep->ppc_ps_regnum)
return offsets->ps_offset;
if (regnum == tdep->ppc_lr_regnum)
return offsets->lr_offset;
if (regnum == tdep->ppc_ctr_regnum)
return offsets->ctr_offset;
*regsize = offsets->xr_size;
if (regnum == tdep->ppc_cr_regnum)
return offsets->cr_offset;
if (regnum == tdep->ppc_xer_regnum)
return offsets->xer_offset;
if (regnum == tdep->ppc_mq_regnum)
return offsets->mq_offset;
return -1;
}
static int
ppc_fpreg_offset (ppc_gdbarch_tdep *tdep,
const struct ppc_reg_offsets *offsets,
int regnum)
{
if (regnum >= tdep->ppc_fp0_regnum
&& regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
if (regnum == tdep->ppc_fpscr_regnum)
return offsets->fpscr_offset;
return -1;
}
/* Supply register REGNUM in the general-purpose register set REGSET
from the buffer specified by GREGS and LEN to register cache
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
void
ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
int regnum, const void *gregs, size_t len)
{
struct gdbarch *gdbarch = regcache->arch ();
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
const struct ppc_reg_offsets *offsets
= (const struct ppc_reg_offsets *) regset->regmap;
size_t offset;
int regsize;
if (regnum == -1)
{
int i;
int gpr_size = offsets->gpr_size;
for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
i < tdep->ppc_gp0_regnum + ppc_num_gprs;
i++, offset += gpr_size)
ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
gpr_size);
ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
(const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
(const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
(const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
(const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
(const gdb_byte *) gregs, offsets->cr_offset,
offsets->xr_size);
ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
(const gdb_byte *) gregs, offsets->xer_offset,
offsets->xr_size);
ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
(const gdb_byte *) gregs, offsets->mq_offset,
offsets->xr_size);
return;
}
offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size);
ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
}
/* Supply register REGNUM in the floating-point register set REGSET
from the buffer specified by FPREGS and LEN to register cache
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
void
ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
int regnum, const void *fpregs, size_t len)
{
struct gdbarch *gdbarch = regcache->arch ();
const struct ppc_reg_offsets *offsets;
size_t offset;
if (!ppc_floating_point_unit_p (gdbarch))
return;
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
offsets = (const struct ppc_reg_offsets *) regset->regmap;
if (regnum == -1)
{
int i;
for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
i < tdep->ppc_fp0_regnum + ppc_num_fprs;
i++, offset += 8)
ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
(const gdb_byte *) fpregs, offsets->fpscr_offset,
offsets->fpscr_size);
return;
}
offset = ppc_fpreg_offset (tdep, offsets, regnum);
ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
}
/* Collect register REGNUM in the general-purpose register set
REGSET from register cache REGCACHE into the buffer specified by
GREGS and LEN. If REGNUM is -1, do this for all registers in
REGSET. */
void
ppc_collect_gregset (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *gregs, size_t len)
{
struct gdbarch *gdbarch = regcache->arch ();
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
const struct ppc_reg_offsets *offsets
= (const struct ppc_reg_offsets *) regset->regmap;
size_t offset;
int regsize;
if (regnum == -1)
{
int i;
int gpr_size = offsets->gpr_size;
for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
i < tdep->ppc_gp0_regnum + ppc_num_gprs;
i++, offset += gpr_size)
ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
(gdb_byte *) gregs, offsets->pc_offset, gpr_size);
ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
(gdb_byte *) gregs, offsets->ps_offset, gpr_size);
ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
(gdb_byte *) gregs, offsets->lr_offset, gpr_size);
ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
(gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
(gdb_byte *) gregs, offsets->cr_offset,
offsets->xr_size);
ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
(gdb_byte *) gregs, offsets->xer_offset,
offsets->xr_size);
ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
(gdb_byte *) gregs, offsets->mq_offset,
offsets->xr_size);
return;
}
offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size);
ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
}
/* Collect register REGNUM in the floating-point register set
REGSET from register cache REGCACHE into the buffer specified by
FPREGS and LEN. If REGNUM is -1, do this for all registers in
REGSET. */
void
ppc_collect_fpregset (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *fpregs, size_t len)
{
struct gdbarch *gdbarch = regcache->arch ();
const struct ppc_reg_offsets *offsets;
size_t offset;
if (!ppc_floating_point_unit_p (gdbarch))
return;
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
offsets = (const struct ppc_reg_offsets *) regset->regmap;
if (regnum == -1)
{
int i;
for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
i < tdep->ppc_fp0_regnum + ppc_num_fprs;
i++, offset += 8)
ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
(gdb_byte *) fpregs, offsets->fpscr_offset,
offsets->fpscr_size);
return;
}
offset = ppc_fpreg_offset (tdep, offsets, regnum);
ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
}
static int
insn_changes_sp_or_jumps (unsigned long insn)
{
int opcode = (insn >> 26) & 0x03f;
int sd = (insn >> 21) & 0x01f;
int a = (insn >> 16) & 0x01f;
int subcode = (insn >> 1) & 0x3ff;
/* Changes the stack pointer. */
/* NOTE: There are many ways to change the value of a given register.
The ways below are those used when the register is R1, the SP,
in a funtion's epilogue. */
if (opcode == 31 && subcode == 444 && a == 1)
return 1; /* mr R1,Rn */
if (opcode == 14 && sd == 1)
return 1; /* addi R1,Rn,simm */
if (opcode == 58 && sd == 1)
return 1; /* ld R1,ds(Rn) */
/* Transfers control. */
if (opcode == 18)
return 1; /* b */
if (opcode == 16)
return 1; /* bc */
if (opcode == 19 && subcode == 16)
return 1; /* bclr */
if (opcode == 19 && subcode == 528)
return 1; /* bcctr */
return 0;
}
/* Return true if we are in the function's epilogue, i.e. after the
instruction that destroyed the function's stack frame.
1) scan forward from the point of execution:
a) If you find an instruction that modifies the stack pointer
or transfers control (except a return), execution is not in
an epilogue, return.
b) Stop scanning if you find a return instruction or reach the
end of the function or reach the hard limit for the size of
an epilogue.
2) scan backward from the point of execution:
a) If you find an instruction that modifies the stack pointer,
execution *is* in an epilogue, return.
b) Stop scanning if you reach an instruction that transfers
control or the beginning of the function or reach the hard
limit for the size of an epilogue. */
static int
rs6000_in_function_epilogue_frame_p (frame_info_ptr curfrm,
struct gdbarch *gdbarch, CORE_ADDR pc)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bfd_byte insn_buf[PPC_INSN_SIZE];
CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
unsigned long insn;
/* Find the search limits based on function boundaries and hard limit. */
if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
return 0;
epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
if (epilogue_start < func_start) epilogue_start = func_start;
epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
if (epilogue_end > func_end) epilogue_end = func_end;
/* Scan forward until next 'blr'. */
for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
{
if (!safe_frame_unwind_memory (curfrm, scan_pc,
{insn_buf, PPC_INSN_SIZE}))
return 0;
insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
if (insn == 0x4e800020)
break;
/* Assume a bctr is a tail call unless it points strictly within
this function. */
if (insn == 0x4e800420)
{
CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
tdep->ppc_ctr_regnum);
if (ctr > func_start && ctr < func_end)
return 0;
else
break;
}
if (insn_changes_sp_or_jumps (insn))
return 0;
}
/* Scan backward until adjustment to stack pointer (R1). */
for (scan_pc = pc - PPC_INSN_SIZE;
scan_pc >= epilogue_start;
scan_pc -= PPC_INSN_SIZE)
{
if (!safe_frame_unwind_memory (curfrm, scan_pc,
{insn_buf, PPC_INSN_SIZE}))
return 0;
insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
if (insn_changes_sp_or_jumps (insn))
return 1;
}
return 0;
}
/* Implement the stack_frame_destroyed_p gdbarch method. */
static int
rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
return rs6000_in_function_epilogue_frame_p (get_current_frame (),
gdbarch, pc);
}
/* Get the ith function argument for the current function. */
static CORE_ADDR
rs6000_fetch_pointer_argument (frame_info_ptr frame, int argi,
struct type *type)
{
return get_frame_register_unsigned (frame, 3 + argi);
}
/* Sequence of bytes for breakpoint instruction. */
constexpr gdb_byte big_breakpoint[] = { 0x7f, 0xe0, 0x00, 0x08 };
constexpr gdb_byte little_breakpoint[] = { 0x08, 0x00, 0xe0, 0x7f };
typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
rs6000_breakpoint;
/* Instruction masks for displaced stepping. */
#define OP_MASK 0xfc000000
#define BP_MASK 0xFC0007FE
#define B_INSN 0x48000000
#define BC_INSN 0x40000000
#define BXL_INSN 0x4c000000
#define BP_INSN 0x7C000008
/* Instruction masks used during single-stepping of atomic
sequences. */
#define LOAD_AND_RESERVE_MASK 0xfc0007fe
#define LWARX_INSTRUCTION 0x7c000028
#define LDARX_INSTRUCTION 0x7c0000A8
#define LBARX_INSTRUCTION 0x7c000068
#define LHARX_INSTRUCTION 0x7c0000e8
#define LQARX_INSTRUCTION 0x7c000228
#define STORE_CONDITIONAL_MASK 0xfc0007ff
#define STWCX_INSTRUCTION 0x7c00012d
#define STDCX_INSTRUCTION 0x7c0001ad
#define STBCX_INSTRUCTION 0x7c00056d
#define STHCX_INSTRUCTION 0x7c0005ad
#define STQCX_INSTRUCTION 0x7c00016d
/* Instruction masks for single-stepping of addpcis/lnia. */
#define ADDPCIS_INSN 0x4c000004
#define ADDPCIS_INSN_MASK 0xfc00003e
#define ADDPCIS_TARGET_REGISTER 0x03F00000
#define ADDPCIS_INSN_REGSHIFT 21
#define PNOP_MASK 0xfff3ffff
#define PNOP_INSN 0x07000000
#define R_MASK 0x00100000
#define R_ZERO 0x00000000
/* Check if insn is one of the Load And Reserve instructions used for atomic
sequences. */
#define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
|| (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
|| (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
|| (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
|| (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
/* Check if insn is one of the Store Conditional instructions used for atomic
sequences. */
#define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
|| (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
|| (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
|| (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
|| (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
typedef buf_displaced_step_copy_insn_closure
ppc_displaced_step_copy_insn_closure;
/* We can't displaced step atomic sequences. */
static displaced_step_copy_insn_closure_up
ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
CORE_ADDR from, CORE_ADDR to,
struct regcache *regs)
{
size_t len = gdbarch_displaced_step_buffer_length (gdbarch);
gdb_assert (len > PPC_INSN_SIZE);
std::unique_ptr<ppc_displaced_step_copy_insn_closure> closure
(new ppc_displaced_step_copy_insn_closure (len));
gdb_byte *buf = closure->buf.data ();
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
int insn;
len = target_read (current_inferior()->top_target(), TARGET_OBJECT_MEMORY, NULL,
buf, from, len);
if ((ssize_t) len < PPC_INSN_SIZE)
memory_error (TARGET_XFER_E_IO, from);
insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
/* Check for PNOP and for prefixed instructions with R=0. Those
instructions are safe to displace. Prefixed instructions with R=1
will read/write data to/from locations relative to the current PC.
We would not be able to fixup after an instruction has written data
into a displaced location, so decline to displace those instructions. */
if ((insn & OP_MASK) == 1 << 26)
{
if (((insn & PNOP_MASK) != PNOP_INSN)
&& ((insn & R_MASK) != R_ZERO))
{
displaced_debug_printf ("Not displacing prefixed instruction %08x at %s",
insn, paddress (gdbarch, from));
return NULL;
}
}
else
/* Non-prefixed instructions.. */
{
/* Set the instruction length to 4 to match the actual instruction
length. */
len = 4;
}
/* Assume all atomic sequences start with a Load and Reserve instruction. */
if (IS_LOAD_AND_RESERVE_INSN (insn))
{
displaced_debug_printf ("can't displaced step atomic sequence at %s",
paddress (gdbarch, from));
return NULL;
}
write_memory (to, buf, len);
displaced_debug_printf ("copy %s->%s: %s",
paddress (gdbarch, from), paddress (gdbarch, to),
bytes_to_string (buf, len).c_str ());
/* This is a work around for a problem with g++ 4.8. */
return displaced_step_copy_insn_closure_up (closure.release ());
}
/* Fix up the state of registers and memory after having single-stepped
a displaced instruction. */
static void
ppc_displaced_step_fixup (struct gdbarch *gdbarch,
struct displaced_step_copy_insn_closure *closure_,
CORE_ADDR from, CORE_ADDR to,
struct regcache *regs, bool completed_p)
{
/* If the displaced instruction didn't complete successfully then all we
need to do is restore the program counter. */
if (!completed_p)
{
CORE_ADDR pc = regcache_read_pc (regs);
pc = from + (pc - to);
regcache_write_pc (regs, pc);
return;
}
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
/* Our closure is a copy of the instruction. */
ppc_displaced_step_copy_insn_closure *closure
= (ppc_displaced_step_copy_insn_closure *) closure_;
ULONGEST insn = extract_unsigned_integer (closure->buf.data (),
PPC_INSN_SIZE, byte_order);
ULONGEST opcode;
/* Offset for non PC-relative instructions. */
LONGEST offset;
opcode = insn & OP_MASK;
/* Set offset to 8 if this is an 8-byte (prefixed) instruction. */
if ((opcode) == 1 << 26)
offset = 2 * PPC_INSN_SIZE;
else
offset = PPC_INSN_SIZE;
displaced_debug_printf ("(ppc) fixup (%s, %s)",
paddress (gdbarch, from), paddress (gdbarch, to));
/* Handle the addpcis/lnia instruction. */
if ((insn & ADDPCIS_INSN_MASK) == ADDPCIS_INSN)
{
LONGEST displaced_offset;
ULONGEST current_val;
/* Measure the displacement. */
displaced_offset = from - to;
/* Identify the target register that was updated by the instruction. */
int regnum = (insn & ADDPCIS_TARGET_REGISTER) >> ADDPCIS_INSN_REGSHIFT;
/* Read and update the target value. */
regcache_cooked_read_unsigned (regs, regnum , ¤t_val);
displaced_debug_printf ("addpcis target regnum %d was %s now %s",
regnum, paddress (gdbarch, current_val),
paddress (gdbarch, current_val
+ displaced_offset));
regcache_cooked_write_unsigned (regs, regnum,
current_val + displaced_offset);
/* point the PC back at the non-displaced instruction. */
regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
from + offset);
}
/* Handle PC-relative branch instructions. */
else if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
{
ULONGEST current_pc;
/* Read the current PC value after the instruction has been executed
in a displaced location. Calculate the offset to be applied to the
original PC value before the displaced stepping. */
regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
¤t_pc);
offset = current_pc - to;
if (opcode != BXL_INSN)
{
/* Check for AA bit indicating whether this is an absolute
addressing or PC-relative (1: absolute, 0: relative). */
if (!(insn & 0x2))
{
/* PC-relative addressing is being used in the branch. */
displaced_debug_printf ("(ppc) branch instruction: %s",
paddress (gdbarch, insn));
displaced_debug_printf ("(ppc) adjusted PC from %s to %s",
paddress (gdbarch, current_pc),
paddress (gdbarch, from + offset));
regcache_cooked_write_unsigned (regs,
gdbarch_pc_regnum (gdbarch),
from + offset);
}
}
else
{
/* If we're here, it means we have a branch to LR or CTR. If the
branch was taken, the offset is probably greater than 4 (the next
instruction), so it's safe to assume that an offset of 4 means we
did not take the branch. */
if (offset == PPC_INSN_SIZE)
regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
from + PPC_INSN_SIZE);
}
/* Check for LK bit indicating whether we should set the link
register to point to the next instruction
(1: Set, 0: Don't set). */
if (insn & 0x1)
{
/* Link register needs to be set to the next instruction's PC. */
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
regcache_cooked_write_unsigned (regs,
tdep->ppc_lr_regnum,
from + PPC_INSN_SIZE);
displaced_debug_printf ("(ppc) adjusted LR to %s",
paddress (gdbarch, from + PPC_INSN_SIZE));
}
}
/* Check for breakpoints in the inferior. If we've found one, place the PC
right at the breakpoint instruction. */
else if ((insn & BP_MASK) == BP_INSN)
regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
else
{
/* Handle any other instructions that do not fit in the categories
above. */
regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
from + offset);
}
}
/* Implementation of gdbarch_displaced_step_prepare. */
static displaced_step_prepare_status
ppc_displaced_step_prepare (gdbarch *arch, thread_info *thread,
CORE_ADDR &displaced_pc)
{
ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
if (!per_inferior->disp_step_buf.has_value ())
{
/* Figure out where the displaced step buffer is. */
CORE_ADDR disp_step_buf_addr
= displaced_step_at_entry_point (thread->inf->gdbarch);
per_inferior->disp_step_buf.emplace (disp_step_buf_addr);
}
return per_inferior->disp_step_buf->prepare (thread, displaced_pc);
}
/* Implementation of gdbarch_displaced_step_finish. */
static displaced_step_finish_status
ppc_displaced_step_finish (gdbarch *arch, thread_info *thread,
const target_waitstatus &status)
{
ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
gdb_assert (per_inferior->disp_step_buf.has_value ());
return per_inferior->disp_step_buf->finish (arch, thread, status);
}
/* Implementation of gdbarch_displaced_step_restore_all_in_ptid. */
static void
ppc_displaced_step_restore_all_in_ptid (inferior *parent_inf, ptid_t ptid)
{
ppc_inferior_data *per_inferior = ppc_inferior_data_key.get (parent_inf);
if (per_inferior == nullptr
|| !per_inferior->disp_step_buf.has_value ())
return;
per_inferior->disp_step_buf->restore_in_ptid (ptid);
}
/* Always use hardware single-stepping to execute the
displaced instruction. */
static bool
ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch)
{
return true;
}
/* Checks for an atomic sequence of instructions beginning with a
Load And Reserve instruction and ending with a Store Conditional
instruction. If such a sequence is found, attempt to step through it.
A breakpoint is placed at the end of the sequence. */
std::vector<CORE_ADDR>
ppc_deal_with_atomic_sequence (struct regcache *regcache)
{
struct gdbarch *gdbarch = regcache->arch ();
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR pc = regcache_read_pc (regcache);
CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
CORE_ADDR loc = pc;
CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
int insn_count;
int index;
int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
const int atomic_sequence_length = 16; /* Instruction sequence length. */
int bc_insn_count = 0; /* Conditional branch instruction count. */
/* Assume all atomic sequences start with a Load And Reserve instruction. */
if (!IS_LOAD_AND_RESERVE_INSN (insn))
return {};
/* Assume that no atomic sequence is longer than "atomic_sequence_length"
instructions. */
for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
{
if ((insn & OP_MASK) == 1 << 26)
loc += 2 * PPC_INSN_SIZE;
else
loc += PPC_INSN_SIZE;
insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
/* Assume that there is at most one conditional branch in the atomic
sequence. If a conditional branch is found, put a breakpoint in
its destination address. */
if ((insn & OP_MASK) == BC_INSN)
{
int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
int absolute = insn & 2;
if (bc_insn_count >= 1)
return {}; /* More than one conditional branch found, fallback
to the standard single-step code. */
if (absolute)
breaks[1] = immediate;
else
breaks[1] = loc + immediate;
bc_insn_count++;
last_breakpoint++;
}
if (IS_STORE_CONDITIONAL_INSN (insn))
break;
}
/* Assume that the atomic sequence ends with a Store Conditional
instruction. */
if (!IS_STORE_CONDITIONAL_INSN (insn))
return {};
closing_insn = loc;
loc += PPC_INSN_SIZE;
/* Insert a breakpoint right after the end of the atomic sequence. */
breaks[0] = loc;
/* Check for duplicated breakpoints. Check also for a breakpoint
placed (branch instruction's destination) anywhere in sequence. */
if (last_breakpoint
&& (breaks[1] == breaks[0]
|| (breaks[1] >= pc && breaks[1] <= closing_insn)))
last_breakpoint = 0;
std::vector<CORE_ADDR> next_pcs;
for (index = 0; index <= last_breakpoint; index++)
next_pcs.push_back (breaks[index]);
return next_pcs;
}
#define SIGNED_SHORT(x) \
((sizeof (short) == 2) \
? ((int)(short)(x)) \
: ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
/* Limit the number of skipped non-prologue instructions, as the examining
of the prologue is expensive. */
static int max_skip_non_prologue_insns = 10;
/* Return nonzero if the given instruction OP can be part of the prologue
of a function and saves a parameter on the stack. FRAMEP should be
set if one of the previous instructions in the function has set the
Frame Pointer. */
static int
store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
{
/* Move parameters from argument registers to temporary register. */
if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
{
/* Rx must be scratch register r0. */
const int rx_regno = (op >> 16) & 31;
/* Ry: Only r3 - r10 are used for parameter passing. */
const int ry_regno = GET_SRC_REG (op);
if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
{
*r0_contains_arg = 1;
return 1;
}
else
return 0;
}
/* Save a General Purpose Register on stack. */
if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
(op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
{
/* Rx: Only r3 - r10 are used for parameter passing. */
const int rx_regno = GET_SRC_REG (op);
return (rx_regno >= 3 && rx_regno <= 10);
}
/* Save a General Purpose Register on stack via the Frame Pointer. */
if (framep &&
((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
(op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
(op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
{
/* Rx: Usually, only r3 - r10 are used for parameter passing.
However, the compiler sometimes uses r0 to hold an argument. */
const int rx_regno = GET_SRC_REG (op);
return ((rx_regno >= 3 && rx_regno <= 10)
|| (rx_regno == 0 && *r0_contains_arg));
}
if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
{
/* Only f2 - f8 are used for parameter passing. */
const int src_regno = GET_SRC_REG (op);
return (src_regno >= 2 && src_regno <= 8);
}
if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
{
/* Only f2 - f8 are used for parameter passing. */
const int src_regno = GET_SRC_REG (op);
return (src_regno >= 2 && src_regno <= 8);
}
/* Not an insn that saves a parameter on stack. */
return 0;
}
/* Assuming that INSN is a "bl" instruction located at PC, return
nonzero if the destination of the branch is a "blrl" instruction.
This sequence is sometimes found in certain function prologues.
It allows the function to load the LR register with a value that
they can use to access PIC data using PC-relative offsets. */
static int
bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
{
CORE_ADDR dest;
int immediate;
int absolute;
int dest_insn;
absolute = (int) ((insn >> 1) & 1);
immediate = ((insn & ~3) << 6) >> 6;
if (absolute)
dest = immediate;
else
dest = pc + immediate;
dest_insn = read_memory_integer (dest, 4, byte_order);
if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
return 1;
return 0;
}
/* Return true if OP is a stw or std instruction with
register operands RS and RA and any immediate offset.
If WITH_UPDATE is true, also return true if OP is
a stwu or stdu instruction with the same operands.
Return false otherwise.
*/
static bool
store_insn_p (unsigned long op, unsigned long rs,
unsigned long ra, bool with_update)
{
rs = rs << 21;
ra = ra << 16;
if (/* std RS, SIMM(RA) */
((op & 0xffff0003) == (rs | ra | 0xf8000000)) ||
/* stw RS, SIMM(RA) */
((op & 0xffff0000) == (rs | ra | 0x90000000)))
return true;
if (with_update)
{
if (/* stdu RS, SIMM(RA) */
((op & 0xffff0003) == (rs | ra | 0xf8000001)) ||
/* stwu RS, SIMM(RA) */
((op & 0xffff0000) == (rs | ra | 0x94000000)))
return true;
}
return false;
}
/* Masks for decoding a branch-and-link (bl) instruction.
BL_MASK and BL_INSTRUCTION are used in combination with each other.
The former is anded with the opcode in question; if the result of
this masking operation is equal to BL_INSTRUCTION, then the opcode in
question is a ``bl'' instruction.
BL_DISPLACEMENT_MASK is anded with the opcode in order to extract
the branch displacement. */
#define BL_MASK 0xfc000001
#define BL_INSTRUCTION 0x48000001
#define BL_DISPLACEMENT_MASK 0x03fffffc
static unsigned long
rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte buf[4];
unsigned long op;
/* Fetch the instruction and convert it to an integer. */
if (target_read_memory (pc, buf, 4))
return 0;
op = extract_unsigned_integer (buf, 4, byte_order);
return op;
}
/* GCC generates several well-known sequences of instructions at the begining
of each function prologue when compiling with -fstack-check. If one of
such sequences starts at START_PC, then return the address of the
instruction immediately past this sequence. Otherwise, return START_PC. */
static CORE_ADDR
rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
{
CORE_ADDR pc = start_pc;
unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
/* First possible sequence: A small number of probes.
stw 0, -<some immediate>(1)
[repeat this instruction any (small) number of times]. */
if ((op & 0xffff0000) == 0x90010000)
{
while ((op & 0xffff0000) == 0x90010000)
{
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
}
return pc;
}
/* Second sequence: A probing loop.
addi 12,1,-<some immediate>
lis 0,-<some immediate>
[possibly ori 0,0,<some immediate>]
add 0,12,0
cmpw 0,12,0
beq 0,<disp>
addi 12,12,-<some immediate>
stw 0,0(12)
b <disp>
[possibly one last probe: stw 0,<some immediate>(12)]. */
while (1)
{
/* addi 12,1,-<some immediate> */
if ((op & 0xffff0000) != 0x39810000)
break;
/* lis 0,-<some immediate> */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if ((op & 0xffff0000) != 0x3c000000)
break;
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
/* [possibly ori 0,0,<some immediate>] */
if ((op & 0xffff0000) == 0x60000000)
{
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
}
/* add 0,12,0 */
if (op != 0x7c0c0214)
break;
/* cmpw 0,12,0 */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if (op != 0x7c0c0000)
break;
/* beq 0,<disp> */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if ((op & 0xff9f0001) != 0x41820000)
break;
/* addi 12,12,-<some immediate> */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if ((op & 0xffff0000) != 0x398c0000)
break;
/* stw 0,0(12) */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if (op != 0x900c0000)
break;
/* b <disp> */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if ((op & 0xfc000001) != 0x48000000)
break;
/* [possibly one last probe: stw 0,<some immediate>(12)]. */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if ((op & 0xffff0000) == 0x900c0000)
{
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
}
/* We found a valid stack-check sequence, return the new PC. */
return pc;
}
/* Third sequence: No probe; instead, a comparison between the stack size
limit (saved in a run-time global variable) and the current stack
pointer:
addi 0,1,-<some immediate>
lis 12,__gnat_stack_limit@ha
lwz 12,__gnat_stack_limit@l(12)
twllt 0,12
or, with a small variant in the case of a bigger stack frame:
addis 0,1,<some immediate>
addic 0,0,-<some immediate>
lis 12,__gnat_stack_limit@ha
lwz 12,__gnat_stack_limit@l(12)
twllt 0,12
*/
while (1)
{
/* addi 0,1,-<some immediate> */
if ((op & 0xffff0000) != 0x38010000)
{
/* small stack frame variant not recognized; try the
big stack frame variant: */
/* addis 0,1,<some immediate> */
if ((op & 0xffff0000) != 0x3c010000)
break;
/* addic 0,0,-<some immediate> */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if ((op & 0xffff0000) != 0x30000000)
break;
}
/* lis 12,<some immediate> */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if ((op & 0xffff0000) != 0x3d800000)
break;
/* lwz 12,<some immediate>(12) */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if ((op & 0xffff0000) != 0x818c0000)
break;
/* twllt 0,12 */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if ((op & 0xfffffffe) != 0x7c406008)
break;
/* We found a valid stack-check sequence, return the new PC. */
return pc;
}
/* No stack check code in our prologue, return the start_pc. */
return start_pc;
}
/* return pc value after skipping a function prologue and also return
information about a function frame.
in struct rs6000_framedata fdata:
- frameless is TRUE, if function does not have a frame.
- nosavedpc is TRUE, if function does not save %pc value in its frame.
- offset is the initial size of this stack frame --- the amount by
which we decrement the sp to allocate the frame.
- saved_gpr is the number of the first saved gpr.
- saved_fpr is the number of the first saved fpr.
- saved_vr is the number of the first saved vr.
- saved_ev is the number of the first saved ev.
- alloca_reg is the number of the register used for alloca() handling.
Otherwise -1.
- gpr_offset is the offset of the first saved gpr from the previous frame.
- fpr_offset is the offset of the first saved fpr from the previous frame.
- vr_offset is the offset of the first saved vr from the previous frame.
- ev_offset is the offset of the first saved ev from the previous frame.
- lr_offset is the offset of the saved lr
- cr_offset is the offset of the saved cr
- vrsave_offset is the offset of the saved vrsave register. */
static CORE_ADDR
skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
struct rs6000_framedata *fdata)
{
CORE_ADDR orig_pc = pc;
CORE_ADDR last_prologue_pc = pc;
CORE_ADDR li_found_pc = 0;
gdb_byte buf[4];
unsigned long op;
long offset = 0;
long alloca_reg_offset = 0;
long vr_saved_offset = 0;
int lr_reg = -1;
int cr_reg = -1;
int vr_reg = -1;
int ev_reg = -1;
long ev_offset = 0;
int vrsave_reg = -1;
int reg;
int framep = 0;
int minimal_toc_loaded = 0;
int prev_insn_was_prologue_insn = 1;
int num_skip_non_prologue_insns = 0;
int r0_contains_arg = 0;
const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
memset (fdata, 0, sizeof (struct rs6000_framedata));
fdata->saved_gpr = -1;
fdata->saved_fpr = -1;
fdata->saved_vr = -1;
fdata->saved_ev = -1;
fdata->alloca_reg = -1;
fdata->frameless = 1;
fdata->nosavedpc = 1;
fdata->lr_register = -1;
pc = rs6000_skip_stack_check (gdbarch, pc);
if (pc >= lim_pc)
pc = lim_pc;
for (;; pc += 4)
{
/* Sometimes it isn't clear if an instruction is a prologue
instruction or not. When we encounter one of these ambiguous
cases, we'll set prev_insn_was_prologue_insn to 0 (false).
Otherwise, we'll assume that it really is a prologue instruction. */
if (prev_insn_was_prologue_insn)
last_prologue_pc = pc;
/* Stop scanning if we've hit the limit. */
if (pc >= lim_pc)
break;
prev_insn_was_prologue_insn = 1;
/* Fetch the instruction and convert it to an integer. */
if (target_read_memory (pc, buf, 4))
break;
op = extract_unsigned_integer (buf, 4, byte_order);
if ((op & 0xfc1fffff) == 0x7c0802a6)
{ /* mflr Rx */
/* Since shared library / PIC code, which needs to get its
address at runtime, can appear to save more than one link
register vis:
stwu r1,-304(r1)
mflr r3
bl 0xff570d0 (blrl)
stw r30,296(r1)
mflr r30
stw r31,300(r1)
stw r3,308(r1);
...
remember just the first one, but skip over additional
ones. */
if (lr_reg == -1)
lr_reg = (op & 0x03e00000) >> 21;
if (lr_reg == 0)
r0_contains_arg = 0;
continue;
}
else if ((op & 0xfc1fffff) == 0x7c000026)
{ /* mfcr Rx */
cr_reg = (op & 0x03e00000) >> 21;
if (cr_reg == 0)
r0_contains_arg = 0;
continue;
}
else if ((op & 0xfc1f0000) == 0xd8010000)
{ /* stfd Rx,NUM(r1) */
reg = GET_SRC_REG (op);
if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
{
fdata->saved_fpr = reg;
fdata->fpr_offset = SIGNED_SHORT (op) + offset;
}
continue;
}
else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
(((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
(op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
(op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
{
reg = GET_SRC_REG (op);
if ((op & 0xfc1f0000) == 0xbc010000)
fdata->gpr_mask |= ~((1U << reg) - 1);
else
fdata->gpr_mask |= 1U << reg;
if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
{
fdata->saved_gpr = reg;
if ((op & 0xfc1f0003) == 0xf8010000)
op &= ~3UL;
fdata->gpr_offset = SIGNED_SHORT (op) + offset;
}
continue;
}
else if ((op & 0xffff0000) == 0x3c4c0000
|| (op & 0xffff0000) == 0x3c400000
|| (op & 0xffff0000) == 0x38420000)
{
/* . 0: addis 2,12,.TOC.-0b@ha
. addi 2,2,.TOC.-0b@l
or
. lis 2,.TOC.@ha
. addi 2,2,.TOC.@l
used by ELFv2 global entry points to set up r2. */
continue;
}
else if (op == 0x60000000)
{
/* nop */
/* Allow nops in the prologue, but do not consider them to
be part of the prologue unless followed by other prologue
instructions. */
prev_insn_was_prologue_insn = 0;
continue;
}
else if ((op & 0xffff0000) == 0x3c000000)
{ /* addis 0,0,NUM, used for >= 32k frames */
fdata->offset = (op & 0x0000ffff) << 16;
fdata->frameless = 0;
r0_contains_arg = 0;
continue;
}
else if ((op & 0xffff0000) == 0x60000000)
{ /* ori 0,0,NUM, 2nd half of >= 32k frames */
fdata->offset |= (op & 0x0000ffff);
fdata->frameless = 0;
r0_contains_arg = 0;
continue;
}
else if (lr_reg >= 0 &&
((store_insn_p (op, lr_reg, 1, true)) ||
(framep &&
(store_insn_p (op, lr_reg,
fdata->alloca_reg - tdep->ppc_gp0_regnum,
false)))))
{
if (store_insn_p (op, lr_reg, 1, true))
fdata->lr_offset = offset;
else /* LR save through frame pointer. */
fdata->lr_offset = alloca_reg_offset;
fdata->nosavedpc = 0;
/* Invalidate lr_reg, but don't set it to -1.
That would mean that it had never been set. */
lr_reg = -2;
if ((op & 0xfc000003) == 0xf8000000 || /* std */
(op & 0xfc000000) == 0x90000000) /* stw */
{
/* Does not update r1, so add displacement to lr_offset. */
fdata->lr_offset += SIGNED_SHORT (op);
}
continue;
}
else if (cr_reg >= 0 &&
(store_insn_p (op, cr_reg, 1, true)))
{
fdata->cr_offset = offset;
/* Invalidate cr_reg, but don't set it to -1.
That would mean that it had never been set. */
cr_reg = -2;
if ((op & 0xfc000003) == 0xf8000000 ||
(op & 0xfc000000) == 0x90000000)
{
/* Does not update r1, so add displacement to cr_offset. */
fdata->cr_offset += SIGNED_SHORT (op);
}
continue;
}
else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
{
/* bcl 20,xx,.+4 is used to get the current PC, with or without
prediction bits. If the LR has already been saved, we can
skip it. */
continue;
}
else if (op == 0x48000005)
{ /* bl .+4 used in
-mrelocatable */
fdata->used_bl = 1;
continue;
}
else if (op == 0x48000004)
{ /* b .+4 (xlc) */
break;
}
else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
in V.4 -mminimal-toc */
(op & 0xffff0000) == 0x3bde0000)
{ /* addi 30,30,foo@l */
continue;
}
else if ((op & 0xfc000001) == 0x48000001)
{ /* bl foo,
to save fprs??? */
fdata->frameless = 0;
/* If the return address has already been saved, we can skip
calls to blrl (for PIC). */
if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
{
fdata->used_bl = 1;
continue;
}
/* Don't skip over the subroutine call if it is not within
the first three instructions of the prologue and either
we have no line table information or the line info tells
us that the subroutine call is not part of the line
associated with the prologue. */
if ((pc - orig_pc) > 8)
{
struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
struct symtab_and_line this_sal = find_pc_line (pc, 0);
if ((prologue_sal.line == 0)
|| (prologue_sal.line != this_sal.line))
break;
}
op = read_memory_integer (pc + 4, 4, byte_order);
/* At this point, make sure this is not a trampoline
function (a function that simply calls another functions,
and nothing else). If the next is not a nop, this branch
was part of the function prologue. */
if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
break; /* Don't skip over
this branch. */
fdata->used_bl = 1;
continue;
}
/* update stack pointer */
else if ((op & 0xfc1f0000) == 0x94010000)
{ /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
fdata->frameless = 0;
fdata->offset = SIGNED_SHORT (op);
offset = fdata->offset;
continue;
}
else if ((op & 0xfc1f07fa) == 0x7c01016a)
{ /* stwux rX,r1,rY || stdux rX,r1,rY */
/* No way to figure out what r1 is going to be. */
fdata->frameless = 0;
offset = fdata->offset;
continue;
}
else if ((op & 0xfc1f0003) == 0xf8010001)
{ /* stdu rX,NUM(r1) */
fdata->frameless = 0;
fdata->offset = SIGNED_SHORT (op & ~3UL);
offset = fdata->offset;
continue;
}
else if ((op & 0xffff0000) == 0x38210000)
{ /* addi r1,r1,SIMM */
fdata->frameless = 0;
fdata->offset += SIGNED_SHORT (op);
offset = fdata->offset;
continue;
}
/* Load up minimal toc pointer. Do not treat an epilogue restore
of r31 as a minimal TOC load. */
else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
(op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
&& !framep
&& !minimal_toc_loaded)
{
minimal_toc_loaded = 1;
continue;
/* move parameters from argument registers to local variable
registers */
}
else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
(((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
(((op >> 21) & 31) <= 10) &&
((long) ((op >> 16) & 31)
>= fdata->saved_gpr)) /* Rx: local var reg */
{
continue;
/* store parameters in stack */
}
/* Move parameters from argument registers to temporary register. */
else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
{
continue;
/* Set up frame pointer */
}
else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
{
fdata->frameless = 0;
framep = 1;
fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
alloca_reg_offset = offset;
continue;
/* Another way to set up the frame pointer. */
}
else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
|| op == 0x7c3f0b78)
{ /* mr r31, r1 */
fdata->frameless = 0;
framep = 1;
fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
alloca_reg_offset = offset;
continue;
/* Another way to set up the frame pointer. */
}
else if ((op & 0xfc1fffff) == 0x38010000)
{ /* addi rX, r1, 0x0 */
fdata->frameless = 0;
framep = 1;
fdata->alloca_reg = (tdep->ppc_gp0_regnum
+ ((op & ~0x38010000) >> 21));
alloca_reg_offset = offset;
continue;
}
/* AltiVec related instructions. */
/* Store the vrsave register (spr 256) in another register for
later manipulation, or load a register into the vrsave
register. 2 instructions are used: mfvrsave and
mtvrsave. They are shorthand notation for mfspr Rn, SPR256
and mtspr SPR256, Rn. */
/* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
{
vrsave_reg = GET_SRC_REG (op);
continue;
}
else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
{
continue;
}
/* Store the register where vrsave was saved to onto the stack:
rS is the register where vrsave was stored in a previous
instruction. */
/* 100100 sssss 00001 dddddddd dddddddd */
else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
{
if (vrsave_reg == GET_SRC_REG (op))
{
fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
vrsave_reg = -1;
}
continue;
}
/* Compute the new value of vrsave, by modifying the register
where vrsave was saved to. */
else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
|| ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
{
continue;
}
/* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
in a pair of insns to save the vector registers on the
stack. */
/* 001110 00000 00000 iiii iiii iiii iiii */
/* 001110 01110 00000 iiii iiii iiii iiii */
else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
|| (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
{
if ((op & 0xffff0000) == 0x38000000)
r0_contains_arg = 0;
li_found_pc = pc;
vr_saved_offset = SIGNED_SHORT (op);
/* This insn by itself is not part of the prologue, unless
if part of the pair of insns mentioned above. So do not
record this insn as part of the prologue yet. */
prev_insn_was_prologue_insn = 0;
}
/* Store vector register S at (r31+r0) aligned to 16 bytes. */
/* 011111 sssss 11111 00000 00111001110 */
else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
{
if (pc == (li_found_pc + 4))
{
vr_reg = GET_SRC_REG (op);
/* If this is the first vector reg to be saved, or if
it has a lower number than others previously seen,
reupdate the frame info. */
if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
{
fdata->saved_vr = vr_reg;
fdata->vr_offset = vr_saved_offset + offset;
}
vr_saved_offset = -1;
vr_reg = -1;
li_found_pc = 0;
}
}
/* End AltiVec related instructions. */
/* Start BookE related instructions. */
/* Store gen register S at (r31+uimm).
Any register less than r13 is volatile, so we don't care. */
/* 000100 sssss 11111 iiiii 01100100001 */
else if (arch_info->mach == bfd_mach_ppc_e500
&& (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
{
if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
{
unsigned int imm;
ev_reg = GET_SRC_REG (op);
imm = (op >> 11) & 0x1f;
ev_offset = imm * 8;
/* If this is the first vector reg to be saved, or if
it has a lower number than others previously seen,
reupdate the frame info. */
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
{
fdata->saved_ev = ev_reg;
fdata->ev_offset = ev_offset + offset;
}
}
continue;
}
/* Store gen register rS at (r1+rB). */
/* 000100 sssss 00001 bbbbb 01100100000 */
else if (arch_info->mach == bfd_mach_ppc_e500
&& (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
{
if (pc == (li_found_pc + 4))
{
ev_reg = GET_SRC_REG (op);
/* If this is the first vector reg to be saved, or if
it has a lower number than others previously seen,
reupdate the frame info. */
/* We know the contents of rB from the previous instruction. */
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
{
fdata->saved_ev = ev_reg;
fdata->ev_offset = vr_saved_offset + offset;
}
vr_saved_offset = -1;
ev_reg = -1;
li_found_pc = 0;
}
continue;
}
/* Store gen register r31 at (rA+uimm). */
/* 000100 11111 aaaaa iiiii 01100100001 */
else if (arch_info->mach == bfd_mach_ppc_e500
&& (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
{
/* Wwe know that the source register is 31 already, but
it can't hurt to compute it. */
ev_reg = GET_SRC_REG (op);
ev_offset = ((op >> 11) & 0x1f) * 8;
/* If this is the first vector reg to be saved, or if
it has a lower number than others previously seen,
reupdate the frame info. */
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
{
fdata->saved_ev = ev_reg;
fdata->ev_offset = ev_offset + offset;
}
continue;
}
/* Store gen register S at (r31+r0).
Store param on stack when offset from SP bigger than 4 bytes. */
/* 000100 sssss 11111 00000 01100100000 */
else if (arch_info->mach == bfd_mach_ppc_e500
&& (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
{
if (pc == (li_found_pc + 4))
{
if ((op & 0x03e00000) >= 0x01a00000)
{
ev_reg = GET_SRC_REG (op);
/* If this is the first vector reg to be saved, or if
it has a lower number than others previously seen,
reupdate the frame info. */
/* We know the contents of r0 from the previous
instruction. */
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
{
fdata->saved_ev = ev_reg;
fdata->ev_offset = vr_saved_offset + offset;
}
ev_reg = -1;
}
vr_saved_offset = -1;
li_found_pc = 0;
continue;
}
}
/* End BookE related instructions. */
else
{
/* Not a recognized prologue instruction.
Handle optimizer code motions into the prologue by continuing
the search if we have no valid frame yet or if the return
address is not yet saved in the frame. Also skip instructions
if some of the GPRs expected to be saved are not yet saved. */
if (fdata->frameless == 0 && fdata->nosavedpc == 0
&& fdata->saved_gpr != -1)
{
unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
if ((fdata->gpr_mask & all_mask) == all_mask)
break;
}
if (op == 0x4e800020 /* blr */
|| op == 0x4e800420) /* bctr */
/* Do not scan past epilogue in frameless functions or
trampolines. */
break;
if ((op & 0xf4000000) == 0x40000000) /* bxx */
/* Never skip branches. */
break;
/* Test based on opcode and mask values of
powerpc_opcodes[svc..svcla] in opcodes/ppc-opc.c. */
if ((op & 0xffff0000) == 0x44000000)
/* Never skip system calls. */
break;
if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
/* Do not scan too many insns, scanning insns is expensive with
remote targets. */
break;
/* Continue scanning. */
prev_insn_was_prologue_insn = 0;
continue;
}
}
#if 0
/* I have problems with skipping over __main() that I need to address
* sometime. Previously, I used to use misc_function_vector which
* didn't work as well as I wanted to be. -MGO */
/* If the first thing after skipping a prolog is a branch to a function,
this might be a call to an initializer in main(), introduced by gcc2.
We'd like to skip over it as well. Fortunately, xlc does some extra
work before calling a function right after a prologue, thus we can
single out such gcc2 behaviour. */
if ((op & 0xfc000001) == 0x48000001)
{ /* bl foo, an initializer function? */
op = read_memory_integer (pc + 4, 4, byte_order);
if (op == 0x4def7b82)
{ /* cror 0xf, 0xf, 0xf (nop) */
/* Check and see if we are in main. If so, skip over this
initializer function as well. */
tmp = find_pc_misc_function (pc);
if (tmp >= 0
&& strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
return pc + 8;
}
}
#endif /* 0 */
if (pc == lim_pc && lr_reg >= 0)
fdata->lr_register = lr_reg;
fdata->offset = -fdata->offset;
return last_prologue_pc;
}
static CORE_ADDR
rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
struct rs6000_framedata frame;
CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
/* See if we can determine the end of the prologue via the symbol table.
If so, then return either PC, or the PC after the prologue, whichever
is greater. */
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
{
CORE_ADDR post_prologue_pc
= skip_prologue_using_sal (gdbarch, func_addr);
if (post_prologue_pc != 0)
return std::max (pc, post_prologue_pc);
}
/* Can't determine prologue from the symbol table, need to examine
instructions. */
/* Find an upper limit on the function prologue using the debug
information. If the debug information could not be used to provide
that bound, then use an arbitrary large number as the upper bound. */
limit_pc = skip_prologue_using_sal (gdbarch, pc);
if (limit_pc == 0)
limit_pc = pc + 100; /* Magic. */
/* Do not allow limit_pc to be past the function end, if we know
where that end is... */
if (func_end_addr && limit_pc > func_end_addr)
limit_pc = func_end_addr;
pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
return pc;
}
/* When compiling for EABI, some versions of GCC emit a call to __eabi
in the prologue of main().
The function below examines the code pointed at by PC and checks to
see if it corresponds to a call to __eabi. If so, it returns the
address of the instruction following that call. Otherwise, it simply
returns PC. */
static CORE_ADDR
rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte buf[4];
unsigned long op;
if (target_read_memory (pc, buf, 4))
return pc;
op = extract_unsigned_integer (buf, 4, byte_order);
if ((op & BL_MASK) == BL_INSTRUCTION)
{
CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
CORE_ADDR call_dest = pc + 4 + displ;
struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
/* We check for ___eabi (three leading underscores) in addition
to __eabi in case the GCC option "-fleading-underscore" was
used to compile the program. */
if (s.minsym != NULL
&& s.minsym->linkage_name () != NULL
&& (strcmp (s.minsym->linkage_name (), "__eabi") == 0
|| strcmp (s.minsym->linkage_name (), "___eabi") == 0))
pc += 4;
}
return pc;
}
/* All the ABI's require 16 byte alignment. */
static CORE_ADDR
rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
return (addr & -16);
}
/* Return whether handle_inferior_event() should proceed through code
starting at PC in function NAME when stepping.
The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
handle memory references that are too distant to fit in instructions
generated by the compiler. For example, if 'foo' in the following
instruction:
lwz r9,foo(r2)
is greater than 32767, the linker might replace the lwz with a branch to
somewhere in @FIX1 that does the load in 2 instructions and then branches
back to where execution should continue.
GDB should silently step over @FIX code, just like AIX dbx does.
Unfortunately, the linker uses the "b" instruction for the
branches, meaning that the link register doesn't get set.
Therefore, GDB's usual step_over_function () mechanism won't work.
Instead, use the gdbarch_skip_trampoline_code and
gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
@FIX code. */
static int
rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
CORE_ADDR pc, const char *name)
{
return name && startswith (name, "@FIX");
}
/* Skip code that the user doesn't want to see when stepping:
1. Indirect function calls use a piece of trampoline code to do context
switching, i.e. to set the new TOC table. Skip such code if we are on
its first instruction (as when we have single-stepped to here).
2. Skip shared library trampoline code (which is different from
indirect function call trampolines).
3. Skip bigtoc fixup code.
Result is desired PC to step until, or NULL if we are not in
code that should be skipped. */
static CORE_ADDR
rs6000_skip_trampoline_code (frame_info_ptr frame, CORE_ADDR pc)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
unsigned int ii, op;
int rel;
CORE_ADDR solib_target_pc;
struct bound_minimal_symbol msymbol;
static unsigned trampoline_code[] =
{
0x800b0000, /* l r0,0x0(r11) */
0x90410014, /* st r2,0x14(r1) */
0x7c0903a6, /* mtctr r0 */
0x804b0004, /* l r2,0x4(r11) */
0x816b0008, /* l r11,0x8(r11) */
0x4e800420, /* bctr */
0x4e800020, /* br */
0
};
/* Check for bigtoc fixup code. */
msymbol = lookup_minimal_symbol_by_pc (pc);
if (msymbol.minsym
&& rs6000_in_solib_return_trampoline (gdbarch, pc,
msymbol.minsym->linkage_name ()))
{
/* Double-check that the third instruction from PC is relative "b". */
op = read_memory_integer (pc + 8, 4, byte_order);
if ((op & 0xfc000003) == 0x48000000)
{
/* Extract bits 6-29 as a signed 24-bit relative word address and
add it to the containing PC. */
rel = ((int)(op << 6) >> 6);
return pc + 8 + rel;
}
}
/* If pc is in a shared library trampoline, return its target. */
solib_target_pc = find_solib_trampoline_target (frame, pc);
if (solib_target_pc)
return solib_target_pc;
for (ii = 0; trampoline_code[ii]; ++ii)
{
op = read_memory_integer (pc + (ii * 4), 4, byte_order);
if (op != trampoline_code[ii])
return 0;
}
ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
addr. */
pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
return pc;
}
/* ISA-specific vector types. */
static struct type *
rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
if (!tdep->ppc_builtin_type_vec64)
{
const struct builtin_type *bt = builtin_type (gdbarch);
/* The type we're building is this: */
#if 0
union __gdb_builtin_type_vec64
{
int64_t uint64;
float v2_float[2];
int32_t v2_int32[2];
int16_t v4_int16[4];
int8_t v8_int8[8];
};
#endif
struct type *t;
t = arch_composite_type (gdbarch,
"__ppc_builtin_type_vec64", TYPE_CODE_UNION);
append_composite_type_field (t, "uint64", bt->builtin_int64);
append_composite_type_field (t, "v2_float",
init_vector_type (bt->builtin_float, 2));
append_composite_type_field (t, "v2_int32",
init_vector_type (bt->builtin_int32, 2));
append_composite_type_field (t, "v4_int16",
init_vector_type (bt->builtin_int16, 4));
append_composite_type_field (t, "v8_int8",
init_vector_type (bt->builtin_int8, 8));
t->set_is_vector (true);
t->set_name ("ppc_builtin_type_vec64");
tdep->ppc_builtin_type_vec64 = t;
}
return tdep->ppc_builtin_type_vec64;
}
/* Vector 128 type. */
static struct type *
rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
if (!tdep->ppc_builtin_type_vec128)
{
const struct builtin_type *bt = builtin_type (gdbarch);
/* The type we're building is this
type = union __ppc_builtin_type_vec128 {
float128_t float128;
uint128_t uint128;
double v2_double[2];
float v4_float[4];
int32_t v4_int32[4];
int16_t v8_int16[8];
int8_t v16_int8[16];
}
*/
/* PPC specific type for IEEE 128-bit float field */
type_allocator alloc (gdbarch);
struct type *t_float128
= init_float_type (alloc, 128, "float128_t", floatformats_ieee_quad);
struct type *t;
t = arch_composite_type (gdbarch,
"__ppc_builtin_type_vec128", TYPE_CODE_UNION);
append_composite_type_field (t, "float128", t_float128);
append_composite_type_field (t, "uint128", bt->builtin_uint128);
append_composite_type_field (t, "v2_double",
init_vector_type (bt->builtin_double, 2));
append_composite_type_field (t, "v4_float",
init_vector_type (bt->builtin_float, 4));
append_composite_type_field (t, "v4_int32",
init_vector_type (bt->builtin_int32, 4));
append_composite_type_field (t, "v8_int16",
init_vector_type (bt->builtin_int16, 8));
append_composite_type_field (t, "v16_int8",
init_vector_type (bt->builtin_int8, 16));
t->set_is_vector (true);
t->set_name ("ppc_builtin_type_vec128");
tdep->ppc_builtin_type_vec128 = t;
}
return tdep->ppc_builtin_type_vec128;
}
/* Return the name of register number REGNO, or the empty string if it
is an anonymous register. */
static const char *
rs6000_register_name (struct gdbarch *gdbarch, int regno)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
/* The upper half "registers" have names in the XML description,
but we present only the low GPRs and the full 64-bit registers
to the user. */
if (tdep->ppc_ev0_upper_regnum >= 0
&& tdep->ppc_ev0_upper_regnum <= regno
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
return "";
/* Hide the upper halves of the vs0~vs31 registers. */
if (tdep->ppc_vsr0_regnum >= 0
&& tdep->ppc_vsr0_upper_regnum <= regno
&& regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
return "";
/* Hide the upper halves of the cvs0~cvs31 registers. */
if (PPC_CVSR0_UPPER_REGNUM <= regno
&& regno < PPC_CVSR0_UPPER_REGNUM + ppc_num_gprs)
return "";
/* Check if the SPE pseudo registers are available. */
if (IS_SPE_PSEUDOREG (tdep, regno))
{
static const char *const spe_regnames[] = {
"ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
"ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
"ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
"ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
};
return spe_regnames[regno - tdep->ppc_ev0_regnum];
}
/* Check if the decimal128 pseudo-registers are available. */
if (IS_DFP_PSEUDOREG (tdep, regno))
{
static const char *const dfp128_regnames[] = {
"dl0", "dl1", "dl2", "dl3",
"dl4", "dl5", "dl6", "dl7",
"dl8", "dl9", "dl10", "dl11",
"dl12", "dl13", "dl14", "dl15"
};
return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
}
/* Check if this is a vX alias for a raw vrX vector register. */
if (IS_V_ALIAS_PSEUDOREG (tdep, regno))
{
static const char *const vector_alias_regnames[] = {
"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
"v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
};
return vector_alias_regnames[regno - tdep->ppc_v0_alias_regnum];
}
/* Check if this is a VSX pseudo-register. */
if (IS_VSX_PSEUDOREG (tdep, regno))
{
static const char *const vsx_regnames[] = {
"vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
"vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
"vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
"vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
"vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
"vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
"vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
"vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
"vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
};
return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
}
/* Check if the this is a Extended FP pseudo-register. */
if (IS_EFP_PSEUDOREG (tdep, regno))
{
static const char *const efpr_regnames[] = {
"f32", "f33", "f34", "f35", "f36", "f37", "f38",
"f39", "f40", "f41", "f42", "f43", "f44", "f45",
"f46", "f47", "f48", "f49", "f50", "f51",
"f52", "f53", "f54", "f55", "f56", "f57",
"f58", "f59", "f60", "f61", "f62", "f63"
};
return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
}
/* Check if this is a Checkpointed DFP pseudo-register. */
if (IS_CDFP_PSEUDOREG (tdep, regno))
{
static const char *const cdfp128_regnames[] = {
"cdl0", "cdl1", "cdl2", "cdl3",
"cdl4", "cdl5", "cdl6", "cdl7",
"cdl8", "cdl9", "cdl10", "cdl11",
"cdl12", "cdl13", "cdl14", "cdl15"
};
return cdfp128_regnames[regno - tdep->ppc_cdl0_regnum];
}
/* Check if this is a Checkpointed VSX pseudo-register. */
if (IS_CVSX_PSEUDOREG (tdep, regno))
{
static const char *const cvsx_regnames[] = {
"cvs0", "cvs1", "cvs2", "cvs3", "cvs4", "cvs5", "cvs6", "cvs7",
"cvs8", "cvs9", "cvs10", "cvs11", "cvs12", "cvs13", "cvs14",
"cvs15", "cvs16", "cvs17", "cvs18", "cvs19", "cvs20", "cvs21",
"cvs22", "cvs23", "cvs24", "cvs25", "cvs26", "cvs27", "cvs28",
"cvs29", "cvs30", "cvs31", "cvs32", "cvs33", "cvs34", "cvs35",
"cvs36", "cvs37", "cvs38", "cvs39", "cvs40", "cvs41", "cvs42",
"cvs43", "cvs44", "cvs45", "cvs46", "cvs47", "cvs48", "cvs49",
"cvs50", "cvs51", "cvs52", "cvs53", "cvs54", "cvs55", "cvs56",
"cvs57", "cvs58", "cvs59", "cvs60", "cvs61", "cvs62", "cvs63"
};
return cvsx_regnames[regno - tdep->ppc_cvsr0_regnum];
}
/* Check if the this is a Checkpointed Extended FP pseudo-register. */
if (IS_CEFP_PSEUDOREG (tdep, regno))
{
static const char *const cefpr_regnames[] = {
"cf32", "cf33", "cf34", "cf35", "cf36", "cf37", "cf38",
"cf39", "cf40", "cf41", "cf42", "cf43", "cf44", "cf45",
"cf46", "cf47", "cf48", "cf49", "cf50", "cf51",
"cf52", "cf53", "cf54", "cf55", "cf56", "cf57",
"cf58", "cf59", "cf60", "cf61", "cf62", "cf63"
};
return cefpr_regnames[regno - tdep->ppc_cefpr0_regnum];
}
return tdesc_register_name (gdbarch, regno);
}
/* Return the GDB type object for the "standard" data type of data in
register N. */
static struct type *
rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
/* These are the e500 pseudo-registers. */
if (IS_SPE_PSEUDOREG (tdep, regnum))
return rs6000_builtin_type_vec64 (gdbarch);
else if (IS_DFP_PSEUDOREG (tdep, regnum)
|| IS_CDFP_PSEUDOREG (tdep, regnum))
/* PPC decimal128 pseudo-registers. */
return builtin_type (gdbarch)->builtin_declong;
else if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
return gdbarch_register_type (gdbarch,
tdep->ppc_vr0_regnum
+ (regnum
- tdep->ppc_v0_alias_regnum));
else if (IS_VSX_PSEUDOREG (tdep, regnum)
|| IS_CVSX_PSEUDOREG (tdep, regnum))
/* POWER7 VSX pseudo-registers. */
return rs6000_builtin_type_vec128 (gdbarch);
else if (IS_EFP_PSEUDOREG (tdep, regnum)
|| IS_CEFP_PSEUDOREG (tdep, regnum))
/* POWER7 Extended FP pseudo-registers. */
return builtin_type (gdbarch)->builtin_double;
else
internal_error (_("rs6000_pseudo_register_type: "
"called on unexpected register '%s' (%d)"),
gdbarch_register_name (gdbarch, regnum), regnum);
}
/* Check if REGNUM is a member of REGGROUP. We only need to handle
the vX aliases for the vector registers by always returning false
to avoid duplicated information in "info register vector/all",
since the raw vrX registers will already show in these cases. For
other pseudo-registers we use the default membership function. */
static int
rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
const struct reggroup *group)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
return 0;
else
return default_register_reggroup_p (gdbarch, regnum, group);
}
/* The register format for RS/6000 floating point registers is always
double, we need a conversion if the memory format is float. */
static int
rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
struct type *type)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
return (tdep->ppc_fp0_regnum >= 0
&& regnum >= tdep->ppc_fp0_regnum
&& regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
&& type->code () == TYPE_CODE_FLT
&& (type->length ()
!= builtin_type (gdbarch)->builtin_double->length ()));
}
static int
rs6000_register_to_value (frame_info_ptr frame,
int regnum,
struct type *type,
gdb_byte *to,
int *optimizedp, int *unavailablep)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
gdb_byte from[PPC_MAX_REGISTER_SIZE];
gdb_assert (type->code () == TYPE_CODE_FLT);
if (!get_frame_register_bytes (frame, regnum, 0,
gdb::make_array_view (from,
register_size (gdbarch,
regnum)),
optimizedp, unavailablep))
return 0;
target_float_convert (from, builtin_type (gdbarch)->builtin_double,
to, type);
*optimizedp = *unavailablep = 0;
return 1;
}
static void
rs6000_value_to_register (frame_info_ptr frame,
int regnum,
struct type *type,
const gdb_byte *from)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
gdb_byte to[PPC_MAX_REGISTER_SIZE];
gdb_assert (type->code () == TYPE_CODE_FLT);
target_float_convert (from, type,
to, builtin_type (gdbarch)->builtin_double);
put_frame_register (frame, regnum, to);
}
/* The type of a function that moves the value of REG between CACHE
or BUF --- in either direction. */
typedef enum register_status (*move_ev_register_func) (struct regcache *,
int, void *);
/* Move SPE vector register values between a 64-bit buffer and the two
32-bit raw register halves in a regcache. This function handles
both splitting a 64-bit value into two 32-bit halves, and joining
two halves into a whole 64-bit value, depending on the function
passed as the MOVE argument.
EV_REG must be the number of an SPE evN vector register --- a
pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
64-bit buffer.
Call MOVE once for each 32-bit half of that register, passing
REGCACHE, the number of the raw register corresponding to that
half, and the address of the appropriate half of BUFFER.
For example, passing 'regcache_raw_read' as the MOVE function will
fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
'regcache_raw_supply' will supply the contents of BUFFER to the
appropriate pair of raw registers in REGCACHE.
You may need to cast away some 'const' qualifiers when passing
MOVE, since this function can't tell at compile-time which of
REGCACHE or BUFFER is acting as the source of the data. If C had
co-variant type qualifiers, ... */
static enum register_status
e500_move_ev_register (move_ev_register_func move,
struct regcache *regcache, int ev_reg, void *buffer)
{
struct gdbarch *arch = regcache->arch ();
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (arch);
int reg_index;
gdb_byte *byte_buffer = (gdb_byte *) buffer;
enum register_status status;
gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
reg_index = ev_reg - tdep->ppc_ev0_regnum;
if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
{
status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
byte_buffer);
if (status == REG_VALID)
status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
byte_buffer + 4);
}
else
{
status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
if (status == REG_VALID)
status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
byte_buffer + 4);
}
return status;
}
static enum register_status
do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
{
regcache->raw_write (regnum, (const gdb_byte *) buffer);
return REG_VALID;
}
static enum register_status
e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
int ev_reg, gdb_byte *buffer)
{
struct gdbarch *arch = regcache->arch ();
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int reg_index;
enum register_status status;
gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
reg_index = ev_reg - tdep->ppc_ev0_regnum;
if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
{
status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
buffer);
if (status == REG_VALID)
status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
buffer + 4);
}
else
{
status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
if (status == REG_VALID)
status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
buffer + 4);
}
return status;
}
static void
e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
int reg_nr, const gdb_byte *buffer)
{
e500_move_ev_register (do_regcache_raw_write, regcache,
reg_nr, (void *) buffer);
}
/* Read method for DFP pseudo-registers. */
static enum register_status
dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
int reg_nr, gdb_byte *buffer)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int reg_index, fp0;
enum register_status status;
if (IS_DFP_PSEUDOREG (tdep, reg_nr))
{
reg_index = reg_nr - tdep->ppc_dl0_regnum;
fp0 = PPC_F0_REGNUM;
}
else
{
gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
reg_index = reg_nr - tdep->ppc_cdl0_regnum;
fp0 = PPC_CF0_REGNUM;
}
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
{
/* Read two FP registers to form a whole dl register. */
status = regcache->raw_read (fp0 + 2 * reg_index, buffer);
if (status == REG_VALID)
status = regcache->raw_read (fp0 + 2 * reg_index + 1,
buffer + 8);
}
else
{
status = regcache->raw_read (fp0 + 2 * reg_index + 1, buffer);
if (status == REG_VALID)
status = regcache->raw_read (fp0 + 2 * reg_index, buffer + 8);
}
return status;
}
/* Write method for DFP pseudo-registers. */
static void
dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
int reg_nr, const gdb_byte *buffer)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int reg_index, fp0;
if (IS_DFP_PSEUDOREG (tdep, reg_nr))
{
reg_index = reg_nr - tdep->ppc_dl0_regnum;
fp0 = PPC_F0_REGNUM;
}
else
{
gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
reg_index = reg_nr - tdep->ppc_cdl0_regnum;
fp0 = PPC_CF0_REGNUM;
}
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
{
/* Write each half of the dl register into a separate
FP register. */
regcache->raw_write (fp0 + 2 * reg_index, buffer);
regcache->raw_write (fp0 + 2 * reg_index + 1, buffer + 8);
}
else
{
regcache->raw_write (fp0 + 2 * reg_index + 1, buffer);
regcache->raw_write (fp0 + 2 * reg_index, buffer + 8);
}
}
/* Read method for the vX aliases for the raw vrX registers. */
static enum register_status
v_alias_pseudo_register_read (struct gdbarch *gdbarch,
readable_regcache *regcache, int reg_nr,
gdb_byte *buffer)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
return regcache->raw_read (tdep->ppc_vr0_regnum
+ (reg_nr - tdep->ppc_v0_alias_regnum),
buffer);
}
/* Write method for the vX aliases for the raw vrX registers. */
static void
v_alias_pseudo_register_write (struct gdbarch *gdbarch,
struct regcache *regcache,
int reg_nr, const gdb_byte *buffer)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
regcache->raw_write (tdep->ppc_vr0_regnum
+ (reg_nr - tdep->ppc_v0_alias_regnum), buffer);
}
/* Read method for POWER7 VSX pseudo-registers. */
static enum register_status
vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
int reg_nr, gdb_byte *buffer)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int reg_index, vr0, fp0, vsr0_upper;
enum register_status status;
if (IS_VSX_PSEUDOREG (tdep, reg_nr))
{
reg_index = reg_nr - tdep->ppc_vsr0_regnum;
vr0 = PPC_VR0_REGNUM;
fp0 = PPC_F0_REGNUM;
vsr0_upper = PPC_VSR0_UPPER_REGNUM;
}
else
{
gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
vr0 = PPC_CVR0_REGNUM;
fp0 = PPC_CF0_REGNUM;
vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
}
/* Read the portion that overlaps the VMX registers. */
if (reg_index > 31)
status = regcache->raw_read (vr0 + reg_index - 32, buffer);
else
/* Read the portion that overlaps the FPR registers. */
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
{
status = regcache->raw_read (fp0 + reg_index, buffer);
if (status == REG_VALID)
status = regcache->raw_read (vsr0_upper + reg_index,
buffer + 8);
}
else
{
status = regcache->raw_read (fp0 + reg_index, buffer + 8);
if (status == REG_VALID)
status = regcache->raw_read (vsr0_upper + reg_index, buffer);
}
return status;
}
/* Write method for POWER7 VSX pseudo-registers. */
static void
vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
int reg_nr, const gdb_byte *buffer)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int reg_index, vr0, fp0, vsr0_upper;
if (IS_VSX_PSEUDOREG (tdep, reg_nr))
{
reg_index = reg_nr - tdep->ppc_vsr0_regnum;
vr0 = PPC_VR0_REGNUM;
fp0 = PPC_F0_REGNUM;
vsr0_upper = PPC_VSR0_UPPER_REGNUM;
}
else
{
gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
vr0 = PPC_CVR0_REGNUM;
fp0 = PPC_CF0_REGNUM;
vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
}
/* Write the portion that overlaps the VMX registers. */
if (reg_index > 31)
regcache->raw_write (vr0 + reg_index - 32, buffer);
else
/* Write the portion that overlaps the FPR registers. */
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
{
regcache->raw_write (fp0 + reg_index, buffer);
regcache->raw_write (vsr0_upper + reg_index, buffer + 8);
}
else
{
regcache->raw_write (fp0 + reg_index, buffer + 8);
regcache->raw_write (vsr0_upper + reg_index, buffer);
}
}
/* Read method for POWER7 Extended FP pseudo-registers. */
static enum register_status
efp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
int reg_nr, gdb_byte *buffer)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int reg_index, vr0;
if (IS_EFP_PSEUDOREG (tdep, reg_nr))
{
reg_index = reg_nr - tdep->ppc_efpr0_regnum;
vr0 = PPC_VR0_REGNUM;
}
else
{
gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
vr0 = PPC_CVR0_REGNUM;
}
int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
/* Read the portion that overlaps the VMX register. */
return regcache->raw_read_part (vr0 + reg_index, offset,
register_size (gdbarch, reg_nr),
buffer);
}
/* Write method for POWER7 Extended FP pseudo-registers. */
static void
efp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
int reg_nr, const gdb_byte *buffer)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int reg_index, vr0;
int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
if (IS_EFP_PSEUDOREG (tdep, reg_nr))
{
reg_index = reg_nr - tdep->ppc_efpr0_regnum;
vr0 = PPC_VR0_REGNUM;
}
else
{
gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
vr0 = PPC_CVR0_REGNUM;
/* The call to raw_write_part fails silently if the initial read
of the read-update-write sequence returns an invalid status,
so we check this manually and throw an error if needed. */
regcache->raw_update (vr0 + reg_index);
if (regcache->get_register_status (vr0 + reg_index) != REG_VALID)
error (_("Cannot write to the checkpointed EFP register, "
"the corresponding vector register is unavailable."));
}
/* Write the portion that overlaps the VMX register. */
regcache->raw_write_part (vr0 + reg_index, offset,
register_size (gdbarch, reg_nr), buffer);
}
static enum register_status
rs6000_pseudo_register_read (struct gdbarch *gdbarch,
readable_regcache *regcache,
int reg_nr, gdb_byte *buffer)
{
struct gdbarch *regcache_arch = regcache->arch ();
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
gdb_assert (regcache_arch == gdbarch);
if (IS_SPE_PSEUDOREG (tdep, reg_nr))
return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
|| IS_CDFP_PSEUDOREG (tdep, reg_nr))
return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
return v_alias_pseudo_register_read (gdbarch, regcache, reg_nr,
buffer);
else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
|| IS_CVSX_PSEUDOREG (tdep, reg_nr))
return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
|| IS_CEFP_PSEUDOREG (tdep, reg_nr))
return efp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
else
internal_error (_("rs6000_pseudo_register_read: "
"called on unexpected register '%s' (%d)"),
gdbarch_register_name (gdbarch, reg_nr), reg_nr);
}
static void
rs6000_pseudo_register_write (struct gdbarch *gdbarch,
struct regcache *regcache,
int reg_nr, const gdb_byte *buffer)
{
struct gdbarch *regcache_arch = regcache->arch ();
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
gdb_assert (regcache_arch == gdbarch);
if (IS_SPE_PSEUDOREG (tdep, reg_nr))
e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
|| IS_CDFP_PSEUDOREG (tdep, reg_nr))
dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
v_alias_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
|| IS_CVSX_PSEUDOREG (tdep, reg_nr))
vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
|| IS_CEFP_PSEUDOREG (tdep, reg_nr))
efp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
else
internal_error (_("rs6000_pseudo_register_write: "
"called on unexpected register '%s' (%d)"),
gdbarch_register_name (gdbarch, reg_nr), reg_nr);
}
/* Set the register mask in AX with the registers that form the DFP or
checkpointed DFP pseudo-register REG_NR. */
static void
dfp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
struct agent_expr *ax, int reg_nr)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int reg_index, fp0;
if (IS_DFP_PSEUDOREG (tdep, reg_nr))
{
reg_index = reg_nr - tdep->ppc_dl0_regnum;
fp0 = PPC_F0_REGNUM;
}
else
{
gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
reg_index = reg_nr - tdep->ppc_cdl0_regnum;
fp0 = PPC_CF0_REGNUM;
}
ax_reg_mask (ax, fp0 + 2 * reg_index);
ax_reg_mask (ax, fp0 + 2 * reg_index + 1);
}
/* Set the register mask in AX with the raw vector register that
corresponds to its REG_NR alias. */
static void
v_alias_pseudo_register_collect (struct gdbarch *gdbarch,
struct agent_expr *ax, int reg_nr)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
ax_reg_mask (ax, tdep->ppc_vr0_regnum
+ (reg_nr - tdep->ppc_v0_alias_regnum));
}
/* Set the register mask in AX with the registers that form the VSX or
checkpointed VSX pseudo-register REG_NR. */
static void
vsx_ax_pseudo_register_collect (struct gdbarch *gdbarch,
struct agent_expr *ax, int reg_nr)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int reg_index, vr0, fp0, vsr0_upper;
if (IS_VSX_PSEUDOREG (tdep, reg_nr))
{
reg_index = reg_nr - tdep->ppc_vsr0_regnum;
vr0 = PPC_VR0_REGNUM;
fp0 = PPC_F0_REGNUM;
vsr0_upper = PPC_VSR0_UPPER_REGNUM;
}
else
{
gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
vr0 = PPC_CVR0_REGNUM;
fp0 = PPC_CF0_REGNUM;
vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
}
if (reg_index > 31)
{
ax_reg_mask (ax, vr0 + reg_index - 32);
}
else
{
ax_reg_mask (ax, fp0 + reg_index);
ax_reg_mask (ax, vsr0_upper + reg_index);
}
}
/* Set the register mask in AX with the register that corresponds to
the EFP or checkpointed EFP pseudo-register REG_NR. */
static void
efp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
struct agent_expr *ax, int reg_nr)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int reg_index, vr0;
if (IS_EFP_PSEUDOREG (tdep, reg_nr))
{
reg_index = reg_nr - tdep->ppc_efpr0_regnum;
vr0 = PPC_VR0_REGNUM;
}
else
{
gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
vr0 = PPC_CVR0_REGNUM;
}
ax_reg_mask (ax, vr0 + reg_index);
}
static int
rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
struct agent_expr *ax, int reg_nr)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
if (IS_SPE_PSEUDOREG (tdep, reg_nr))
{
int reg_index = reg_nr - tdep->ppc_ev0_regnum;
ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
}
else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
|| IS_CDFP_PSEUDOREG (tdep, reg_nr))
{
dfp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
}
else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
{
v_alias_pseudo_register_collect (gdbarch, ax, reg_nr);
}
else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
|| IS_CVSX_PSEUDOREG (tdep, reg_nr))
{
vsx_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
}
else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
|| IS_CEFP_PSEUDOREG (tdep, reg_nr))
{
efp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
}
else
internal_error (_("rs6000_pseudo_register_collect: "
"called on unexpected register '%s' (%d)"),
gdbarch_register_name (gdbarch, reg_nr), reg_nr);
return 0;
}
static void
rs6000_gen_return_address (struct gdbarch *gdbarch,
struct agent_expr *ax, struct axs_value *value,
CORE_ADDR scope)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
value->kind = axs_lvalue_register;
value->u.reg = tdep->ppc_lr_regnum;
}
/* Convert a DBX STABS register number to a GDB register number. */
static int
rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
if (0 <= num && num <= 31)
return tdep->ppc_gp0_regnum + num;
else if (32 <= num && num <= 63)
/* FIXME: jimb/2004-05-05: What should we do when the debug info
specifies registers the architecture doesn't have? Our
callers don't check the value we return. */
return tdep->ppc_fp0_regnum + (num - 32);
else if (77 <= num && num <= 108)
return tdep->ppc_vr0_regnum + (num - 77);
else if (1200 <= num && num < 1200 + 32)
return tdep->ppc_ev0_upper_regnum + (num - 1200);
else
switch (num)
{
case 64:
return tdep->ppc_mq_regnum;
case 65:
return tdep->ppc_lr_regnum;
case 66:
return tdep->ppc_ctr_regnum;
case 76:
return tdep->ppc_xer_regnum;
case 109:
return tdep->ppc_vrsave_regnum;
case 110:
return tdep->ppc_vrsave_regnum - 1; /* vscr */
case 111:
return tdep->ppc_acc_regnum;
case 112:
return tdep->ppc_spefscr_regnum;
default:
return num;
}
}
/* Convert a Dwarf 2 register number to a GDB register number. */
static int
rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
if (0 <= num && num <= 31)
return tdep->ppc_gp0_regnum + num;
else if (32 <= num && num <= 63)
/* FIXME: jimb/2004-05-05: What should we do when the debug info
specifies registers the architecture doesn't have? Our
callers don't check the value we return. */
return tdep->ppc_fp0_regnum + (num - 32);
else if (1124 <= num && num < 1124 + 32)
return tdep->ppc_vr0_regnum + (num - 1124);
else if (1200 <= num && num < 1200 + 32)
return tdep->ppc_ev0_upper_regnum + (num - 1200);
else
switch (num)
{
case 64:
return tdep->ppc_cr_regnum;
case 67:
return tdep->ppc_vrsave_regnum - 1; /* vscr */
case 99:
return tdep->ppc_acc_regnum;
case 100:
return tdep->ppc_mq_regnum;
case 101:
return tdep->ppc_xer_regnum;
case 108:
return tdep->ppc_lr_regnum;
case 109:
return tdep->ppc_ctr_regnum;
case 356:
return tdep->ppc_vrsave_regnum;
case 612:
return tdep->ppc_spefscr_regnum;
}
/* Unknown DWARF register number. */
return -1;
}
/* Translate a .eh_frame register to DWARF register, or adjust a
.debug_frame register. */
static int
rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
{
/* GCC releases before 3.4 use GCC internal register numbering in
.debug_frame (and .debug_info, et cetera). The numbering is
different from the standard SysV numbering for everything except
for GPRs and FPRs. We can not detect this problem in most cases
- to get accurate debug info for variables living in lr, ctr, v0,
et cetera, use a newer version of GCC. But we must detect
one important case - lr is in column 65 in .debug_frame output,
instead of 108.
GCC 3.4, and the "hammer" branch, have a related problem. They
record lr register saves in .debug_frame as 108, but still record
the return column as 65. We fix that up too.
We can do this because 65 is assigned to fpsr, and GCC never
generates debug info referring to it. To add support for
handwritten debug info that restores fpsr, we would need to add a
producer version check to this. */
if (!eh_frame_p)
{
if (num == 65)
return 108;
else
return num;
}
/* .eh_frame is GCC specific. For binary compatibility, it uses GCC
internal register numbering; translate that to the standard DWARF2
register numbering. */
if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
return num;
else if (68 <= num && num <= 75) /* cr0-cr8 */
return num - 68 + 86;
else if (77 <= num && num <= 108) /* vr0-vr31 */
return num - 77 + 1124;
else
switch (num)
{
case 64: /* mq */
return 100;
case 65: /* lr */
return 108;
case 66: /* ctr */
return 109;
case 76: /* xer */
return 101;
case 109: /* vrsave */
return 356;
case 110: /* vscr */
return 67;
case 111: /* spe_acc */
return 99;
case 112: /* spefscr */
return 612;
default:
return num;
}
}
/* Handling the various POWER/PowerPC variants. */
/* Information about a particular processor variant. */
struct ppc_variant
{
/* Name of this variant. */
const char *name;
/* English description of the variant. */
const char *description;
/* bfd_arch_info.arch corresponding to variant. */
enum bfd_architecture arch;
/* bfd_arch_info.mach corresponding to variant. */
unsigned long mach;
/* Target description for this variant. */
const struct target_desc **tdesc;
};
static struct ppc_variant variants[] =
{
{"powerpc", "PowerPC user-level", bfd_arch_powerpc,
bfd_mach_ppc, &tdesc_powerpc_altivec32},
{"power", "POWER user-level", bfd_arch_rs6000,
bfd_mach_rs6k, &tdesc_rs6000},
{"403", "IBM PowerPC 403", bfd_arch_powerpc,
bfd_mach_ppc_403, &tdesc_powerpc_403},
{"405", "IBM PowerPC 405", bfd_arch_powerpc,
bfd_mach_ppc_405, &tdesc_powerpc_405},
{"601", "Motorola PowerPC 601", bfd_arch_powerpc,
bfd_mach_ppc_601, &tdesc_powerpc_601},
{"602", "Motorola PowerPC 602", bfd_arch_powerpc,
bfd_mach_ppc_602, &tdesc_powerpc_602},
{"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
bfd_mach_ppc_603, &tdesc_powerpc_603},
{"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
604, &tdesc_powerpc_604},
{"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
{"505", "Motorola PowerPC 505", bfd_arch_powerpc,
bfd_mach_ppc_505, &tdesc_powerpc_505},
{"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
bfd_mach_ppc_860, &tdesc_powerpc_860},
{"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
bfd_mach_ppc_750, &tdesc_powerpc_750},
{"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
bfd_mach_ppc_7400, &tdesc_powerpc_7400},
{"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
bfd_mach_ppc_e500, &tdesc_powerpc_e500},
/* 64-bit */
{"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
bfd_mach_ppc64, &tdesc_powerpc_altivec64},
{"620", "Motorola PowerPC 620", bfd_arch_powerpc,
bfd_mach_ppc_620, &tdesc_powerpc_64},
{"630", "Motorola PowerPC 630", bfd_arch_powerpc,
bfd_mach_ppc_630, &tdesc_powerpc_64},
{"a35", "PowerPC A35", bfd_arch_powerpc,
bfd_mach_ppc_a35, &tdesc_powerpc_64},
{"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
{"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
/* FIXME: I haven't checked the register sets of the following. */
{"rs1", "IBM POWER RS1", bfd_arch_rs6000,
bfd_mach_rs6k_rs1, &tdesc_rs6000},
{"rsc", "IBM POWER RSC", bfd_arch_rs6000,
bfd_mach_rs6k_rsc, &tdesc_rs6000},
{"rs2", "IBM POWER RS2", bfd_arch_rs6000,
bfd_mach_rs6k_rs2, &tdesc_rs6000},
{0, 0, (enum bfd_architecture) 0, 0, 0}
};
/* Return the variant corresponding to architecture ARCH and machine number
MACH. If no such variant exists, return null. */
static const struct ppc_variant *
find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
{
const struct ppc_variant *v;
for (v = variants; v->name; v++)
if (arch == v->arch && mach == v->mach)
return v;
return NULL;
}
struct rs6000_frame_cache
{
CORE_ADDR base;
CORE_ADDR initial_sp;
trad_frame_saved_reg *saved_regs;
/* Set BASE_P to true if this frame cache is properly initialized.
Otherwise set to false because some registers or memory cannot
collected. */
int base_p;
/* Cache PC for building unavailable frame. */
CORE_ADDR pc;
};
static struct rs6000_frame_cache *
rs6000_frame_cache (frame_info_ptr this_frame, void **this_cache)
{
struct rs6000_frame_cache *cache;
struct gdbarch *gdbarch = get_frame_arch (this_frame);
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
struct rs6000_framedata fdata;
int wordsize = tdep->wordsize;
CORE_ADDR func = 0, pc = 0;
if ((*this_cache) != NULL)
return (struct rs6000_frame_cache *) (*this_cache);
cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
(*this_cache) = cache;
cache->pc = 0;
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
try
{
func = get_frame_func (this_frame);
cache->pc = func;
pc = get_frame_pc (this_frame);
skip_prologue (gdbarch, func, pc, &fdata);
/* Figure out the parent's stack pointer. */
/* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
address of the current frame. Things might be easier if the
->frame pointed to the outer-most address of the frame. In
the mean time, the address of the prev frame is used as the
base address of this frame. */
cache->base = get_frame_register_unsigned
(this_frame, gdbarch_sp_regnum (gdbarch));
}
catch (const gdb_exception_error &ex)
{
if (ex.error != NOT_AVAILABLE_ERROR)
throw;
return (struct rs6000_frame_cache *) (*this_cache);
}
/* If the function appears to be frameless, check a couple of likely
indicators that we have simply failed to find the frame setup.
Two common cases of this are missing symbols (i.e.
get_frame_func returns the wrong address or 0), and assembly
stubs which have a fast exit path but set up a frame on the slow
path.
If the LR appears to return to this function, then presume that
we have an ABI compliant frame that we failed to find. */
if (fdata.frameless && fdata.lr_offset == 0)
{
CORE_ADDR saved_lr;
int make_frame = 0;
saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
if (func == 0 && saved_lr == pc)
make_frame = 1;
else if (func != 0)
{
CORE_ADDR saved_func = get_pc_function_start (saved_lr);
if (func == saved_func)
make_frame = 1;
}
if (make_frame)
{
fdata.frameless = 0;
fdata.lr_offset = tdep->lr_frame_offset;
}
}
if (!fdata.frameless)
{
/* Frameless really means stackless. */
ULONGEST backchain;
if (safe_read_memory_unsigned_integer (cache->base, wordsize,
byte_order, &backchain))
cache->base = (CORE_ADDR) backchain;
}
cache->saved_regs[gdbarch_sp_regnum (gdbarch)].set_value (cache->base);
/* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
All fpr's from saved_fpr to fp31 are saved. */
if (fdata.saved_fpr >= 0)
{
int i;
CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
/* If skip_prologue says floating-point registers were saved,
but the current architecture has no floating-point registers,
then that's strange. But we have no indices to even record
the addresses under, so we just ignore it. */
if (ppc_floating_point_unit_p (gdbarch))
for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
{
cache->saved_regs[tdep->ppc_fp0_regnum + i].set_addr (fpr_addr);
fpr_addr += 8;
}
}
/* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
All gpr's from saved_gpr to gpr31 are saved (except during the
prologue). */
if (fdata.saved_gpr >= 0)
{
int i;
CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
{
if (fdata.gpr_mask & (1U << i))
cache->saved_regs[tdep->ppc_gp0_regnum + i].set_addr (gpr_addr);
gpr_addr += wordsize;
}
}
/* if != -1, fdata.saved_vr is the smallest number of saved_vr.
All vr's from saved_vr to vr31 are saved. */
if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
{
if (fdata.saved_vr >= 0)
{
int i;
CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
for (i = fdata.saved_vr; i < 32; i++)
{
cache->saved_regs[tdep->ppc_vr0_regnum + i].set_addr (vr_addr);
vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
}
}
}
/* if != -1, fdata.saved_ev is the smallest number of saved_ev.
All vr's from saved_ev to ev31 are saved. ????? */
if (tdep->ppc_ev0_regnum != -1)
{
if (fdata.saved_ev >= 0)
{
int i;
CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
{
cache->saved_regs[tdep->ppc_ev0_regnum + i].set_addr (ev_addr);
cache->saved_regs[tdep->ppc_gp0_regnum + i].set_addr (ev_addr
+ off);
ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
}
}
}
/* If != 0, fdata.cr_offset is the offset from the frame that
holds the CR. */
if (fdata.cr_offset != 0)
cache->saved_regs[tdep->ppc_cr_regnum].set_addr (cache->base
+ fdata.cr_offset);
/* If != 0, fdata.lr_offset is the offset from the frame that
holds the LR. */
if (fdata.lr_offset != 0)
cache->saved_regs[tdep->ppc_lr_regnum].set_addr (cache->base
+ fdata.lr_offset);
else if (fdata.lr_register != -1)
cache->saved_regs[tdep->ppc_lr_regnum].set_realreg (fdata.lr_register);
/* The PC is found in the link register. */
cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
cache->saved_regs[tdep->ppc_lr_regnum];
/* If != 0, fdata.vrsave_offset is the offset from the frame that
holds the VRSAVE. */
if (fdata.vrsave_offset != 0)
cache->saved_regs[tdep->ppc_vrsave_regnum].set_addr (cache->base
+ fdata.vrsave_offset);
if (fdata.alloca_reg < 0)
/* If no alloca register used, then fi->frame is the value of the
%sp for this frame, and it is good enough. */
cache->initial_sp
= get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
else
cache->initial_sp
= get_frame_register_unsigned (this_frame, fdata.alloca_reg);
cache->base_p = 1;
return cache;
}
static void
rs6000_frame_this_id (frame_info_ptr this_frame, void **this_cache,
struct frame_id *this_id)
{
struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
this_cache);
if (!info->base_p)
{
(*this_id) = frame_id_build_unavailable_stack (info->pc);
return;
}
/* This marks the outermost frame. */
if (info->base == 0)
return;
(*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
}
static struct value *
rs6000_frame_prev_register (frame_info_ptr this_frame,
void **this_cache, int regnum)
{
struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
this_cache);
return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
}
static const struct frame_unwind rs6000_frame_unwind =
{
"rs6000 prologue",
NORMAL_FRAME,
default_frame_unwind_stop_reason,
rs6000_frame_this_id,
rs6000_frame_prev_register,
NULL,
default_frame_sniffer
};
/* Allocate and initialize a frame cache for an epilogue frame.
SP is restored and prev-PC is stored in LR. */
static struct rs6000_frame_cache *
rs6000_epilogue_frame_cache (frame_info_ptr this_frame, void **this_cache)
{
struct rs6000_frame_cache *cache;
struct gdbarch *gdbarch = get_frame_arch (this_frame);
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
if (*this_cache)
return (struct rs6000_frame_cache *) *this_cache;
cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
(*this_cache) = cache;
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
try
{
/* At this point the stack looks as if we just entered the
function, and the return address is stored in LR. */
CORE_ADDR sp, lr;
sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
cache->base = sp;
cache->initial_sp = sp;
cache->saved_regs[gdbarch_pc_regnum (gdbarch)].set_value (lr);
}
catch (const gdb_exception_error &ex)
{
if (ex.error != NOT_AVAILABLE_ERROR)
throw;
}
return cache;
}
/* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
Return the frame ID of an epilogue frame. */
static void
rs6000_epilogue_frame_this_id (frame_info_ptr this_frame,
void **this_cache, struct frame_id *this_id)
{
CORE_ADDR pc;
struct rs6000_frame_cache *info =
rs6000_epilogue_frame_cache (this_frame, this_cache);
pc = get_frame_func (this_frame);
if (info->base == 0)
(*this_id) = frame_id_build_unavailable_stack (pc);
else
(*this_id) = frame_id_build (info->base, pc);
}
/* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
Return the register value of REGNUM in previous frame. */
static struct value *
rs6000_epilogue_frame_prev_register (frame_info_ptr this_frame,
void **this_cache, int regnum)
{
struct rs6000_frame_cache *info =
rs6000_epilogue_frame_cache (this_frame, this_cache);
return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
}
/* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
Check whether this an epilogue frame. */
static int
rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
frame_info_ptr this_frame,
void **this_prologue_cache)
{
if (frame_relative_level (this_frame) == 0)
return rs6000_in_function_epilogue_frame_p (this_frame,
get_frame_arch (this_frame),
get_frame_pc (this_frame));
else
return 0;
}
/* Frame unwinder for epilogue frame. This is required for reverse step-over
a function without debug information. */
static const struct frame_unwind rs6000_epilogue_frame_unwind =
{
"rs6000 epilogue",
NORMAL_FRAME,
default_frame_unwind_stop_reason,
rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
NULL,
rs6000_epilogue_frame_sniffer
};
static CORE_ADDR
rs6000_frame_base_address (frame_info_ptr this_frame, void **this_cache)
{
struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
this_cache);
return info->initial_sp;
}
static const struct frame_base rs6000_frame_base = {
&rs6000_frame_unwind,
rs6000_frame_base_address,
rs6000_frame_base_address,
rs6000_frame_base_address
};
static const struct frame_base *
rs6000_frame_base_sniffer (frame_info_ptr this_frame)
{
return &rs6000_frame_base;
}
/* DWARF-2 frame support. Used to handle the detection of
clobbered registers during function calls. */
static void
ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
struct dwarf2_frame_state_reg *reg,
frame_info_ptr this_frame)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
/* PPC32 and PPC64 ABI's are the same regarding volatile and
non-volatile registers. We will use the same code for both. */
/* Call-saved GP registers. */
if ((regnum >= tdep->ppc_gp0_regnum + 14
&& regnum <= tdep->ppc_gp0_regnum + 31)
|| (regnum == tdep->ppc_gp0_regnum + 1))
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
/* Call-clobbered GP registers. */
if ((regnum >= tdep->ppc_gp0_regnum + 3
&& regnum <= tdep->ppc_gp0_regnum + 12)
|| (regnum == tdep->ppc_gp0_regnum))
reg->how = DWARF2_FRAME_REG_UNDEFINED;
/* Deal with FP registers, if supported. */
if (tdep->ppc_fp0_regnum >= 0)
{
/* Call-saved FP registers. */
if ((regnum >= tdep->ppc_fp0_regnum + 14
&& regnum <= tdep->ppc_fp0_regnum + 31))
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
/* Call-clobbered FP registers. */
if ((regnum >= tdep->ppc_fp0_regnum
&& regnum <= tdep->ppc_fp0_regnum + 13))
reg->how = DWARF2_FRAME_REG_UNDEFINED;
}
/* Deal with ALTIVEC registers, if supported. */
if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
{
/* Call-saved Altivec registers. */
if ((regnum >= tdep->ppc_vr0_regnum + 20
&& regnum <= tdep->ppc_vr0_regnum + 31)
|| regnum == tdep->ppc_vrsave_regnum)
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
/* Call-clobbered Altivec registers. */
if ((regnum >= tdep->ppc_vr0_regnum
&& regnum <= tdep->ppc_vr0_regnum + 19))
reg->how = DWARF2_FRAME_REG_UNDEFINED;
}
/* Handle PC register and Stack Pointer correctly. */
if (regnum == gdbarch_pc_regnum (gdbarch))
reg->how = DWARF2_FRAME_REG_RA;
else if (regnum == gdbarch_sp_regnum (gdbarch))
reg->how = DWARF2_FRAME_REG_CFA;
}
/* Return true if a .gnu_attributes section exists in BFD and it
indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
section exists in BFD and it indicates that SPE extensions are in
use. Check the .gnu.attributes section first, as the binary might be
compiled for SPE, but not actually using SPE instructions. */
static int
bfd_uses_spe_extensions (bfd *abfd)
{
asection *sect;
gdb_byte *contents = NULL;
bfd_size_type size;
gdb_byte *ptr;
int success = 0;
if (!abfd)
return 0;
#ifdef HAVE_ELF
/* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
could be using the SPE vector abi without actually using any spe
bits whatsoever. But it's close enough for now. */
int vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
Tag_GNU_Power_ABI_Vector);
if (vector_abi == 3)
return 1;
#endif
sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
if (!sect)
return 0;
size = bfd_section_size (sect);
contents = (gdb_byte *) xmalloc (size);
if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
{
xfree (contents);
return 0;
}
/* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
struct {
uint32 name_len;
uint32 data_len;
uint32 type;
char name[name_len rounded up to 4-byte alignment];
char data[data_len];
};
Technically, there's only supposed to be one such structure in a
given apuinfo section, but the linker is not always vigilant about
merging apuinfo sections from input files. Just go ahead and parse
them all, exiting early when we discover the binary uses SPE
insns.
It's not specified in what endianness the information in this
section is stored. Assume that it's the endianness of the BFD. */
ptr = contents;
while (1)
{
unsigned int name_len;
unsigned int data_len;
unsigned int type;
/* If we can't read the first three fields, we're done. */
if (size < 12)
break;
name_len = bfd_get_32 (abfd, ptr);
name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
data_len = bfd_get_32 (abfd, ptr + 4);
type = bfd_get_32 (abfd, ptr + 8);
ptr += 12;
/* The name must be "APUinfo\0". */
if (name_len != 8
&& strcmp ((const char *) ptr, "APUinfo") != 0)
break;
ptr += name_len;
/* The type must be 2. */
if (type != 2)
break;
/* The data is stored as a series of uint32. The upper half of
each uint32 indicates the particular APU used and the lower
half indicates the revision of that APU. We just care about
the upper half. */
/* Not 4-byte quantities. */
if (data_len & 3U)
break;
while (data_len)
{
unsigned int apuinfo = bfd_get_32 (abfd, ptr);
unsigned int apu = apuinfo >> 16;
ptr += 4;
data_len -= 4;
/* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
either. */
if (apu == 0x100 || apu == 0x101)
{
success = 1;
data_len = 0;
}
}
if (success)
break;
}
xfree (contents);
return success;
}
/* These are macros for parsing instruction fields (I.1.6.28) */
#define PPC_FIELD(value, from, len) \
(((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
#define PPC_SEXT(v, bs) \
((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
^ ((CORE_ADDR) 1 << ((bs) - 1))) \
- ((CORE_ADDR) 1 << ((bs) - 1)))
#define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
#define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
#define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
#define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
#define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
#define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
#define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
#define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
#define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
#define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
| (PPC_FIELD (insn, 16, 5) << 5))
#define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
#define PPC_T(insn) PPC_FIELD (insn, 6, 5)
#define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
#define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
#define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
#define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
#define PPC_OE(insn) PPC_BIT (insn, 21)
#define PPC_RC(insn) PPC_BIT (insn, 31)
#define PPC_Rc(insn) PPC_BIT (insn, 21)
#define PPC_LK(insn) PPC_BIT (insn, 31)
#define PPC_TX(insn) PPC_BIT (insn, 31)
#define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
#define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
#define PPC_XTp(insn) ((PPC_BIT (insn, 10) << 5) \
| PPC_FIELD (insn, 6, 4) << 1)
#define PPC_XSp(insn) ((PPC_BIT (insn, 10) << 5) \
| PPC_FIELD (insn, 6, 4) << 1)
#define PPC_XER_NB(xer) (xer & 0x7f)
/* The following macros are for the prefixed instructions. */
#define P_PPC_D(insn_prefix, insn_suffix) \
PPC_SEXT (PPC_FIELD (insn_prefix, 14, 18) << 16 \
| PPC_FIELD (insn_suffix, 16, 16), 34)
#define P_PPC_TX5(insn_sufix) PPC_BIT (insn_suffix, 5)
#define P_PPC_TX15(insn_suffix) PPC_BIT (insn_suffix, 15)
#define P_PPC_XT(insn_suffix) ((PPC_TX (insn_suffix) << 5) \
| PPC_T (insn_suffix))
#define P_PPC_XT5(insn_suffix) ((P_PPC_TX5 (insn_suffix) << 5) \
| PPC_T (insn_suffix))
#define P_PPC_XT15(insn_suffix) \
((P_PPC_TX15 (insn_suffix) << 5) | PPC_T (insn_suffix))
/* Record Vector-Scalar Registers.
For VSR less than 32, it's represented by an FPR and an VSR-upper register.
Otherwise, it's just a VR register. Record them accordingly. */
static int
ppc_record_vsr (struct regcache *regcache, ppc_gdbarch_tdep *tdep, int vsr)
{
if (vsr < 0 || vsr >= 64)
return -1;
if (vsr >= 32)
{
if (tdep->ppc_vr0_regnum >= 0)
record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
}
else
{
if (tdep->ppc_fp0_regnum >= 0)
record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
if (tdep->ppc_vsr0_upper_regnum >= 0)
record_full_arch_list_add_reg (regcache,
tdep->ppc_vsr0_upper_regnum + vsr);
}
return 0;
}
/* The ppc_record_ACC_fpscr() records the changes to the VSR registers
modified by a floating point instruction. The ENTRY argument selects which
of the eight AT entries needs to be recorded. The boolean SAVE_FPSCR
argument is set to TRUE to indicate the FPSCR also needs to be recorded.
The function returns 0 on success. */
static int
ppc_record_ACC_fpscr (struct regcache *regcache, ppc_gdbarch_tdep *tdep,
int entry, bool save_fpscr)
{
int i;
if (entry < 0 || entry >= 8)
return -1;
/* The ACC register file consists of 8 register entries, each register
entry consist of four 128-bit rows.
The ACC rows map to specific VSR registers.
ACC[0][0] -> VSR[0]
ACC[0][1] -> VSR[1]
ACC[0][2] -> VSR[2]
ACC[0][3] -> VSR[3]
...
ACC[7][0] -> VSR[28]
ACC[7][1] -> VSR[29]
ACC[7][2] -> VSR[30]
ACC[7][3] -> VSR[31]
NOTE:
In ISA 3.1 the ACC is mapped on top of VSR[0] thru VSR[31].
In the future, the ACC may be implemented as an independent register file
rather than mapping on top of the VSRs. This will then require the ACC to
be assigned its own register number and the ptrace interface to be able
access the ACC. Note the ptrace interface for the ACC will also need to
be implemented. */
/* ACC maps over the same VSR space as the fp registers. */
for (i = 0; i < 4; i++)
{
record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum
+ entry * 4 + i);
record_full_arch_list_add_reg (regcache,
tdep->ppc_vsr0_upper_regnum
+ entry * 4 + i);
}
if (save_fpscr)
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
return 0;
}
/* Parse and record instructions primary opcode-4 at ADDR.
Return 0 if successful. */
static int
ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
CORE_ADDR addr, uint32_t insn)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int ext = PPC_FIELD (insn, 21, 11);
int vra = PPC_FIELD (insn, 11, 5);
switch (ext & 0x3f)
{
case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
/* FALL-THROUGH */
case 20: /* Move To VSR Byte Mask Immediate opcode, b2 = 0,
ignore bit 31 */
case 21: /* Move To VSR Byte Mask Immediate opcode, b2 = 1,
ignore bit 31 */
case 23: /* Vector Multiply-Sum & write Carry-out Unsigned
Doubleword */
case 24: /* Vector Extract Double Unsigned Byte to VSR
using GPR-specified Left-Index */
case 25: /* Vector Extract Double Unsigned Byte to VSR
using GPR-specified Right-Index */
case 26: /* Vector Extract Double Unsigned Halfword to VSR
using GPR-specified Left-Index */
case 27: /* Vector Extract Double Unsigned Halfword to VSR
using GPR-specified Right-Index */
case 28: /* Vector Extract Double Unsigned Word to VSR
using GPR-specified Left-Index */
case 29: /* Vector Extract Double Unsigned Word to VSR
using GPR-specified Right-Index */
case 30: /* Vector Extract Double Unsigned Doubleword to VSR
using GPR-specified Left-Index */
case 31: /* Vector Extract Double Unsigned Doubleword to VSR
using GPR-specified Right-Index */
case 42: /* Vector Select */
case 43: /* Vector Permute */
case 59: /* Vector Permute Right-indexed */
case 22: /* Vector Shift
Left Double by Bit Immediate if insn[21] = 0
Right Double by Bit Immediate if insn[21] = 1 */
case 44: /* Vector Shift Left Double by Octet Immediate */
case 45: /* Vector Permute and Exclusive-OR */
case 60: /* Vector Add Extended Unsigned Quadword Modulo */
case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
case 46: /* Vector Multiply-Add Single-Precision */
case 47: /* Vector Negative Multiply-Subtract Single-Precision */
record_full_arch_list_add_reg (regcache,
tdep->ppc_vr0_regnum + PPC_VRT (insn));
return 0;
case 48: /* Multiply-Add High Doubleword */
case 49: /* Multiply-Add High Doubleword Unsigned */
case 51: /* Multiply-Add Low Doubleword */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RT (insn));
return 0;
}
switch ((ext & 0x1ff))
{
case 385:
if (vra != 0 /* Decimal Convert To Signed Quadword */
&& vra != 2 /* Decimal Convert From Signed Quadword */
&& vra != 4 /* Decimal Convert To Zoned */
&& vra != 5 /* Decimal Convert To National */
&& vra != 6 /* Decimal Convert From Zoned */
&& vra != 7 /* Decimal Convert From National */
&& vra != 31) /* Decimal Set Sign */
break;
/* Fall through. */
/* 5.16 Decimal Integer Arithmetic Instructions */
case 1: /* Decimal Add Modulo */
case 65: /* Decimal Subtract Modulo */
case 193: /* Decimal Shift */
case 129: /* Decimal Unsigned Shift */
case 449: /* Decimal Shift and Round */
case 257: /* Decimal Truncate */
case 321: /* Decimal Unsigned Truncate */
/* Bit-21 should be set. */
if (!PPC_BIT (insn, 21))
break;
record_full_arch_list_add_reg (regcache,
tdep->ppc_vr0_regnum + PPC_VRT (insn));
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
return 0;
}
/* Bit-21 is used for RC */
switch (ext & 0x3ff)
{
case 5: /* Vector Rotate Left Quadword */
case 69: /* Vector Rotate Left Quadword then Mask Insert */
case 325: /* Vector Rotate Left Quadword then AND with Mask */
case 6: /* Vector Compare Equal To Unsigned Byte */
case 70: /* Vector Compare Equal To Unsigned Halfword */
case 134: /* Vector Compare Equal To Unsigned Word */
case 199: /* Vector Compare Equal To Unsigned Doubleword */
case 774: /* Vector Compare Greater Than Signed Byte */
case 838: /* Vector Compare Greater Than Signed Halfword */
case 902: /* Vector Compare Greater Than Signed Word */
case 967: /* Vector Compare Greater Than Signed Doubleword */
case 903: /* Vector Compare Greater Than Signed Quadword */
case 518: /* Vector Compare Greater Than Unsigned Byte */
case 646: /* Vector Compare Greater Than Unsigned Word */
case 582: /* Vector Compare Greater Than Unsigned Halfword */
case 711: /* Vector Compare Greater Than Unsigned Doubleword */
case 647: /* Vector Compare Greater Than Unsigned Quadword */
case 966: /* Vector Compare Bounds Single-Precision */
case 198: /* Vector Compare Equal To Single-Precision */
case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
case 455: /* Vector Compare Equal Quadword */
case 710: /* Vector Compare Greater Than Single-Precision */
case 7: /* Vector Compare Not Equal Byte */
case 71: /* Vector Compare Not Equal Halfword */
case 135: /* Vector Compare Not Equal Word */
case 263: /* Vector Compare Not Equal or Zero Byte */
case 327: /* Vector Compare Not Equal or Zero Halfword */
case 391: /* Vector Compare Not Equal or Zero Word */
if (PPC_Rc (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
record_full_arch_list_add_reg (regcache,
tdep->ppc_vr0_regnum + PPC_VRT (insn));
return 0;
case 13:
switch (vra) /* Bit-21 is used for RC */
{
case 0: /* Vector String Isolate Byte Left-justified */
case 1: /* Vector String Isolate Byte Right-justified */
case 2: /* Vector String Isolate Halfword Left-justified */
case 3: /* Vector String Isolate Halfword Right-justified */
if (PPC_Rc (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
record_full_arch_list_add_reg (regcache,
tdep->ppc_vr0_regnum
+ PPC_VRT (insn));
return 0;
}
}
if (ext == 1538)
{
switch (vra)
{
case 0: /* Vector Count Leading Zero Least-Significant Bits
Byte */
case 1: /* Vector Count Trailing Zero Least-Significant Bits
Byte */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RT (insn));
return 0;
case 6: /* Vector Negate Word */
case 7: /* Vector Negate Doubleword */
case 8: /* Vector Parity Byte Word */
case 9: /* Vector Parity Byte Doubleword */
case 10: /* Vector Parity Byte Quadword */
case 16: /* Vector Extend Sign Byte To Word */
case 17: /* Vector Extend Sign Halfword To Word */
case 24: /* Vector Extend Sign Byte To Doubleword */
case 25: /* Vector Extend Sign Halfword To Doubleword */
case 26: /* Vector Extend Sign Word To Doubleword */
case 27: /* Vector Extend Sign Doubleword To Quadword */
case 28: /* Vector Count Trailing Zeros Byte */
case 29: /* Vector Count Trailing Zeros Halfword */
case 30: /* Vector Count Trailing Zeros Word */
case 31: /* Vector Count Trailing Zeros Doubleword */
record_full_arch_list_add_reg (regcache,
tdep->ppc_vr0_regnum + PPC_VRT (insn));
return 0;
}
}
if (ext == 1602)
{
switch (vra)
{
case 0: /* Vector Expand Byte Mask */
case 1: /* Vector Expand Halfword Mask */
case 2: /* Vector Expand Word Mask */
case 3: /* Vector Expand Doubleword Mask */
case 4: /* Vector Expand Quadword Mask */
case 16: /* Move to VSR Byte Mask */
case 17: /* Move to VSR Halfword Mask */
case 18: /* Move to VSR Word Mask */
case 19: /* Move to VSR Doubleword Mask */
case 20: /* Move to VSR Quadword Mask */
ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
return 0;
case 8: /* Vector Extract Byte Mask */
case 9: /* Vector Extract Halfword Mask */
case 10: /* Vector Extract Word Mask */
case 11: /* Vector Extract Doubleword Mask */
case 12: /* Vector Extract Quadword Mask */
/* Ignore the MP bit in the LSB position of the vra value. */
case 24: /* Vector Count Mask Bits Byte, MP = 0 */
case 25: /* Vector Count Mask Bits Byte, MP = 1 */
case 26: /* Vector Count Mask Bits Halfword, MP = 0 */
case 27: /* Vector Count Mask Bits Halfword, MP = 1 */
case 28: /* Vector Count Mask Bits Word, MP = 0 */
case 29: /* Vector Count Mask Bits Word, MP = 1 */
case 30: /* Vector Count Mask Bits Doubleword, MP = 0 */
case 31: /* Vector Count Mask Bits Doubleword, MP = 1 */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RT (insn));
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RT (insn));
return 0;
}
}
switch (ext)
{
case 257: /* Vector Compare Unsigned Quadword */
case 321: /* Vector Compare Signed Quadword */
/* Comparison tests that always set CR field BF */
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
record_full_arch_list_add_reg (regcache,
tdep->ppc_vr0_regnum + PPC_VRT (insn));
return 0;
case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
case 334: /* Vector Pack Signed Word Unsigned Saturate */
case 398: /* Vector Pack Signed Halfword Signed Saturate */
case 462: /* Vector Pack Signed Word Signed Saturate */
case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
case 512: /* Vector Add Unsigned Byte Saturate */
case 576: /* Vector Add Unsigned Halfword Saturate */
case 640: /* Vector Add Unsigned Word Saturate */
case 768: /* Vector Add Signed Byte Saturate */
case 832: /* Vector Add Signed Halfword Saturate */
case 896: /* Vector Add Signed Word Saturate */
case 1536: /* Vector Subtract Unsigned Byte Saturate */
case 1600: /* Vector Subtract Unsigned Halfword Saturate */
case 1664: /* Vector Subtract Unsigned Word Saturate */
case 1792: /* Vector Subtract Signed Byte Saturate */
case 1856: /* Vector Subtract Signed Halfword Saturate */
case 1920: /* Vector Subtract Signed Word Saturate */
case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
case 1672: /* Vector Sum across Half Signed Word Saturate */
case 1928: /* Vector Sum across Signed Word Saturate */
case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
/* FALL-THROUGH */
case 12: /* Vector Merge High Byte */
case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
case 76: /* Vector Merge High Halfword */
case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
case 140: /* Vector Merge High Word */
case 268: /* Vector Merge Low Byte */
case 332: /* Vector Merge Low Halfword */
case 396: /* Vector Merge Low Word */
case 397: /* Vector Clear Leftmost Bytes */
case 461: /* Vector Clear Rightmost Bytes */
case 526: /* Vector Unpack High Signed Byte */
case 590: /* Vector Unpack High Signed Halfword */
case 654: /* Vector Unpack Low Signed Byte */
case 718: /* Vector Unpack Low Signed Halfword */
case 782: /* Vector Pack Pixel */
case 846: /* Vector Unpack High Pixel */
case 974: /* Vector Unpack Low Pixel */
case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
case 1614: /* Vector Unpack High Signed Word */
case 1676: /* Vector Merge Odd Word */
case 1742: /* Vector Unpack Low Signed Word */
case 1932: /* Vector Merge Even Word */
case 524: /* Vector Splat Byte */
case 588: /* Vector Splat Halfword */
case 652: /* Vector Splat Word */
case 780: /* Vector Splat Immediate Signed Byte */
case 844: /* Vector Splat Immediate Signed Halfword */
case 908: /* Vector Splat Immediate Signed Word */
case 261: /* Vector Shift Left Quadword */
case 452: /* Vector Shift Left */
case 517: /* Vector Shift Right Quadword */
case 708: /* Vector Shift Right */
case 773: /* Vector Shift Right Algebraic Quadword */
case 1036: /* Vector Shift Left by Octet */
case 1100: /* Vector Shift Right by Octet */
case 0: /* Vector Add Unsigned Byte Modulo */
case 64: /* Vector Add Unsigned Halfword Modulo */
case 128: /* Vector Add Unsigned Word Modulo */
case 192: /* Vector Add Unsigned Doubleword Modulo */
case 256: /* Vector Add Unsigned Quadword Modulo */
case 320: /* Vector Add & write Carry Unsigned Quadword */
case 384: /* Vector Add and Write Carry-Out Unsigned Word */
case 8: /* Vector Multiply Odd Unsigned Byte */
case 72: /* Vector Multiply Odd Unsigned Halfword */
case 136: /* Vector Multiply Odd Unsigned Word */
case 200: /* Vector Multiply Odd Unsigned Doubleword */
case 264: /* Vector Multiply Odd Signed Byte */
case 328: /* Vector Multiply Odd Signed Halfword */
case 392: /* Vector Multiply Odd Signed Word */
case 456: /* Vector Multiply Odd Signed Doubleword */
case 520: /* Vector Multiply Even Unsigned Byte */
case 584: /* Vector Multiply Even Unsigned Halfword */
case 648: /* Vector Multiply Even Unsigned Word */
case 712: /* Vector Multiply Even Unsigned Doubleword */
case 776: /* Vector Multiply Even Signed Byte */
case 840: /* Vector Multiply Even Signed Halfword */
case 904: /* Vector Multiply Even Signed Word */
case 968: /* Vector Multiply Even Signed Doubleword */
case 457: /* Vector Multiply Low Doubleword */
case 649: /* Vector Multiply High Unsigned Word */
case 713: /* Vector Multiply High Unsigned Doubleword */
case 905: /* Vector Multiply High Signed Word */
case 969: /* Vector Multiply High Signed Doubleword */
case 11: /* Vector Divide Unsigned Quadword */
case 203: /* Vector Divide Unsigned Doubleword */
case 139: /* Vector Divide Unsigned Word */
case 267: /* Vector Divide Signed Quadword */
case 459: /* Vector Divide Signed Doubleword */
case 395: /* Vector Divide Signed Word */
case 523: /* Vector Divide Extended Unsigned Quadword */
case 715: /* Vector Divide Extended Unsigned Doubleword */
case 651: /* Vector Divide Extended Unsigned Word */
case 779: /* Vector Divide Extended Signed Quadword */
case 971: /* Vector Divide Extended Signed Doubleword */
case 907: /* Vector Divide Extended Unsigned Word */
case 1547: /* Vector Modulo Unsigned Quadword */
case 1675: /* Vector Modulo Unsigned Word */
case 1739: /* Vector Modulo Unsigned Doubleword */
case 1803: /* Vector Modulo Signed Quadword */
case 1931: /* Vector Modulo Signed Word */
case 1995: /* Vector Modulo Signed Doubleword */
case 137: /* Vector Multiply Unsigned Word Modulo */
case 1024: /* Vector Subtract Unsigned Byte Modulo */
case 1088: /* Vector Subtract Unsigned Halfword Modulo */
case 1152: /* Vector Subtract Unsigned Word Modulo */
case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
case 1280: /* Vector Subtract Unsigned Quadword Modulo */
case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
case 1282: /* Vector Average Signed Byte */
case 1346: /* Vector Average Signed Halfword */
case 1410: /* Vector Average Signed Word */
case 1026: /* Vector Average Unsigned Byte */
case 1090: /* Vector Average Unsigned Halfword */
case 1154: /* Vector Average Unsigned Word */
case 258: /* Vector Maximum Signed Byte */
case 322: /* Vector Maximum Signed Halfword */
case 386: /* Vector Maximum Signed Word */
case 450: /* Vector Maximum Signed Doubleword */
case 2: /* Vector Maximum Unsigned Byte */
case 66: /* Vector Maximum Unsigned Halfword */
case 130: /* Vector Maximum Unsigned Word */
case 194: /* Vector Maximum Unsigned Doubleword */
case 770: /* Vector Minimum Signed Byte */
case 834: /* Vector Minimum Signed Halfword */
case 898: /* Vector Minimum Signed Word */
case 962: /* Vector Minimum Signed Doubleword */
case 514: /* Vector Minimum Unsigned Byte */
case 578: /* Vector Minimum Unsigned Halfword */
case 642: /* Vector Minimum Unsigned Word */
case 706: /* Vector Minimum Unsigned Doubleword */
case 1028: /* Vector Logical AND */
case 1668: /* Vector Logical Equivalent */
case 1092: /* Vector Logical AND with Complement */
case 1412: /* Vector Logical NAND */
case 1348: /* Vector Logical OR with Complement */
case 1156: /* Vector Logical OR */
case 1284: /* Vector Logical NOR */
case 1220: /* Vector Logical XOR */
case 4: /* Vector Rotate Left Byte */
case 132: /* Vector Rotate Left Word VX-form */
case 68: /* Vector Rotate Left Halfword */
case 196: /* Vector Rotate Left Doubleword */
case 260: /* Vector Shift Left Byte */
case 388: /* Vector Shift Left Word */
case 324: /* Vector Shift Left Halfword */
case 1476: /* Vector Shift Left Doubleword */
case 516: /* Vector Shift Right Byte */
case 644: /* Vector Shift Right Word */
case 580: /* Vector Shift Right Halfword */
case 1732: /* Vector Shift Right Doubleword */
case 772: /* Vector Shift Right Algebraic Byte */
case 900: /* Vector Shift Right Algebraic Word */
case 836: /* Vector Shift Right Algebraic Halfword */
case 964: /* Vector Shift Right Algebraic Doubleword */
case 10: /* Vector Add Single-Precision */
case 74: /* Vector Subtract Single-Precision */
case 1034: /* Vector Maximum Single-Precision */
case 1098: /* Vector Minimum Single-Precision */
case 842: /* Vector Convert From Signed Fixed-Point Word */
case 778: /* Vector Convert From Unsigned Fixed-Point Word */
case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
case 522: /* Vector Round to Single-Precision Integer Nearest */
case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
case 586: /* Vector Round to Single-Precision Integer toward Zero */
case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
case 458: /* Vector Log Base 2 Estimate Floating-Point */
case 266: /* Vector Reciprocal Estimate Single-Precision */
case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
case 1288: /* Vector AES Cipher */
case 1289: /* Vector AES Cipher Last */
case 1352: /* Vector AES Inverse Cipher */
case 1353: /* Vector AES Inverse Cipher Last */
case 1480: /* Vector AES SubBytes */
case 1730: /* Vector SHA-512 Sigma Doubleword */
case 1666: /* Vector SHA-256 Sigma Word */
case 1032: /* Vector Polynomial Multiply-Sum Byte */
case 1160: /* Vector Polynomial Multiply-Sum Word */
case 1096: /* Vector Polynomial Multiply-Sum Halfword */
case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
case 1292: /* Vector Gather Bits by Bytes by Doubleword */
case 1794: /* Vector Count Leading Zeros Byte */
case 1858: /* Vector Count Leading Zeros Halfword */
case 1922: /* Vector Count Leading Zeros Word */
case 1924: /* Vector Count Leading Zeros Doubleword under
bit Mask*/
case 1986: /* Vector Count Leading Zeros Doubleword */
case 1988: /* Vector Count Trailing Zeros Doubleword under bit
Mask */
case 1795: /* Vector Population Count Byte */
case 1859: /* Vector Population Count Halfword */
case 1923: /* Vector Population Count Word */
case 1987: /* Vector Population Count Doubleword */
case 1356: /* Vector Bit Permute Quadword */
case 1484: /* Vector Bit Permute Doubleword */
case 513: /* Vector Multiply-by-10 Unsigned Quadword */
case 1: /* Vector Multiply-by-10 & write Carry Unsigned
Quadword */
case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
case 65: /* Vector Multiply-by-10 Extended & write Carry
Unsigned Quadword */
case 1027: /* Vector Absolute Difference Unsigned Byte */
case 1091: /* Vector Absolute Difference Unsigned Halfword */
case 1155: /* Vector Absolute Difference Unsigned Word */
case 1796: /* Vector Shift Right Variable */
case 1860: /* Vector Shift Left Variable */
case 133: /* Vector Rotate Left Word then Mask Insert */
case 197: /* Vector Rotate Left Doubleword then Mask Insert */
case 389: /* Vector Rotate Left Word then AND with Mask */
case 453: /* Vector Rotate Left Doubleword then AND with Mask */
case 525: /* Vector Extract Unsigned Byte */
case 589: /* Vector Extract Unsigned Halfword */
case 653: /* Vector Extract Unsigned Word */
case 717: /* Vector Extract Doubleword */
case 15: /* Vector Insert Byte from VSR using GPR-specified
Left-Index */
case 79: /* Vector Insert Halfword from VSR using GPR-specified
Left-Index */
case 143: /* Vector Insert Word from VSR using GPR-specified
Left-Index */
case 207: /* Vector Insert Word from GPR using
immediate-specified index */
case 463: /* Vector Insert Doubleword from GPR using
immediate-specified index */
case 271: /* Vector Insert Byte from VSR using GPR-specified
Right-Index */
case 335: /* Vector Insert Halfword from VSR using GPR-specified
Right-Index */
case 399: /* Vector Insert Word from VSR using GPR-specified
Right-Index */
case 527: /* Vector Insert Byte from GPR using GPR-specified
Left-Index */
case 591: /* Vector Insert Halfword from GPR using GPR-specified
Left-Index */
case 655: /* Vector Insert Word from GPR using GPR-specified
Left-Index */
case 719: /* Vector Insert Doubleword from GPR using
GPR-specified Left-Index */
case 783: /* Vector Insert Byte from GPR using GPR-specified
Right-Index */
case 847: /* Vector Insert Halfword from GPR using GPR-specified
Left-Index */
case 911: /* Vector Insert Word from GPR using GPR-specified
Left-Index */
case 975: /* Vector Insert Doubleword from GPR using
GPR-specified Right-Index */
case 781: /* Vector Insert Byte */
case 845: /* Vector Insert Halfword */
case 909: /* Vector Insert Word */
case 973: /* Vector Insert Doubleword */
case 1357: /* Vector Centrifuge Doubleword */
case 1421: /* Vector Parallel Bits Extract Doubleword */
case 1485: /* Vector Parallel Bits Deposit Doubleword */
record_full_arch_list_add_reg (regcache,
tdep->ppc_vr0_regnum + PPC_VRT (insn));
return 0;
case 1228: /* Vector Gather every Nth Bit */
case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
case 1677: /* Vector Extract Unsigned Word Left-Indexed */
case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
case 1933: /* Vector Extract Unsigned Word Right-Indexed */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RT (insn));
return 0;
case 1604: /* Move To Vector Status and Control Register */
record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
return 0;
case 1540: /* Move From Vector Status and Control Register */
record_full_arch_list_add_reg (regcache,
tdep->ppc_vr0_regnum + PPC_VRT (insn));
return 0;
case 833: /* Decimal Copy Sign */
record_full_arch_list_add_reg (regcache,
tdep->ppc_vr0_regnum + PPC_VRT (insn));
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
return 0;
}
gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
"at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
return -1;
}
/* Parse and record instructions of primary opcode 6 at ADDR.
Return 0 if successful. */
static int
ppc_process_record_op6 (struct gdbarch *gdbarch, struct regcache *regcache,
CORE_ADDR addr, uint32_t insn)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int subtype = PPC_FIELD (insn, 28, 4);
CORE_ADDR ea = 0;
switch (subtype)
{
case 0: /* Load VSX Vector Paired */
ppc_record_vsr (regcache, tdep, PPC_XTp (insn));
ppc_record_vsr (regcache, tdep, PPC_XTp (insn) + 1);
return 0;
case 1: /* Store VSX Vector Paired */
if (PPC_RA (insn) != 0)
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn), &ea);
ea += PPC_DQ (insn) << 4;
record_full_arch_list_add_mem (ea, 32);
return 0;
}
return -1;
}
/* Parse and record instructions of primary opcode-19 at ADDR.
Return 0 if successful. */
static int
ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
CORE_ADDR addr, uint32_t insn)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int ext = PPC_EXTOP (insn);
switch (ext & 0x01f)
{
case 2: /* Add PC Immediate Shifted */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RT (insn));
return 0;
}
switch (ext)
{
case 0: /* Move Condition Register Field */
case 33: /* Condition Register NOR */
case 129: /* Condition Register AND with Complement */
case 193: /* Condition Register XOR */
case 225: /* Condition Register NAND */
case 257: /* Condition Register AND */
case 289: /* Condition Register Equivalent */
case 417: /* Condition Register OR with Complement */
case 449: /* Condition Register OR */
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
return 0;
case 16: /* Branch Conditional */
case 560: /* Branch Conditional to Branch Target Address Register */
if ((PPC_BO (insn) & 0x4) == 0)
record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
/* FALL-THROUGH */
case 528: /* Branch Conditional to Count Register */
if (PPC_LK (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
return 0;
case 150: /* Instruction Synchronize */
/* Do nothing. */
return 0;
}
gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
"at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
return -1;
}
/* Parse and record instructions of primary opcode-31 with the extended opcode
177. The argument is the word instruction (insn). Return 0 if successful.
*/
static int
ppc_process_record_op31_177 (struct gdbarch *gdbarch,
struct regcache *regcache,
uint32_t insn)
{
int RA_opcode = PPC_RA(insn);
int as = PPC_FIELD (insn, 6, 3);
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
switch (RA_opcode)
{
case 0: /* VSX Move From Accumulator, xxmfacc */
case 1: /* VSX Move To Accumulator, xxmtacc */
case 3: /* VSX Set Accumulator to Zero, xxsetaccz */
ppc_record_ACC_fpscr (regcache, tdep, as, false);
return 0;
}
return -1;
}
/* Parse and record instructions of primary opcode-31 at ADDR.
Return 0 if successful. */
static int
ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
CORE_ADDR addr, uint32_t insn)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int ext = PPC_EXTOP (insn);
int tmp, nr, nb = 0, i;
CORE_ADDR at_dcsz, ea = 0;
ULONGEST rb, ra, xer;
int size = 0;
/* These instructions have OE bit. */
switch (ext & 0x1ff)
{
/* These write RT and XER. Update CR if RC is set. */
case 8: /* Subtract from carrying */
case 10: /* Add carrying */
case 136: /* Subtract from extended */
case 138: /* Add extended */
case 200: /* Subtract from zero extended */
case 202: /* Add to zero extended */
case 232: /* Subtract from minus one extended */
case 234: /* Add to minus one extended */
/* CA is always altered, but SO/OV are only altered when OE=1.
In any case, XER is always altered. */
record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
if (PPC_RC (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RT (insn));
return 0;
/* These write RT. Update CR if RC is set and update XER if OE is set. */
case 40: /* Subtract from */
case 104: /* Negate */
case 233: /* Multiply low doubleword */
case 235: /* Multiply low word */
case 266: /* Add */
case 393: /* Divide Doubleword Extended Unsigned */
case 395: /* Divide Word Extended Unsigned */
case 425: /* Divide Doubleword Extended */
case 427: /* Divide Word Extended */
case 457: /* Divide Doubleword Unsigned */
case 459: /* Divide Word Unsigned */
case 489: /* Divide Doubleword */
case 491: /* Divide Word */
if (PPC_OE (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
/* FALL-THROUGH */
case 9: /* Multiply High Doubleword Unsigned */
case 11: /* Multiply High Word Unsigned */
case 73: /* Multiply High Doubleword */
case 75: /* Multiply High Word */
if (PPC_RC (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RT (insn));
return 0;
}
if ((ext & 0x1f) == 15)
{
/* Integer Select. bit[16:20] is used for BC. */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RT (insn));
return 0;
}
if ((ext & 0xff) == 170)
{
/* Add Extended using alternate carry bits */
record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RT (insn));
return 0;
}
switch (ext)
{
case 78: /* Determine Leftmost Zero Byte */
if (PPC_RC (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RT (insn));
return 0;
/* These only write RT. */
case 19: /* Move from condition register */
/* Move From One Condition Register Field */
case 74: /* Add and Generate Sixes */
case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
case 302: /* Move From Branch History Rolling Buffer */
case 339: /* Move From Special Purpose Register */
case 371: /* Move From Time Base [Phased-Out] */
case 309: /* Load Doubleword Monitored Indexed */
case 128: /* Set Boolean */
case 384: /* Set Boolean Condition */
case 416: /* Set Boolean Condition Reverse */
case 448: /* Set Negative Boolean Condition */
case 480: /* Set Negative Boolean Condition Reverse */
case 755: /* Deliver A Random Number */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RT (insn));
return 0;
/* These only write to RA. */
case 51: /* Move From VSR Doubleword */
case 59: /* Count Leading Zeros Doubleword under bit Mask */
case 115: /* Move From VSR Word and Zero */
case 122: /* Population count bytes */
case 155: /* Byte-Reverse Word */
case 156: /* Parallel Bits Deposit Doubleword */
case 187: /* Byte-Reverse Doubleword */
case 188: /* Parallel Bits Extract Doubleword */
case 219: /* Byte-Reverse Halfword */
case 220: /* Centrifuge Doubleword */
case 378: /* Population count words */
case 506: /* Population count doublewords */
case 154: /* Parity Word */
case 186: /* Parity Doubleword */
case 252: /* Bit Permute Doubleword */
case 282: /* Convert Declets To Binary Coded Decimal */
case 314: /* Convert Binary Coded Decimal To Declets */
case 508: /* Compare bytes */
case 307: /* Move From VSR Lower Doubleword */
case 571: /* Count Trailing Zeros Doubleword under bit Mask */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn));
return 0;
/* These write CR and optional RA. */
case 792: /* Shift Right Algebraic Word */
case 794: /* Shift Right Algebraic Doubleword */
case 824: /* Shift Right Algebraic Word Immediate */
case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn));
/* FALL-THROUGH */
case 0: /* Compare */
case 32: /* Compare logical */
case 144: /* Move To Condition Register Fields */
/* Move To One Condition Register Field */
case 192: /* Compare Ranged Byte */
case 224: /* Compare Equal Byte */
case 576: /* Move XER to CR Extended */
case 902: /* Paste (should always fail due to single-stepping and
the memory location might not be accessible, so
record only CR) */
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
return 0;
/* These write to RT. Update RA if 'update indexed.' */
case 53: /* Load Doubleword with Update Indexed */
case 119: /* Load Byte and Zero with Update Indexed */
case 311: /* Load Halfword and Zero with Update Indexed */
case 55: /* Load Word and Zero with Update Indexed */
case 375: /* Load Halfword Algebraic with Update Indexed */
case 373: /* Load Word Algebraic with Update Indexed */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn));
/* FALL-THROUGH */
case 21: /* Load Doubleword Indexed */
case 52: /* Load Byte And Reserve Indexed */
case 116: /* Load Halfword And Reserve Indexed */
case 20: /* Load Word And Reserve Indexed */
case 84: /* Load Doubleword And Reserve Indexed */
case 87: /* Load Byte and Zero Indexed */
case 279: /* Load Halfword and Zero Indexed */
case 23: /* Load Word and Zero Indexed */
case 343: /* Load Halfword Algebraic Indexed */
case 341: /* Load Word Algebraic Indexed */
case 790: /* Load Halfword Byte-Reverse Indexed */
case 534: /* Load Word Byte-Reverse Indexed */
case 532: /* Load Doubleword Byte-Reverse Indexed */
case 582: /* Load Word Atomic */
case 614: /* Load Doubleword Atomic */
case 265: /* Modulo Unsigned Doubleword */
case 777: /* Modulo Signed Doubleword */
case 267: /* Modulo Unsigned Word */
case 779: /* Modulo Signed Word */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RT (insn));
return 0;
case 597: /* Load String Word Immediate */
case 533: /* Load String Word Indexed */
if (ext == 597)
{
nr = PPC_NB (insn);
if (nr == 0)
nr = 32;
}
else
{
regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
nr = PPC_XER_NB (xer);
}
nr = (nr + 3) >> 2;
/* If n=0, the contents of register RT are undefined. */
if (nr == 0)
nr = 1;
for (i = 0; i < nr; i++)
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum
+ ((PPC_RT (insn) + i) & 0x1f));
return 0;
case 276: /* Load Quadword And Reserve Indexed */
tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
record_full_arch_list_add_reg (regcache, tmp);
record_full_arch_list_add_reg (regcache, tmp + 1);
return 0;
/* These write VRT. */
case 6: /* Load Vector for Shift Left Indexed */
case 38: /* Load Vector for Shift Right Indexed */
case 7: /* Load Vector Element Byte Indexed */
case 39: /* Load Vector Element Halfword Indexed */
case 71: /* Load Vector Element Word Indexed */
case 103: /* Load Vector Indexed */
case 359: /* Load Vector Indexed LRU */
record_full_arch_list_add_reg (regcache,
tdep->ppc_vr0_regnum + PPC_VRT (insn));
return 0;
/* These write FRT. Update RA if 'update indexed.' */
case 567: /* Load Floating-Point Single with Update Indexed */
case 631: /* Load Floating-Point Double with Update Indexed */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn));
/* FALL-THROUGH */
case 535: /* Load Floating-Point Single Indexed */
case 599: /* Load Floating-Point Double Indexed */
case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
record_full_arch_list_add_reg (regcache,
tdep->ppc_fp0_regnum + PPC_FRT (insn));
return 0;
case 791: /* Load Floating-Point Double Pair Indexed */
tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
record_full_arch_list_add_reg (regcache, tmp);
record_full_arch_list_add_reg (regcache, tmp + 1);
return 0;
/* These write to destination register PPC_XT. */
case 179: /* Move To VSR Doubleword */
case 211: /* Move To VSR Word Algebraic */
case 243: /* Move To VSR Word and Zero */
case 588: /* Load VSX Scalar Doubleword Indexed */
case 524: /* Load VSX Scalar Single-Precision Indexed */
case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
case 13: /* Load VSX Vector Rightmost Byte Indexed */
case 45: /* Load VSX Vector Rightmost Halfword Indexed */
case 77: /* Load VSX Vector Rightmost Word Indexed */
case 109: /* Load VSX Vector Rightmost Doubleword Indexed */
case 844: /* Load VSX Vector Doubleword*2 Indexed */
case 332: /* Load VSX Vector Doubleword & Splat Indexed */
case 780: /* Load VSX Vector Word*4 Indexed */
case 268: /* Load VSX Vector Indexed */
case 364: /* Load VSX Vector Word & Splat Indexed */
case 812: /* Load VSX Vector Halfword*8 Indexed */
case 876: /* Load VSX Vector Byte*16 Indexed */
case 269: /* Load VSX Vector with Length */
case 301: /* Load VSX Vector Left-justified with Length */
case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
case 403: /* Move To VSR Word & Splat */
case 435: /* Move To VSR Double Doubleword */
ppc_record_vsr (regcache, tdep, PPC_XT (insn));
return 0;
case 333: /* Load VSX Vector Paired Indexed */
ppc_record_vsr (regcache, tdep, PPC_XTp (insn));
ppc_record_vsr (regcache, tdep, PPC_XTp (insn) + 1);
return 0;
/* These write RA. Update CR if RC is set. */
case 24: /* Shift Left Word */
case 26: /* Count Leading Zeros Word */
case 27: /* Shift Left Doubleword */
case 28: /* AND */
case 58: /* Count Leading Zeros Doubleword */
case 60: /* AND with Complement */
case 124: /* NOR */
case 284: /* Equivalent */
case 316: /* XOR */
case 476: /* NAND */
case 412: /* OR with Complement */
case 444: /* OR */
case 536: /* Shift Right Word */
case 539: /* Shift Right Doubleword */
case 922: /* Extend Sign Halfword */
case 954: /* Extend Sign Byte */
case 986: /* Extend Sign Word */
case 538: /* Count Trailing Zeros Word */
case 570: /* Count Trailing Zeros Doubleword */
case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
if (ext == 444 && tdep->ppc_ppr_regnum >= 0
&& (PPC_RS (insn) == PPC_RA (insn))
&& (PPC_RA (insn) == PPC_RB (insn))
&& !PPC_RC (insn))
{
/* or Rx,Rx,Rx alters PRI in PPR. */
record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
return 0;
}
if (PPC_RC (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn));
return 0;
/* Store memory. */
case 181: /* Store Doubleword with Update Indexed */
case 183: /* Store Word with Update Indexed */
case 247: /* Store Byte with Update Indexed */
case 439: /* Store Half Word with Update Indexed */
case 695: /* Store Floating-Point Single with Update Indexed */
case 759: /* Store Floating-Point Double with Update Indexed */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn));
/* FALL-THROUGH */
case 135: /* Store Vector Element Byte Indexed */
case 167: /* Store Vector Element Halfword Indexed */
case 199: /* Store Vector Element Word Indexed */
case 231: /* Store Vector Indexed */
case 487: /* Store Vector Indexed LRU */
case 716: /* Store VSX Scalar Doubleword Indexed */
case 140: /* Store VSX Scalar as Integer Word Indexed */
case 652: /* Store VSX Scalar Single-Precision Indexed */
case 972: /* Store VSX Vector Doubleword*2 Indexed */
case 908: /* Store VSX Vector Word*4 Indexed */
case 149: /* Store Doubleword Indexed */
case 151: /* Store Word Indexed */
case 215: /* Store Byte Indexed */
case 407: /* Store Half Word Indexed */
case 694: /* Store Byte Conditional Indexed */
case 726: /* Store Halfword Conditional Indexed */
case 150: /* Store Word Conditional Indexed */
case 214: /* Store Doubleword Conditional Indexed */
case 182: /* Store Quadword Conditional Indexed */
case 662: /* Store Word Byte-Reverse Indexed */
case 918: /* Store Halfword Byte-Reverse Indexed */
case 660: /* Store Doubleword Byte-Reverse Indexed */
case 663: /* Store Floating-Point Single Indexed */
case 727: /* Store Floating-Point Double Indexed */
case 919: /* Store Floating-Point Double Pair Indexed */
case 983: /* Store Floating-Point as Integer Word Indexed */
case 396: /* Store VSX Vector Indexed */
case 940: /* Store VSX Vector Halfword*8 Indexed */
case 1004: /* Store VSX Vector Byte*16 Indexed */
case 909: /* Store VSX Scalar as Integer Byte Indexed */
case 941: /* Store VSX Scalar as Integer Halfword Indexed */
if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
ra = 0;
if (PPC_RA (insn) != 0)
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
ea = ra + rb;
switch (ext)
{
case 183: /* Store Word with Update Indexed */
case 199: /* Store Vector Element Word Indexed */
case 140: /* Store VSX Scalar as Integer Word Indexed */
case 652: /* Store VSX Scalar Single-Precision Indexed */
case 151: /* Store Word Indexed */
case 150: /* Store Word Conditional Indexed */
case 662: /* Store Word Byte-Reverse Indexed */
case 663: /* Store Floating-Point Single Indexed */
case 695: /* Store Floating-Point Single with Update Indexed */
case 983: /* Store Floating-Point as Integer Word Indexed */
size = 4;
break;
case 247: /* Store Byte with Update Indexed */
case 135: /* Store Vector Element Byte Indexed */
case 215: /* Store Byte Indexed */
case 694: /* Store Byte Conditional Indexed */
case 909: /* Store VSX Scalar as Integer Byte Indexed */
size = 1;
break;
case 439: /* Store Halfword with Update Indexed */
case 167: /* Store Vector Element Halfword Indexed */
case 407: /* Store Halfword Indexed */
case 726: /* Store Halfword Conditional Indexed */
case 918: /* Store Halfword Byte-Reverse Indexed */
case 941: /* Store VSX Scalar as Integer Halfword Indexed */
size = 2;
break;
case 181: /* Store Doubleword with Update Indexed */
case 716: /* Store VSX Scalar Doubleword Indexed */
case 149: /* Store Doubleword Indexed */
case 214: /* Store Doubleword Conditional Indexed */
case 660: /* Store Doubleword Byte-Reverse Indexed */
case 727: /* Store Floating-Point Double Indexed */
case 759: /* Store Floating-Point Double with Update Indexed */
size = 8;
break;
case 972: /* Store VSX Vector Doubleword*2 Indexed */
case 908: /* Store VSX Vector Word*4 Indexed */
case 182: /* Store Quadword Conditional Indexed */
case 231: /* Store Vector Indexed */
case 487: /* Store Vector Indexed LRU */
case 919: /* Store Floating-Point Double Pair Indexed */
case 396: /* Store VSX Vector Indexed */
case 940: /* Store VSX Vector Halfword*8 Indexed */
case 1004: /* Store VSX Vector Byte*16 Indexed */
size = 16;
break;
default:
gdb_assert (0);
}
/* Align address for Store Vector instructions. */
switch (ext)
{
case 167: /* Store Vector Element Halfword Indexed */
ea = ea & ~0x1ULL;
break;
case 199: /* Store Vector Element Word Indexed */
ea = ea & ~0x3ULL;
break;
case 231: /* Store Vector Indexed */
case 487: /* Store Vector Indexed LRU */
ea = ea & ~0xfULL;
break;
}
record_full_arch_list_add_mem (ea, size);
return 0;
case 141: /* Store VSX Vector Rightmost Byte Indexed */
case 173: /* Store VSX Vector Rightmost Halfword Indexed */
case 205: /* Store VSX Vector Rightmost Word Indexed */
case 237: /* Store VSX Vector Rightmost Doubleword Indexed */
switch(ext)
{
case 141: nb = 1;
break;
case 173: nb = 2;
break;
case 205: nb = 4;
break;
case 237: nb = 8;
break;
}
ra = 0;
if (PPC_RA (insn) != 0)
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
ea = ra + rb;
record_full_arch_list_add_mem (ea, nb);
return 0;
case 397: /* Store VSX Vector with Length */
case 429: /* Store VSX Vector Left-justified with Length */
ra = 0;
if (PPC_RA (insn) != 0)
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
ea = ra;
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
/* Store up to 16 bytes. */
nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
if (nb > 0)
record_full_arch_list_add_mem (ea, nb);
return 0;
case 461: /* Store VSX Vector Paired Indexed */
{
if (PPC_RA (insn) != 0)
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum
+ PPC_RA (insn), &ea);
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
ea += rb;
record_full_arch_list_add_mem (ea, 32);
return 0;
}
case 710: /* Store Word Atomic */
case 742: /* Store Doubleword Atomic */
ra = 0;
if (PPC_RA (insn) != 0)
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
ea = ra;
switch (ext)
{
case 710: /* Store Word Atomic */
size = 8;
break;
case 742: /* Store Doubleword Atomic */
size = 16;
break;
default:
gdb_assert (0);
}
record_full_arch_list_add_mem (ea, size);
return 0;
case 725: /* Store String Word Immediate */
ra = 0;
if (PPC_RA (insn) != 0)
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
ea += ra;
nb = PPC_NB (insn);
if (nb == 0)
nb = 32;
record_full_arch_list_add_mem (ea, nb);
return 0;
case 661: /* Store String Word Indexed */
ra = 0;
if (PPC_RA (insn) != 0)
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
ea += ra;
regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
nb = PPC_XER_NB (xer);
if (nb != 0)
{
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum + PPC_RB (insn),
&rb);
ea += rb;
record_full_arch_list_add_mem (ea, nb);
}
return 0;
case 467: /* Move To Special Purpose Register */
switch (PPC_SPR (insn))
{
case 1: /* XER */
record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
return 0;
case 3: /* DSCR */
if (tdep->ppc_dscr_regnum >= 0)
record_full_arch_list_add_reg (regcache, tdep->ppc_dscr_regnum);
return 0;
case 8: /* LR */
record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
return 0;
case 9: /* CTR */
record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
return 0;
case 256: /* VRSAVE */
record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
return 0;
case 815: /* TAR */
if (tdep->ppc_tar_regnum >= 0)
record_full_arch_list_add_reg (regcache, tdep->ppc_tar_regnum);
return 0;
case 896:
case 898: /* PPR */
if (tdep->ppc_ppr_regnum >= 0)
record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
return 0;
}
goto UNKNOWN_OP;
case 147: /* Move To Split Little Endian */
record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
return 0;
case 512: /* Move to Condition Register from XER */
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
return 0;
case 4: /* Trap Word */
case 68: /* Trap Doubleword */
case 430: /* Clear BHRB */
case 598: /* Synchronize */
case 62: /* Wait for Interrupt */
case 30: /* Wait */
case 22: /* Instruction Cache Block Touch */
case 854: /* Enforce In-order Execution of I/O */
case 246: /* Data Cache Block Touch for Store */
case 54: /* Data Cache Block Store */
case 86: /* Data Cache Block Flush */
case 278: /* Data Cache Block Touch */
case 758: /* Data Cache Block Allocate */
case 982: /* Instruction Cache Block Invalidate */
case 774: /* Copy */
case 838: /* CP_Abort */
return 0;
case 654: /* Transaction Begin */
case 686: /* Transaction End */
case 750: /* Transaction Suspend or Resume */
case 782: /* Transaction Abort Word Conditional */
case 814: /* Transaction Abort Doubleword Conditional */
case 846: /* Transaction Abort Word Conditional Immediate */
case 878: /* Transaction Abort Doubleword Conditional Immediate */
case 910: /* Transaction Abort */
record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
/* FALL-THROUGH */
case 718: /* Transaction Check */
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
return 0;
case 1014: /* Data Cache Block set to Zero */
if (target_auxv_search (AT_DCACHEBSIZE, &at_dcsz) <= 0
|| at_dcsz == 0)
at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
ra = 0;
if (PPC_RA (insn) != 0)
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
record_full_arch_list_add_mem (ea, at_dcsz);
return 0;
case 177:
if (ppc_process_record_op31_177 (gdbarch, regcache, insn) == 0)
return 0;
}
UNKNOWN_OP:
gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
"at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
return -1;
}
/* Parse and record instructions of primary opcode-59 at ADDR.
Return 0 if successful. */
static int
ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
CORE_ADDR addr, uint32_t insn)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int ext = PPC_EXTOP (insn);
int at = PPC_FIELD (insn, 6, 3);
/* Note the mnemonics for the pmxvf64ger* instructions were officially
changed to pmdmxvf64ger*. The old mnemonics are still supported as
extended mnemonics. */
switch (ext & 0x1f)
{
case 18: /* Floating Divide */
case 20: /* Floating Subtract */
case 21: /* Floating Add */
case 22: /* Floating Square Root */
case 24: /* Floating Reciprocal Estimate */
case 25: /* Floating Multiply */
case 26: /* Floating Reciprocal Square Root Estimate */
case 28: /* Floating Multiply-Subtract */
case 29: /* Floating Multiply-Add */
case 30: /* Floating Negative Multiply-Subtract */
case 31: /* Floating Negative Multiply-Add */
record_full_arch_list_add_reg (regcache,
tdep->ppc_fp0_regnum + PPC_FRT (insn));
if (PPC_RC (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
return 0;
}
/* MMA instructions, keep looking. */
switch (ext >> 2) /* Additional opcode field is upper 8-bits of ext */
{
case 3: /* VSX Vector 8-bit Signed/Unsigned Integer GER, xvi8ger4 */
case 2: /* VSX Vector 8-bit Signed/Unsigned Integer GER Positive
multiply, Positive accumulate, xvi8ger4pp */
case 99: /* VSX Vector 8-bit Signed/Unsigned Integer GER with
Saturate Positive multiply, Positive accumulate,
xvi8ger4spp */
case 35: /* VSX Vector 4-bit Signed Integer GER, xvi4ger8 */
case 34: /* VSX Vector 4-bit Signed Integer GER Positive multiply,
Positive accumulate, xvi4ger8pp */
case 75: /* VSX Vector 16-bit Signed Integer GER, xvi16ger2 */
case 107: /* VSX Vector 16-bit Signed Integer GER Positive multiply,
Positive accumulate, xvi16ger2pp */
case 43: /* VSX Vector 16-bit Signed Integer GER with Saturation,
xvi16ger2s */
case 42: /* VSX Vector 16-bit Signed Integer GER with Saturation
Positive multiply, Positive accumulate, xvi16ger2spp */
ppc_record_ACC_fpscr (regcache, tdep, at, false);
return 0;
case 19: /* VSX Vector 16-bit Floating-Point GER, xvf16ger2 */
case 18: /* VSX Vector 16-bit Floating-Point GER Positive multiply,
Positive accumulate, xvf16ger2pp */
case 146: /* VSX Vector 16-bit Floating-Point GER Positive multiply,
Negative accumulate, xvf16ger2pn */
case 82: /* VSX Vector 16-bit Floating-Point GER Negative multiply,
Positive accumulate, xvf16ger2np */
case 210: /* VSX Vector 16-bit Floating-Point GER Negative multiply,
Negative accumulate, xvf16ger2nn */
case 27: /* VSX Vector 32-bit Floating-Point GER, xvf32ger */
case 26: /* VSX Vector 32-bit Floating-Point GER Positive multiply,
Positive accumulate, xvf32gerpp */
case 154: /* VSX Vector 32-bit Floating-Point GER Positive multiply,
Negative accumulate, xvf32gerpn */
case 90: /* VSX Vector 32-bit Floating-Point GER Negative multiply,
Positive accumulate, xvf32gernp */
case 218: /* VSX Vector 32-bit Floating-Point GER Negative multiply,
Negative accumulate, xvf32gernn */
case 59: /* VSX Vector 64-bit Floating-Point GER, pmdmxvf64ger
(pmxvf64ger) */
case 58: /* VSX Vector 64-bit Floating-Point GER Positive multiply,
Positive accumulate, xvf64gerpp */
case 186: /* VSX Vector 64-bit Floating-Point GER Positive multiply,
Negative accumulate, xvf64gerpn */
case 122: /* VSX Vector 64-bit Floating-Point GER Negative multiply,
Positive accumulate, xvf64gernp */
case 250: /* VSX Vector 64-bit Floating-Point GER Negative multiply,
Negative accumulate, pmdmxvf64gernn (pmxvf64gernn) */
case 51: /* VSX Vector bfloat16 GER, xvbf16ger2 */
case 50: /* VSX Vector bfloat16 GER Positive multiply,
Positive accumulate, xvbf16ger2pp */
case 178: /* VSX Vector bfloat16 GER Positive multiply,
Negative accumulate, xvbf16ger2pn */
case 114: /* VSX Vector bfloat16 GER Negative multiply,
Positive accumulate, xvbf16ger2np */
case 242: /* VSX Vector bfloat16 GER Negative multiply,
Negative accumulate, xvbf16ger2nn */
ppc_record_ACC_fpscr (regcache, tdep, at, true);
return 0;
}
switch (ext)
{
case 2: /* DFP Add */
case 3: /* DFP Quantize */
case 34: /* DFP Multiply */
case 35: /* DFP Reround */
case 67: /* DFP Quantize Immediate */
case 99: /* DFP Round To FP Integer With Inexact */
case 227: /* DFP Round To FP Integer Without Inexact */
case 258: /* DFP Convert To DFP Long! */
case 290: /* DFP Convert To Fixed */
case 514: /* DFP Subtract */
case 546: /* DFP Divide */
case 770: /* DFP Round To DFP Short! */
case 802: /* DFP Convert From Fixed */
case 834: /* DFP Encode BCD To DPD */
if (PPC_RC (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
record_full_arch_list_add_reg (regcache,
tdep->ppc_fp0_regnum + PPC_FRT (insn));
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
return 0;
case 130: /* DFP Compare Ordered */
case 162: /* DFP Test Exponent */
case 194: /* DFP Test Data Class */
case 226: /* DFP Test Data Group */
case 642: /* DFP Compare Unordered */
case 674: /* DFP Test Significance */
case 675: /* DFP Test Significance Immediate */
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
return 0;
case 66: /* DFP Shift Significand Left Immediate */
case 98: /* DFP Shift Significand Right Immediate */
case 322: /* DFP Decode DPD To BCD */
case 354: /* DFP Extract Biased Exponent */
case 866: /* DFP Insert Biased Exponent */
record_full_arch_list_add_reg (regcache,
tdep->ppc_fp0_regnum + PPC_FRT (insn));
if (PPC_RC (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
return 0;
case 846: /* Floating Convert From Integer Doubleword Single */
case 974: /* Floating Convert From Integer Doubleword Unsigned
Single */
record_full_arch_list_add_reg (regcache,
tdep->ppc_fp0_regnum + PPC_FRT (insn));
if (PPC_RC (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
return 0;
}
gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
"at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
return -1;
}
/* Parse and record an XX2-Form instruction with opcode 60 at ADDR. The
word instruction is an argument insn. Return 0 if successful. */
static int
ppc_process_record_op60_XX2 (struct gdbarch *gdbarch,
struct regcache *regcache,
CORE_ADDR addr, uint32_t insn)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int RA_opcode = PPC_RA(insn);
switch (RA_opcode)
{
case 2: /* VSX Vector Test Least-Significant Bit by Byte */
case 25: /* VSX Vector round and Convert Single-Precision format
to Half-Precision format. Only changes the CR
field. */
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
return 0;
case 17: /* VSX Vector Convert with round Single-Precision
to bfloat16 format */
case 24: /* VSX Vector Convert Half-Precision format to
Single-Precision format */
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
/* Fall-through */
case 0: /* VSX Vector Extract Exponent Double-Precision */
case 1: /* VSX Vector Extract Significand Double-Precision */
case 7: /* VSX Vector Byte-Reverse Halfword */
case 8: /* VSX Vector Extract Exponent Single-Precision */
case 9: /* VSX Vector Extract Significand Single-Precision */
case 15: /* VSX Vector Byte-Reverse Word */
case 16: /* VSX Vector Convert bfloat16 to Single-Precision
format Non-signaling */
case 23: /* VSX Vector Byte-Reverse Doubleword */
case 31: /* VSX Vector Byte-Reverse Quadword */
ppc_record_vsr (regcache, tdep, PPC_XT (insn));
return 0;
}
return -1;
}
/* Parse and record instructions of primary opcode-60 at ADDR.
Return 0 if successful. */
static int
ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
CORE_ADDR addr, uint32_t insn)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int ext = PPC_EXTOP (insn);
switch (ext >> 2)
{
case 0: /* VSX Scalar Add Single-Precision */
case 32: /* VSX Scalar Add Double-Precision */
case 24: /* VSX Scalar Divide Single-Precision */
case 56: /* VSX Scalar Divide Double-Precision */
case 176: /* VSX Scalar Copy Sign Double-Precision */
case 33: /* VSX Scalar Multiply-Add Double-Precision */
case 41: /* ditto */
case 1: /* VSX Scalar Multiply-Add Single-Precision */
case 9: /* ditto */
case 160: /* VSX Scalar Maximum Double-Precision */
case 168: /* VSX Scalar Minimum Double-Precision */
case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
case 57: /* ditto */
case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
case 25: /* ditto */
case 48: /* VSX Scalar Multiply Double-Precision */
case 16: /* VSX Scalar Multiply Single-Precision */
case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
case 169: /* ditto */
case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
case 137: /* ditto */
case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
case 185: /* ditto */
case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
case 153: /* ditto */
case 40: /* VSX Scalar Subtract Double-Precision */
case 8: /* VSX Scalar Subtract Single-Precision */
case 96: /* VSX Vector Add Double-Precision */
case 64: /* VSX Vector Add Single-Precision */
case 120: /* VSX Vector Divide Double-Precision */
case 88: /* VSX Vector Divide Single-Precision */
case 97: /* VSX Vector Multiply-Add Double-Precision */
case 105: /* ditto */
case 65: /* VSX Vector Multiply-Add Single-Precision */
case 73: /* ditto */
case 224: /* VSX Vector Maximum Double-Precision */
case 192: /* VSX Vector Maximum Single-Precision */
case 232: /* VSX Vector Minimum Double-Precision */
case 200: /* VSX Vector Minimum Single-Precision */
case 113: /* VSX Vector Multiply-Subtract Double-Precision */
case 121: /* ditto */
case 81: /* VSX Vector Multiply-Subtract Single-Precision */
case 89: /* ditto */
case 112: /* VSX Vector Multiply Double-Precision */
case 80: /* VSX Vector Multiply Single-Precision */
case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
case 233: /* ditto */
case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
case 201: /* ditto */
case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
case 249: /* ditto */
case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
case 217: /* ditto */
case 104: /* VSX Vector Subtract Double-Precision */
case 72: /* VSX Vector Subtract Single-Precision */
case 128: /* VSX Scalar Maximum Type-C Double-Precision */
case 136: /* VSX Scalar Minimum Type-C Double-Precision */
case 144: /* VSX Scalar Maximum Type-J Double-Precision */
case 152: /* VSX Scalar Minimum Type-J Double-Precision */
case 3: /* VSX Scalar Compare Equal Double-Precision */
case 11: /* VSX Scalar Compare Greater Than Double-Precision */
case 19: /* VSX Scalar Compare Greater Than or Equal
Double-Precision */
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
/* FALL-THROUGH */
case 240: /* VSX Vector Copy Sign Double-Precision */
case 208: /* VSX Vector Copy Sign Single-Precision */
case 130: /* VSX Logical AND */
case 138: /* VSX Logical AND with Complement */
case 186: /* VSX Logical Equivalence */
case 178: /* VSX Logical NAND */
case 170: /* VSX Logical OR with Complement */
case 162: /* VSX Logical NOR */
case 146: /* VSX Logical OR */
case 154: /* VSX Logical XOR */
case 18: /* VSX Merge High Word */
case 50: /* VSX Merge Low Word */
case 10: /* VSX Permute Doubleword Immediate (DM=0) */
case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
case 216: /* VSX Vector Insert Exponent Single-Precision */
case 248: /* VSX Vector Insert Exponent Double-Precision */
case 26: /* VSX Vector Permute */
case 58: /* VSX Vector Permute Right-indexed */
case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
ppc_record_vsr (regcache, tdep, PPC_XT (insn));
return 0;
case 61: /* VSX Scalar Test for software Divide Double-Precision */
case 125: /* VSX Vector Test for software Divide Double-Precision */
case 93: /* VSX Vector Test for software Divide Single-Precision */
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
return 0;
case 35: /* VSX Scalar Compare Unordered Double-Precision */
case 43: /* VSX Scalar Compare Ordered Double-Precision */
case 59: /* VSX Scalar Compare Exponents Double-Precision */
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
return 0;
}
switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
{
case 99: /* VSX Vector Compare Equal To Double-Precision */
case 67: /* VSX Vector Compare Equal To Single-Precision */
case 115: /* VSX Vector Compare Greater Than or
Equal To Double-Precision */
case 83: /* VSX Vector Compare Greater Than or
Equal To Single-Precision */
case 107: /* VSX Vector Compare Greater Than Double-Precision */
case 75: /* VSX Vector Compare Greater Than Single-Precision */
if (PPC_Rc (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
ppc_record_vsr (regcache, tdep, PPC_XT (insn));
return 0;
}
switch (ext >> 1)
{
case 265: /* VSX Scalar round Double-Precision to
Single-Precision and Convert to
Single-Precision format */
case 344: /* VSX Scalar truncate Double-Precision to
Integer and Convert to Signed Integer
Doubleword format with Saturate */
case 88: /* VSX Scalar truncate Double-Precision to
Integer and Convert to Signed Integer Word
Format with Saturate */
case 328: /* VSX Scalar truncate Double-Precision integer
and Convert to Unsigned Integer Doubleword
Format with Saturate */
case 72: /* VSX Scalar truncate Double-Precision to
Integer and Convert to Unsigned Integer Word
Format with Saturate */
case 329: /* VSX Scalar Convert Single-Precision to
Double-Precision format */
case 376: /* VSX Scalar Convert Signed Integer
Doubleword to floating-point format and
Round to Double-Precision format */
case 312: /* VSX Scalar Convert Signed Integer
Doubleword to floating-point format and
round to Single-Precision */
case 360: /* VSX Scalar Convert Unsigned Integer
Doubleword to floating-point format and
Round to Double-Precision format */
case 296: /* VSX Scalar Convert Unsigned Integer
Doubleword to floating-point format and
Round to Single-Precision */
case 73: /* VSX Scalar Round to Double-Precision Integer
Using Round to Nearest Away */
case 107: /* VSX Scalar Round to Double-Precision Integer
Exact using Current rounding mode */
case 121: /* VSX Scalar Round to Double-Precision Integer
Using Round toward -Infinity */
case 105: /* VSX Scalar Round to Double-Precision Integer
Using Round toward +Infinity */
case 89: /* VSX Scalar Round to Double-Precision Integer
Using Round toward Zero */
case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
case 281: /* VSX Scalar Round to Single-Precision */
case 74: /* VSX Scalar Reciprocal Square Root Estimate
Double-Precision */
case 10: /* VSX Scalar Reciprocal Square Root Estimate
Single-Precision */
case 75: /* VSX Scalar Square Root Double-Precision */
case 11: /* VSX Scalar Square Root Single-Precision */
case 393: /* VSX Vector round Double-Precision to
Single-Precision and Convert to
Single-Precision format */
case 472: /* VSX Vector truncate Double-Precision to
Integer and Convert to Signed Integer
Doubleword format with Saturate */
case 216: /* VSX Vector truncate Double-Precision to
Integer and Convert to Signed Integer Word
Format with Saturate */
case 456: /* VSX Vector truncate Double-Precision to
Integer and Convert to Unsigned Integer
Doubleword format with Saturate */
case 200: /* VSX Vector truncate Double-Precision to
Integer and Convert to Unsigned Integer Word
Format with Saturate */
case 457: /* VSX Vector Convert Single-Precision to
Double-Precision format */
case 408: /* VSX Vector truncate Single-Precision to
Integer and Convert to Signed Integer
Doubleword format with Saturate */
case 152: /* VSX Vector truncate Single-Precision to
Integer and Convert to Signed Integer Word
Format with Saturate */
case 392: /* VSX Vector truncate Single-Precision to
Integer and Convert to Unsigned Integer
Doubleword format with Saturate */
case 136: /* VSX Vector truncate Single-Precision to
Integer and Convert to Unsigned Integer Word
Format with Saturate */
case 504: /* VSX Vector Convert and round Signed Integer
Doubleword to Double-Precision format */
case 440: /* VSX Vector Convert and round Signed Integer
Doubleword to Single-Precision format */
case 248: /* VSX Vector Convert Signed Integer Word to
Double-Precision format */
case 184: /* VSX Vector Convert and round Signed Integer
Word to Single-Precision format */
case 488: /* VSX Vector Convert and round Unsigned
Integer Doubleword to Double-Precision format */
case 424: /* VSX Vector Convert and round Unsigned
Integer Doubleword to Single-Precision format */
case 232: /* VSX Vector Convert and round Unsigned
Integer Word to Double-Precision format */
case 168: /* VSX Vector Convert and round Unsigned
Integer Word to Single-Precision format */
case 201: /* VSX Vector Round to Double-Precision
Integer using round to Nearest Away */
case 235: /* VSX Vector Round to Double-Precision
Integer Exact using Current rounding mode */
case 249: /* VSX Vector Round to Double-Precision
Integer using round toward -Infinity */
case 233: /* VSX Vector Round to Double-Precision
Integer using round toward +Infinity */
case 217: /* VSX Vector Round to Double-Precision
Integer using round toward Zero */
case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
case 137: /* VSX Vector Round to Single-Precision Integer
Using Round to Nearest Away */
case 171: /* VSX Vector Round to Single-Precision Integer
Exact Using Current rounding mode */
case 185: /* VSX Vector Round to Single-Precision Integer
Using Round toward -Infinity */
case 169: /* VSX Vector Round to Single-Precision Integer
Using Round toward +Infinity */
case 153: /* VSX Vector Round to Single-Precision Integer
Using round toward Zero */
case 202: /* VSX Vector Reciprocal Square Root Estimate
Double-Precision */
case 138: /* VSX Vector Reciprocal Square Root Estimate
Single-Precision */
case 203: /* VSX Vector Square Root Double-Precision */
case 139: /* VSX Vector Square Root Single-Precision */
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
/* FALL-THROUGH */
case 345: /* VSX Scalar Absolute Value Double-Precision */
case 267: /* VSX Scalar Convert Scalar Single-Precision to
Vector Single-Precision format Non-signalling */
case 331: /* VSX Scalar Convert Single-Precision to
Double-Precision format Non-signalling */
case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
case 377: /* VSX Scalar Negate Double-Precision */
case 473: /* VSX Vector Absolute Value Double-Precision */
case 409: /* VSX Vector Absolute Value Single-Precision */
case 489: /* VSX Vector Negative Absolute Value Double-Precision */
case 425: /* VSX Vector Negative Absolute Value Single-Precision */
case 505: /* VSX Vector Negate Double-Precision */
case 441: /* VSX Vector Negate Single-Precision */
case 164: /* VSX Splat Word */
case 165: /* VSX Vector Extract Unsigned Word */
case 181: /* VSX Vector Insert Word */
ppc_record_vsr (regcache, tdep, PPC_XT (insn));
return 0;
case 298: /* VSX Scalar Test Data Class Single-Precision */
case 362: /* VSX Scalar Test Data Class Double-Precision */
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
/* FALL-THROUGH */
case 106: /* VSX Scalar Test for software Square Root
Double-Precision */
case 234: /* VSX Vector Test for software Square Root
Double-Precision */
case 170: /* VSX Vector Test for software Square Root
Single-Precision */
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
return 0;
case 347:
switch (PPC_FIELD (insn, 11, 5))
{
case 0: /* VSX Scalar Extract Exponent Double-Precision */
case 1: /* VSX Scalar Extract Significand Double-Precision */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RT (insn));
return 0;
case 16: /* VSX Scalar Convert Half-Precision format to
Double-Precision format */
case 17: /* VSX Scalar round & Convert Double-Precision format
to Half-Precision format */
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
ppc_record_vsr (regcache, tdep, PPC_XT (insn));
return 0;
}
break;
case 475:
if (ppc_process_record_op60_XX2 (gdbarch, regcache, addr, insn) != 0)
return -1;
return 0;
}
switch (ext)
{
case 360:
if (PPC_FIELD (insn, 11, 2) == 0) /* VSX Vector Splat Immediate Byte */
{
ppc_record_vsr (regcache, tdep, PPC_XT (insn));
return 0;
}
if (PPC_FIELD (insn, 11, 5) == 31) /* Load VSX Vector Special Value
Quadword */
{
ppc_record_vsr (regcache, tdep, PPC_XT (insn));
return 0;
}
break;
case 916: /* VSX Vector Generate PCV from Byte Mask */
case 917: /* VSX Vector Generate PCV from Halfword Mask */
case 948: /* VSX Vector Generate PCV from Word Mask */
case 949: /* VSX Vector Generate PCV from Doubleword Mask */
case 918: /* VSX Scalar Insert Exponent Double-Precision */
ppc_record_vsr (regcache, tdep, PPC_XT (insn));
return 0;
}
if (((ext >> 3) & 0x3) == 3) /* VSX Select */
{
ppc_record_vsr (regcache, tdep, PPC_XT (insn));
return 0;
}
gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
"at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
return -1;
}
/* Parse and record instructions of primary opcode-61 at ADDR.
Return 0 if successful. */
static int
ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
CORE_ADDR addr, uint32_t insn)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
ULONGEST ea = 0;
int size;
switch (insn & 0x3)
{
case 0: /* Store Floating-Point Double Pair */
case 2: /* Store VSX Scalar Doubleword */
case 3: /* Store VSX Scalar Single */
if (PPC_RA (insn) != 0)
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn),
&ea);
ea += PPC_DS (insn) << 2;
switch (insn & 0x3)
{
case 0: /* Store Floating-Point Double Pair */
size = 16;
break;
case 2: /* Store VSX Scalar Doubleword */
size = 8;
break;
case 3: /* Store VSX Scalar Single */
size = 4;
break;
default:
gdb_assert (0);
}
record_full_arch_list_add_mem (ea, size);
return 0;
}
switch (insn & 0x7)
{
case 1: /* Load VSX Vector */
ppc_record_vsr (regcache, tdep, PPC_XT (insn));
return 0;
case 5: /* Store VSX Vector */
if (PPC_RA (insn) != 0)
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn),
&ea);
ea += PPC_DQ (insn) << 4;
record_full_arch_list_add_mem (ea, 16);
return 0;
}
gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
"at %s.\n", insn, paddress (gdbarch, addr));
return -1;
}
/* Parse and record instructions of primary opcode-63 at ADDR.
Return 0 if successful. */
static int
ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
CORE_ADDR addr, uint32_t insn)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int ext = PPC_EXTOP (insn);
int tmp;
switch (ext & 0x1f)
{
case 18: /* Floating Divide */
case 20: /* Floating Subtract */
case 21: /* Floating Add */
case 22: /* Floating Square Root */
case 24: /* Floating Reciprocal Estimate */
case 25: /* Floating Multiply */
case 26: /* Floating Reciprocal Square Root Estimate */
case 28: /* Floating Multiply-Subtract */
case 29: /* Floating Multiply-Add */
case 30: /* Floating Negative Multiply-Subtract */
case 31: /* Floating Negative Multiply-Add */
record_full_arch_list_add_reg (regcache,
tdep->ppc_fp0_regnum + PPC_FRT (insn));
if (PPC_RC (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
return 0;
case 23: /* Floating Select */
record_full_arch_list_add_reg (regcache,
tdep->ppc_fp0_regnum + PPC_FRT (insn));
if (PPC_RC (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
return 0;
}
switch (ext & 0xff)
{
case 5: /* VSX Scalar Round to Quad-Precision Integer */
case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
Precision */
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
return 0;
}
switch (ext)
{
case 2: /* DFP Add Quad */
case 3: /* DFP Quantize Quad */
case 34: /* DFP Multiply Quad */
case 35: /* DFP Reround Quad */
case 67: /* DFP Quantize Immediate Quad */
case 99: /* DFP Round To FP Integer With Inexact Quad */
case 227: /* DFP Round To FP Integer Without Inexact Quad */
case 258: /* DFP Convert To DFP Extended Quad */
case 514: /* DFP Subtract Quad */
case 546: /* DFP Divide Quad */
case 770: /* DFP Round To DFP Long Quad */
case 802: /* DFP Convert From Fixed Quad */
case 834: /* DFP Encode BCD To DPD Quad */
if (PPC_RC (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
record_full_arch_list_add_reg (regcache, tmp);
record_full_arch_list_add_reg (regcache, tmp + 1);
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
return 0;
case 130: /* DFP Compare Ordered Quad */
case 162: /* DFP Test Exponent Quad */
case 194: /* DFP Test Data Class Quad */
case 226: /* DFP Test Data Group Quad */
case 642: /* DFP Compare Unordered Quad */
case 674: /* DFP Test Significance Quad */
case 675: /* DFP Test Significance Immediate Quad */
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
return 0;
case 66: /* DFP Shift Significand Left Immediate Quad */
case 98: /* DFP Shift Significand Right Immediate Quad */
case 322: /* DFP Decode DPD To BCD Quad */
case 866: /* DFP Insert Biased Exponent Quad */
tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
record_full_arch_list_add_reg (regcache, tmp);
record_full_arch_list_add_reg (regcache, tmp + 1);
if (PPC_RC (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
return 0;
case 290: /* DFP Convert To Fixed Quad */
record_full_arch_list_add_reg (regcache,
tdep->ppc_fp0_regnum + PPC_FRT (insn));
if (PPC_RC (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
return 0;
case 354: /* DFP Extract Biased Exponent Quad */
record_full_arch_list_add_reg (regcache,
tdep->ppc_fp0_regnum + PPC_FRT (insn));
if (PPC_RC (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
return 0;
case 12: /* Floating Round to Single-Precision */
case 14: /* Floating Convert To Integer Word */
case 15: /* Floating Convert To Integer Word
with round toward Zero */
case 142: /* Floating Convert To Integer Word Unsigned */
case 143: /* Floating Convert To Integer Word Unsigned
with round toward Zero */
case 392: /* Floating Round to Integer Nearest */
case 424: /* Floating Round to Integer Toward Zero */
case 456: /* Floating Round to Integer Plus */
case 488: /* Floating Round to Integer Minus */
case 814: /* Floating Convert To Integer Doubleword */
case 815: /* Floating Convert To Integer Doubleword
with round toward Zero */
case 846: /* Floating Convert From Integer Doubleword */
case 942: /* Floating Convert To Integer Doubleword Unsigned */
case 943: /* Floating Convert To Integer Doubleword Unsigned
with round toward Zero */
case 974: /* Floating Convert From Integer Doubleword Unsigned */
record_full_arch_list_add_reg (regcache,
tdep->ppc_fp0_regnum + PPC_FRT (insn));
if (PPC_RC (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
return 0;
case 583:
switch (PPC_FIELD (insn, 11, 5))
{
case 1: /* Move From FPSCR & Clear Enables */
case 20: /* Move From FPSCR Control & set DRN */
case 21: /* Move From FPSCR Control & set DRN Immediate */
case 22: /* Move From FPSCR Control & set RN */
case 23: /* Move From FPSCR Control & set RN Immediate */
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
/* Fall through. */
case 0: /* Move From FPSCR */
case 24: /* Move From FPSCR Lightweight */
if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
record_full_arch_list_add_reg (regcache,
tdep->ppc_fp0_regnum
+ PPC_FRT (insn));
return 0;
}
break;
case 8: /* Floating Copy Sign */
case 40: /* Floating Negate */
case 72: /* Floating Move Register */
case 136: /* Floating Negative Absolute Value */
case 264: /* Floating Absolute Value */
record_full_arch_list_add_reg (regcache,
tdep->ppc_fp0_regnum + PPC_FRT (insn));
if (PPC_RC (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
return 0;
case 838: /* Floating Merge Odd Word */
case 966: /* Floating Merge Even Word */
record_full_arch_list_add_reg (regcache,
tdep->ppc_fp0_regnum + PPC_FRT (insn));
return 0;
case 38: /* Move To FPSCR Bit 1 */
case 70: /* Move To FPSCR Bit 0 */
case 134: /* Move To FPSCR Field Immediate */
case 711: /* Move To FPSCR Fields */
if (PPC_RC (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
return 0;
case 0: /* Floating Compare Unordered */
case 32: /* Floating Compare Ordered */
case 64: /* Move to Condition Register from FPSCR */
case 132: /* VSX Scalar Compare Ordered Quad-Precision */
case 164: /* VSX Scalar Compare Exponents Quad-Precision */
case 644: /* VSX Scalar Compare Unordered Quad-Precision */
case 708: /* VSX Scalar Test Data Class Quad-Precision */
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
/* FALL-THROUGH */
case 128: /* Floating Test for software Divide */
case 160: /* Floating Test for software Square Root */
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
return 0;
case 4: /* VSX Scalar Add Quad-Precision */
case 36: /* VSX Scalar Multiply Quad-Precision */
case 388: /* VSX Scalar Multiply-Add Quad-Precision */
case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
case 484: /* VSX Scalar Negative Multiply-Subtract
Quad-Precision */
case 516: /* VSX Scalar Subtract Quad-Precision */
case 548: /* VSX Scalar Divide Quad-Precision */
case 994:
{
switch (PPC_FIELD (insn, 11, 5))
{
case 0: /* DFP Convert From Fixed Quadword Quad */
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
record_full_arch_list_add_reg (regcache,
tdep->ppc_fp0_regnum
+ PPC_FRT (insn));
record_full_arch_list_add_reg (regcache,
tdep->ppc_fp0_regnum
+ PPC_FRT (insn) + 1);
return 0;
case 1: /* DFP Convert To Fixed Quadword Quad */
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
return 0;
}
}
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
/* FALL-THROUGH */
case 68: /* VSX Scalar Compare Equal Quad-Precision */
case 196: /* VSX Scalar Compare Greater Than or Equal
Quad-Precision */
case 228: /* VSX Scalar Compare Greater Than Quad-Precision */
case 676: /* VSX Scalar Maximum Type-C Quad-Precision */
case 740: /* VSX Scalar Minimum Type-C Quad-Precision */
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
/* FALL-THROUGH */
case 100: /* VSX Scalar Copy Sign Quad-Precision */
case 868: /* VSX Scalar Insert Exponent Quad-Precision */
ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
return 0;
case 804:
switch (PPC_FIELD (insn, 11, 5))
{
case 27: /* VSX Scalar Square Root Quad-Precision */
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
/* FALL-THROUGH */
case 0: /* VSX Scalar Absolute Quad-Precision */
case 2: /* VSX Scalar Extract Exponent Quad-Precision */
case 8: /* VSX Scalar Negative Absolute Quad-Precision */
case 16: /* VSX Scalar Negate Quad-Precision */
case 18: /* VSX Scalar Extract Significand Quad-Precision */
ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
return 0;
}
break;
case 836:
switch (PPC_FIELD (insn, 11, 5))
{
case 0: /* VSX Scalar Convert with round to zero
Quad-Precision to Unsigned Quadword */
case 1: /* VSX Scalar truncate & Convert Quad-Precision format
to Unsigned Word format */
case 2: /* VSX Scalar Convert Unsigned Doubleword format to
Quad-Precision format */
case 3: /* VSX Scalar Convert with round
Unsigned Quadword to Quad-Precision */
case 8: /* VSX Scalar Convert with round to zero
Quad-Precision to Signed Quadword */
case 9: /* VSX Scalar truncate & Convert Quad-Precision format
to Signed Word format */
case 10: /* VSX Scalar Convert Signed Doubleword format to
Quad-Precision format */
case 11: /* VSX Scalar Convert with round
Signed Quadword to Quad-Precision */
case 17: /* VSX Scalar truncate & Convert Quad-Precision format
to Unsigned Doubleword format */
case 20: /* VSX Scalar round & Convert Quad-Precision format to
Double-Precision format */
case 22: /* VSX Scalar Convert Double-Precision format to
Quad-Precision format */
case 25: /* VSX Scalar truncate & Convert Quad-Precision format
to Signed Doubleword format */
record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
return 0;
}
}
gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
"at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
return -1;
}
/* Record the prefixed instructions with primary opcode 32. The arguments are
the first 32-bits of the instruction (insn_prefix), and the second 32-bits
of the instruction (insn_suffix). Return 0 on success. */
static int
ppc_process_record_prefix_op42 (struct gdbarch *gdbarch,
struct regcache *regcache,
uint32_t insn_prefix, uint32_t insn_suffix)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int type = PPC_FIELD (insn_prefix, 6, 2);
int ST1 = PPC_FIELD (insn_prefix, 8, 1);
if (ST1 != 0)
return -1;
switch (type)
{
case 0: /* Prefixed Load VSX Scalar Doubleword, plxsd */
ppc_record_vsr (regcache, tdep, PPC_VRT (insn_suffix) + 32);
break;
case 2: /* Prefixed Load Halfword Algebraic, plha */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum
+ PPC_RT (insn_suffix));
break;
default:
return -1;
}
return 0;
}
/* Record the prefixed XX3-Form instructions with primary opcode 59. The
arguments are the first 32-bits of the instruction (insn_prefix), and the
second 32-bits of the instruction (insn_suffix). Return 0 on success. */
static int
ppc_process_record_prefix_op59_XX3 (struct gdbarch *gdbarch,
struct regcache *regcache,
uint32_t insn_prefix, uint32_t insn_suffix)
{
int opcode = PPC_FIELD (insn_suffix, 21, 8);
int type = PPC_FIELD (insn_prefix, 6, 2);
int ST4 = PPC_FIELD (insn_prefix, 8, 4);
int at = PPC_FIELD (insn_suffix, 6, 3);
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
/* Note, the mnemonics for the pmxvf16ger*, pmxvf32ger*,pmxvf64ger*,
pmxvi4ger8*, pmxvi8ger4* pmxvi16ger2* instructions were officially
changed to pmdmxbf16ger*, pmdmxvf32ger*, pmdmxvf64ger*, pmdmxvi4ger8*,
pmdmxvi8ger4*, pmdmxvi16ger* respectively. The old mnemonics are still
supported by the assembler as extended mnemonics. The disassembler
generates the new mnemonics. */
if (type == 3)
{
if (ST4 == 9)
switch (opcode)
{
case 35: /* Prefixed Masked VSX Vector 4-bit Signed Integer GER
MMIRR, pmdmxvi4ger8 (pmxvi4ger8) */
case 34: /* Prefixed Masked VSX Vector 4-bit Signed Integer GER
MMIRR, pmdmxvi4ger8pp (pmxvi4ger8pp) */
case 99: /* Prefixed Masked VSX Vector 8-bit Signed/Unsigned
Integer GER with Saturate Positive multiply,
Positive accumulate, xvi8ger4spp */
case 3: /* Prefixed Masked VSX Vector 8-bit Signed/Unsigned
Integer GER MMIRR, pmdmxvi8ger4 (pmxvi8ger4) */
case 2: /* Prefixed Masked VSX Vector 8-bit Signed/Unsigned
Integer GER Positive multiply, Positive accumulate
MMIRR, pmdmxvi8ger4pp (pmxvi8ger4pp) */
case 75: /* Prefixed Masked VSX Vector 16-bit Signed Integer
GER MMIRR, pmdmxvi16ger2 (pmxvi16ger2) */
case 107: /* Prefixed Masked VSX Vector 16-bit Signed Integer
GER Positive multiply, Positive accumulate,
pmdmxvi16ger2pp (pmxvi16ger2pp) */
case 43: /* Prefixed Masked VSX Vector 16-bit Signed Integer
GER with Saturation MMIRR, pmdmxvi16ger2s
(pmxvi16ger2s) */
case 42: /* Prefixed Masked VSX Vector 16-bit Signed Integer
GER with Saturation Positive multiply, Positive
accumulate MMIRR, pmdmxvi16ger2spp (pmxvi16ger2spp)
*/
ppc_record_ACC_fpscr (regcache, tdep, at, false);
return 0;
case 19: /* Prefixed Masked VSX Vector 16-bit Floating-Point
GER MMIRR, pmdmxvf16ger2 (pmxvf16ger2) */
case 18: /* Prefixed Masked VSX Vector 16-bit Floating-Point
GER Positive multiply, Positive accumulate MMIRR,
pmdmxvf16ger2pp (pmxvf16ger2pp) */
case 146: /* Prefixed Masked VSX Vector 16-bit Floating-Point
GER Positive multiply, Negative accumulate MMIRR,
pmdmxvf16ger2pn (pmxvf16ger2pn) */
case 82: /* Prefixed Masked VSX Vector 16-bit Floating-Point
GER Negative multiply, Positive accumulate MMIRR,
pmdmxvf16ger2np (pmxvf16ger2np) */
case 210: /* Prefixed Masked VSX Vector 16-bit Floating-Point
GER Negative multiply, Negative accumulate MMIRR,
pmdmxvf16ger2nn (pmxvf16ger2nn) */
case 27: /* Prefixed Masked VSX Vector 32-bit Floating-Point
GER MMIRR, pmdmxvf32ger (pmxvf32ger) */
case 26: /* Prefixed Masked VSX Vector 32-bit Floating-Point
GER Positive multiply, Positive accumulate MMIRR,
pmdmxvf32gerpp (pmxvf32gerpp) */
case 154: /* Prefixed Masked VSX Vector 32-bit Floating-Point
GER Positive multiply, Negative accumulate MMIRR,
pmdmxvf32gerpn (pmxvf32gerpn) */
case 90: /* Prefixed Masked VSX Vector 32-bit Floating-Point
GER Negative multiply, Positive accumulate MMIRR,
pmdmxvf32gernp (pmxvf32gernp )*/
case 218: /* Prefixed Masked VSX Vector 32-bit Floating-Point
GER Negative multiply, Negative accumulate MMIRR,
pmdmxvf32gernn (pmxvf32gernn) */
case 59: /* Prefixed Masked VSX Vector 64-bit Floating-Point
GER MMIRR, pmdmxvf64ger (pmxvf64ger) */
case 58: /* Floating-Point GER Positive multiply, Positive
accumulate MMIRR, pmdmxvf64gerpp (pmxvf64gerpp) */
case 186: /* Prefixed Masked VSX Vector 64-bit Floating-Point
GER Positive multiply, Negative accumulate MMIRR,
pmdmxvf64gerpn (pmxvf64gerpn) */
case 122: /* Prefixed Masked VSX Vector 64-bit Floating-Point
GER Negative multiply, Positive accumulate MMIRR,
pmdmxvf64gernp (pmxvf64gernp) */
case 250: /* Prefixed Masked VSX Vector 64-bit Floating-Point
GER Negative multiply, Negative accumulate MMIRR,
pmdmxvf64gernn (pmxvf64gernn) */
case 51: /* Prefixed Masked VSX Vector bfloat16 GER MMIRR,
pmdmxvbf16ger2 (pmxvbf16ger2) */
case 50: /* Prefixed Masked VSX Vector bfloat16 GER Positive
multiply, Positive accumulate MMIRR,
pmdmxvbf16ger2pp (pmxvbf16ger2pp) */
case 178: /* Prefixed Masked VSX Vector bfloat16 GER Positive
multiply, Negative accumulate MMIRR,
pmdmxvbf16ger2pn (pmxvbf16ger2pn) */
case 114: /* Prefixed Masked VSX Vector bfloat16 GER Negative
multiply, Positive accumulate MMIRR,
pmdmxvbf16ger2np (pmxvbf16ger2np) */
case 242: /* Prefixed Masked VSX Vector bfloat16 GER Negative
multiply, Negative accumulate MMIRR,
pmdmxvbf16ger2nn (pmxvbf16ger2nn) */
ppc_record_ACC_fpscr (regcache, tdep, at, true);
return 0;
}
}
else
return -1;
return 0;
}
/* Record the prefixed store instructions. The arguments are the instruction
address, the first 32-bits of the instruction(insn_prefix) and the following
32-bits of the instruction (insn_suffix). Return 0 on success. */
static int
ppc_process_record_prefix_store (struct gdbarch *gdbarch,
struct regcache *regcache,
CORE_ADDR addr, uint32_t insn_prefix,
uint32_t insn_suffix)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
ULONGEST iaddr = 0;
int size;
int R = PPC_BIT (insn_prefix, 11);
int op6 = PPC_OP6 (insn_suffix);
if (R == 0)
{
if (PPC_RA (insn_suffix) != 0)
regcache_raw_read_unsigned (regcache, tdep->ppc_gp0_regnum
+ PPC_RA (insn_suffix), &iaddr);
}
else
{
iaddr = addr; /* PC relative */
}
switch (op6)
{
case 38:
size = 1; /* store byte, pstb */
break;
case 44:
size = 2; /* store halfword, psth */
break;
case 36:
case 52:
size = 4; /* store word, pstw, pstfs */
break;
case 54:
case 61:
size = 8; /* store double word, pstd, pstfd */
break;
case 60:
size = 16; /* store quadword, pstq */
break;
default: return -1;
}
iaddr += P_PPC_D (insn_prefix, insn_suffix);
record_full_arch_list_add_mem (iaddr, size);
return 0;
}
/* Record the prefixed instructions with primary op code 32. The arguments
are the first 32-bits of the instruction (insn_prefix) and the following
32-bits of the instruction (insn_suffix). Return 0 on success. */
static int
ppc_process_record_prefix_op32 (struct gdbarch *gdbarch,
struct regcache *regcache,
uint32_t insn_prefix, uint32_t insn_suffix)
{
int type = PPC_FIELD (insn_prefix, 6, 2);
int ST1 = PPC_FIELD (insn_prefix, 8, 1);
int ST4 = PPC_FIELD (insn_prefix, 8, 4);
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
if (type == 1)
{
if (ST4 == 0)
{
switch (PPC_FIELD (insn_suffix, 11, 3))
{
case 0: /* VSX Vector Splat Immediate Word 8RR, xxsplti32dx */
ppc_record_vsr (regcache, tdep, P_PPC_XT15 (insn_suffix));
return 0;
}
switch (PPC_FIELD (insn_suffix, 11, 4))
{
case 2: /* VSX Vector Splat Immediate Double-Precision
8RR, xxspltidp */
case 3: /* VSX Vector Splat Immediate Word 8RR, xxspltiw */
ppc_record_vsr (regcache, tdep, P_PPC_XT15 (insn_suffix));
return 0;
default:
return -1;
}
}
else
return -1;
}
else if (type == 2)
{
if (ST1 == 0) /* Prefixed Load Word and Zero, plwz */
record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum
+ PPC_RT (insn_suffix));
else
return -1;
}
else
return -1;
return 0;
}
/* Record the prefixed instructions with primary op code 33. The arguments
are the first 32-bits of the instruction(insn_prefix) and the following
32-bits of the instruction (insn_suffix). Return 0 on success. */
static int
ppc_process_record_prefix_op33 (struct gdbarch *gdbarch,
struct regcache *regcache,
uint32_t insn_prefix, uint32_t insn_suffix)
{
int type = PPC_FIELD (insn_prefix, 6, 2);
int ST4 = PPC_FIELD (insn_prefix, 8, 4);
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
if (type == 1)
{
if (ST4 == 0)
switch (PPC_FIELD (insn_suffix, 26, 2))
{
case 0: /* VSX Vector Blend Variable Byte 8RR, xxblendvb */
case 1: /* VSX Vector Blend Variable Halfword, xxblendvh */
case 2: /* VSX Vector Blend Variable Word, xxblendvw */
case 3: /* VSX Vector Blend Variable Doubleword, xxblendvd */
ppc_record_vsr (regcache, tdep, PPC_XT (insn_suffix));
break;
default:
return -1;
}
else
return -1;
}
else
return -1;
return 0;
}
/* Record the prefixed instructions with primary op code 34. The arguments
are the first 32-bits of the instruction(insn_prefix) and the following
32-bits of the instruction (insn_suffix). Return 0 on success. */
static int
ppc_process_record_prefix_op34 (struct gdbarch *gdbarch,
struct regcache *regcache,
uint32_t insn_prefix, uint32_t insn_suffix)
{
int type = PPC_FIELD (insn_prefix, 6, 2);
int ST1 = PPC_FIELD (insn_prefix, 8, 1);
int ST4 = PPC_FIELD (insn_prefix, 8, 4);
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
if (type == 1)
{
if (ST4 == 0)
switch (PPC_FIELD (insn_suffix, 26, 2))
{
case 0: /* VSX Vector Permute Extended 8RR, xxpermx */
case 1: /* VSX Vector Evaluate 8RR, xxeval */
ppc_record_vsr (regcache, tdep, P_PPC_XT (insn_suffix));
break;
default:
return -1;
}
else
return -1;
}
else if (type == 2)
{
if (ST1 == 0) /* Prefixed Load Word and Zero, plbz */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum
+ PPC_RT (insn_suffix));
else
return -1;
}
else
return -1;
return 0;
}
/* Record the prefixed VSX store, form DS, instructions. The arguments are the
instruction address (addr), the first 32-bits of the instruction
(insn_prefix) followed by the 32-bit instruction suffix (insn_suffix).
Return 0 on success. */
static int
ppc_process_record_prefix_store_vsx_ds_form (struct gdbarch *gdbarch,
struct regcache *regcache,
CORE_ADDR addr,
uint32_t insn_prefix,
uint32_t insn_suffix)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
ULONGEST ea = 0;
int size;
int R = PPC_BIT (insn_prefix, 11);
int type = PPC_FIELD (insn_prefix, 6, 2);
int ST1 = PPC_FIELD (insn_prefix, 8, 1);
if ((type == 0) && (ST1 == 0))
{
if (R == 0)
{
if (PPC_RA (insn_suffix) != 0)
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum
+ PPC_RA (insn_suffix),
&ea);
}
else
{
ea = addr; /* PC relative */
}
ea += P_PPC_D (insn_prefix, insn_suffix);
switch (PPC_FIELD (insn_suffix, 0, 6))
{
case 46: /* Prefixed Store VSX Scalar Doubleword, pstxsd */
size = 8;
break;
case 47: /* Prefixed,Store VSX Scalar Single-Precision, pstxssp */
size = 4;
break;
default:
return -1;
}
record_full_arch_list_add_mem (ea, size);
return 0;
}
else
return -1;
}
/* Record the prefixed VSX, form D, instructions. The arguments are the
instruction address for PC-relative addresss (addr), the first 32-bits of
the instruction (insn_prefix) and the following 32-bits of the instruction
(insn_suffix). Return 0 on success. */
static int
ppc_process_record_prefix_vsx_d_form (struct gdbarch *gdbarch,
struct regcache *regcache,
CORE_ADDR addr,
uint32_t insn_prefix,
uint32_t insn_suffix)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
ULONGEST ea = 0;
int size;
int R = PPC_BIT (insn_prefix, 11);
int type = PPC_FIELD (insn_prefix, 6, 2);
int ST1 = PPC_FIELD (insn_prefix, 8, 1);
if ((type == 0) && (ST1 == 0))
{
switch (PPC_FIELD (insn_suffix, 0, 5))
{
case 25: /* Prefixed Load VSX Vector, plxv */
ppc_record_vsr (regcache, tdep, P_PPC_XT5 (insn_prefix));
return 0;
case 27: /* Prefixed Store VSX Vector 8LS, pstxv */
{
size = 16;
if (R == 0)
{
if (PPC_RA (insn_suffix) != 0)
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum
+ PPC_RA (insn_suffix),
&ea);
}
else
{
ea = addr; /* PC relative */
}
ea += P_PPC_D (insn_prefix, insn_suffix);
record_full_arch_list_add_mem (ea, size);
return 0;
}
}
return -1;
}
else
return -1;
}
/* Parse the current instruction and record the values of the registers and
memory that will be changed in current instruction to "record_arch_list".
Return -1 if something wrong. */
/* This handles the recording of the various prefix instructions. It takes
the instruction address, the first 32-bits of the instruction (insn_prefix)
and the following 32-bits of the instruction (insn_suffix). Return 0 on
success. */
static int
ppc_process_prefix_instruction (int insn_prefix, int insn_suffix,
CORE_ADDR addr, struct gdbarch *gdbarch,
struct regcache *regcache)
{
int type = PPC_FIELD (insn_prefix, 6, 2);
int ST1 = PPC_FIELD (insn_prefix, 8, 1);
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int op6;
/* D-form has uses a 5-bit opcode in the instruction suffix */
if (ppc_process_record_prefix_vsx_d_form ( gdbarch, regcache, addr,
insn_prefix, insn_suffix) == 0)
goto SUCCESS;
op6 = PPC_OP6 (insn_suffix); /* 6-bit opcode in the instruction suffix */
switch (op6)
{
case 14: /* Prefixed Add Immediate, paddi */
if ((type == 2) && (ST1 == 0))
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum
+ PPC_RT (insn_suffix));
else
goto UNKNOWN_PREFIX_OP;
break;
case 32:
if (ppc_process_record_prefix_op32 (gdbarch, regcache,
insn_prefix, insn_suffix) != 0)
goto UNKNOWN_PREFIX_OP;
break;
case 33:
if (ppc_process_record_prefix_op33 (gdbarch, regcache,
insn_prefix, insn_suffix) != 0)
goto UNKNOWN_PREFIX_OP;
break;
case 34: /* Prefixed Load Byte and Zero, plbz */
if (ppc_process_record_prefix_op34 (gdbarch, regcache,
insn_prefix, insn_suffix) != 0)
goto UNKNOWN_PREFIX_OP;
break;
case 40: /* Prefixed Load Halfword and Zero, plhz */
if ((type == 2) && (ST1 == 0))
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum
+ PPC_RT (insn_suffix));
else
goto UNKNOWN_PREFIX_OP;
break;
break;
case 36: /* Prefixed Store Word, pstw */
case 38: /* Prefixed Store Byte, pstb */
case 44: /* Prefixed Store Halfword, psth */
case 52: /* Prefixed Store Floating-Point Single, pstfs */
case 54: /* Prefixed Store Floating-Point Double, pstfd */
case 60: /* Prefixed Store Quadword, pstq */
case 61: /* Prefixed Store Doubleword, pstd */
if (ppc_process_record_prefix_store (gdbarch, regcache, addr,
insn_prefix, insn_suffix) != 0)
goto UNKNOWN_PREFIX_OP;
break;
case 42:
if (ppc_process_record_prefix_op42 (gdbarch, regcache,
insn_prefix, insn_suffix) != 0)
goto UNKNOWN_PREFIX_OP;
break;
case 43: /* Prefixed Load VSX Scalar Single-Precision, plxssp */
if ((type == 0) && (ST1 == 0))
ppc_record_vsr (regcache, tdep, PPC_VRT (insn_suffix) + 32);
else
goto UNKNOWN_PREFIX_OP;
break;
case 46:
case 47:
if (ppc_process_record_prefix_store_vsx_ds_form (gdbarch, regcache, addr,
insn_prefix, insn_suffix) != 0)
goto UNKNOWN_PREFIX_OP;
break;
case 56: /* Prefixed Load Quadword, plq */
{
if ((type == 0) && (ST1 == 0))
{
int tmp;
tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn_suffix) & ~1);
record_full_arch_list_add_reg (regcache, tmp);
record_full_arch_list_add_reg (regcache, tmp + 1);
}
else
goto UNKNOWN_PREFIX_OP;
break;
}
case 41: /* Prefixed Load Word Algebraic, plwa */
case 57: /* Prefixed Load Doubleword, pld */
if ((type == 0) && (ST1 == 0))
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum
+ PPC_RT (insn_suffix));
else
goto UNKNOWN_PREFIX_OP;
break;
case 48: /* Prefixed Load Floating-Point Single, plfs */
case 50: /* Prefixed Load Floating-Point Double, plfd */
if ((type == 2) && (ST1 == 0))
record_full_arch_list_add_reg (regcache,
tdep->ppc_fp0_regnum
+ PPC_FRT (insn_suffix));
else
goto UNKNOWN_PREFIX_OP;
break;
case 58: /* Prefixed Load VSX Vector Paired, plxvp */
if ((type == 0) && (ST1 == 0))
{
ppc_record_vsr (regcache, tdep, PPC_XTp (insn_suffix));
ppc_record_vsr (regcache, tdep, PPC_XTp (insn_suffix) + 1);
}
else
goto UNKNOWN_PREFIX_OP;
break;
case 59:
if (ppc_process_record_prefix_op59_XX3 (gdbarch, regcache, insn_prefix,
insn_suffix) != 0)
goto UNKNOWN_PREFIX_OP;
break;
case 62: /* Prefixed Store VSX Vector Paired 8LS, pstxvp */
if ((type == 0) && (ST1 == 0))
{
int R = PPC_BIT (insn_prefix, 11);
CORE_ADDR ea = 0;
if (R == 0)
{
if (PPC_RA (insn_suffix) != 0)
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum
+ PPC_RA (insn_suffix), &ea);
}
else
{
ea = addr; /* PC relative */
}
ea += P_PPC_D (insn_prefix, insn_suffix) << 4;
record_full_arch_list_add_mem (ea, 32);
}
else
goto UNKNOWN_PREFIX_OP;
break;
default:
UNKNOWN_PREFIX_OP:
gdb_printf (gdb_stdlog,
"Warning: Don't know how to record prefix instruction "
"%08x %08x at %s, %d.\n",
insn_prefix, insn_suffix, paddress (gdbarch, addr),
op6);
return -1;
}
SUCCESS:
if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
return -1;
if (record_full_arch_list_add_end ())
return -1;
return 0;
}
int
ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
CORE_ADDR addr)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
uint32_t insn, insn_suffix;
int op6, tmp, i;
insn = read_memory_unsigned_integer (addr, 4, byte_order);
op6 = PPC_OP6 (insn);
switch (op6)
{
case 1: /* prefixed instruction */
{
/* Get the lower 32-bits of the prefixed instruction. */
insn_suffix = read_memory_unsigned_integer (addr+4, 4, byte_order);
return ppc_process_prefix_instruction (insn, insn_suffix, addr,
gdbarch, regcache);
}
case 2: /* Trap Doubleword Immediate */
case 3: /* Trap Word Immediate */
/* Do nothing. */
break;
case 4: /* Vector Integer, Compare, Logical, Shift, etc. */
if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
return -1;
break;
case 6: /* Vector Load and Store */
if (ppc_process_record_op6 (gdbarch, regcache, addr, insn) != 0)
return -1;
break;
case 17: /* System call */
if (PPC_LEV (insn) != 0)
goto UNKNOWN_OP;
if (tdep->ppc_syscall_record != NULL)
{
if (tdep->ppc_syscall_record (regcache) != 0)
return -1;
}
else
{
gdb_printf (gdb_stderr, _("no syscall record support\n"));
return -1;
}
break;
case 7: /* Multiply Low Immediate */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RT (insn));
break;
case 8: /* Subtract From Immediate Carrying */
record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RT (insn));
break;
case 10: /* Compare Logical Immediate */
case 11: /* Compare Immediate */
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
break;
case 13: /* Add Immediate Carrying and Record */
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
/* FALL-THROUGH */
case 12: /* Add Immediate Carrying */
record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
/* FALL-THROUGH */
case 14: /* Add Immediate */
case 15: /* Add Immediate Shifted */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RT (insn));
break;
case 16: /* Branch Conditional */
if ((PPC_BO (insn) & 0x4) == 0)
record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
/* FALL-THROUGH */
case 18: /* Branch */
if (PPC_LK (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
break;
case 19:
if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
return -1;
break;
case 20: /* Rotate Left Word Immediate then Mask Insert */
case 21: /* Rotate Left Word Immediate then AND with Mask */
case 23: /* Rotate Left Word then AND with Mask */
case 30: /* Rotate Left Doubleword Immediate then Clear Left */
/* Rotate Left Doubleword Immediate then Clear Right */
/* Rotate Left Doubleword Immediate then Clear */
/* Rotate Left Doubleword then Clear Left */
/* Rotate Left Doubleword then Clear Right */
/* Rotate Left Doubleword Immediate then Mask Insert */
if (PPC_RC (insn))
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn));
break;
case 28: /* AND Immediate */
case 29: /* AND Immediate Shifted */
record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
/* FALL-THROUGH */
case 24: /* OR Immediate */
case 25: /* OR Immediate Shifted */
case 26: /* XOR Immediate */
case 27: /* XOR Immediate Shifted */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn));
break;
case 31:
if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
return -1;
break;
case 33: /* Load Word and Zero with Update */
case 35: /* Load Byte and Zero with Update */
case 41: /* Load Halfword and Zero with Update */
case 43: /* Load Halfword Algebraic with Update */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn));
/* FALL-THROUGH */
case 32: /* Load Word and Zero */
case 34: /* Load Byte and Zero */
case 40: /* Load Halfword and Zero */
case 42: /* Load Halfword Algebraic */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RT (insn));
break;
case 46: /* Load Multiple Word */
for (i = PPC_RT (insn); i < 32; i++)
record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
break;
case 56: /* Load Quadword */
tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
record_full_arch_list_add_reg (regcache, tmp);
record_full_arch_list_add_reg (regcache, tmp + 1);
break;
case 49: /* Load Floating-Point Single with Update */
case 51: /* Load Floating-Point Double with Update */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn));
/* FALL-THROUGH */
case 48: /* Load Floating-Point Single */
case 50: /* Load Floating-Point Double */
record_full_arch_list_add_reg (regcache,
tdep->ppc_fp0_regnum + PPC_FRT (insn));
break;
case 47: /* Store Multiple Word */
{
ULONGEST iaddr = 0;
if (PPC_RA (insn) != 0)
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn),
&iaddr);
iaddr += PPC_D (insn);
record_full_arch_list_add_mem (iaddr, 4 * (32 - PPC_RS (insn)));
}
break;
case 37: /* Store Word with Update */
case 39: /* Store Byte with Update */
case 45: /* Store Halfword with Update */
case 53: /* Store Floating-Point Single with Update */
case 55: /* Store Floating-Point Double with Update */
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn));
/* FALL-THROUGH */
case 36: /* Store Word */
case 38: /* Store Byte */
case 44: /* Store Halfword */
case 52: /* Store Floating-Point Single */
case 54: /* Store Floating-Point Double */
{
ULONGEST iaddr = 0;
int size = -1;
if (PPC_RA (insn) != 0)
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn),
&iaddr);
iaddr += PPC_D (insn);
if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
size = 4;
else if (op6 == 54 || op6 == 55)
size = 8;
else if (op6 == 44 || op6 == 45)
size = 2;
else if (op6 == 38 || op6 == 39)
size = 1;
else
gdb_assert (0);
record_full_arch_list_add_mem (iaddr, size);
}
break;
case 57:
switch (insn & 0x3)
{
case 0: /* Load Floating-Point Double Pair */
tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
record_full_arch_list_add_reg (regcache, tmp);
record_full_arch_list_add_reg (regcache, tmp + 1);
break;
case 2: /* Load VSX Scalar Doubleword */
case 3: /* Load VSX Scalar Single */
ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
break;
default:
goto UNKNOWN_OP;
}
break;
case 58: /* Load Doubleword */
/* Load Doubleword with Update */
/* Load Word Algebraic */
if (PPC_FIELD (insn, 30, 2) > 2)
goto UNKNOWN_OP;
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RT (insn));
if (PPC_BIT (insn, 31))
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn));
break;
case 59:
if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
return -1;
break;
case 60:
if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
return -1;
break;
case 61:
if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
return -1;
break;
case 62: /* Store Doubleword */
/* Store Doubleword with Update */
/* Store Quadword with Update */
{
ULONGEST iaddr = 0;
int size;
int sub2 = PPC_FIELD (insn, 30, 2);
if (sub2 > 2)
goto UNKNOWN_OP;
if (PPC_RA (insn) != 0)
regcache_raw_read_unsigned (regcache,
tdep->ppc_gp0_regnum + PPC_RA (insn),
&iaddr);
size = (sub2 == 2) ? 16 : 8;
iaddr += PPC_DS (insn) << 2;
record_full_arch_list_add_mem (iaddr, size);
if (op6 == 62 && sub2 == 1)
record_full_arch_list_add_reg (regcache,
tdep->ppc_gp0_regnum +
PPC_RA (insn));
break;
}
case 63:
if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
return -1;
break;
default:
UNKNOWN_OP:
gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
"at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
return -1;
}
if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
return -1;
if (record_full_arch_list_add_end ())
return -1;
return 0;
}
/* Used for matching tw, twi, td and tdi instructions for POWER. */
static constexpr uint32_t TX_INSN_MASK = 0xFC0007FF;
static constexpr uint32_t TW_INSN = 0x7C000008;
static constexpr uint32_t TD_INSN = 0x7C000088;
static constexpr uint32_t TXI_INSN_MASK = 0xFC000000;
static constexpr uint32_t TWI_INSN = 0x0C000000;
static constexpr uint32_t TDI_INSN = 0x08000000;
static inline bool
is_tw_insn (uint32_t insn)
{
return (insn & TX_INSN_MASK) == TW_INSN;
}
static inline bool
is_twi_insn (uint32_t insn)
{
return (insn & TXI_INSN_MASK) == TWI_INSN;
}
static inline bool
is_td_insn (uint32_t insn)
{
return (insn & TX_INSN_MASK) == TD_INSN;
}
static inline bool
is_tdi_insn (uint32_t insn)
{
return (insn & TXI_INSN_MASK) == TDI_INSN;
}
/* Implementation of gdbarch_program_breakpoint_here_p for POWER. */
static bool
rs6000_program_breakpoint_here_p (gdbarch *gdbarch, CORE_ADDR address)
{
gdb_byte target_mem[PPC_INSN_SIZE];
/* Enable the automatic memory restoration from breakpoints while
we read the memory. Otherwise we may find temporary breakpoints, ones
inserted by GDB, and flag them as permanent breakpoints. */
scoped_restore restore_memory
= make_scoped_restore_show_memory_breakpoints (0);
if (target_read_memory (address, target_mem, PPC_INSN_SIZE) == 0)
{
uint32_t insn = (uint32_t) extract_unsigned_integer
(target_mem, PPC_INSN_SIZE, gdbarch_byte_order_for_code (gdbarch));
/* Check if INSN is a TW, TWI, TD or TDI instruction. There
are multiple choices of such instructions with different registers
and / or immediate values but they all cause a break. */
if (is_tw_insn (insn) || is_twi_insn (insn) || is_td_insn (insn)
|| is_tdi_insn (insn))
return true;
}
return false;
}
/* Implement the update_call_site_pc arch hook. */
static CORE_ADDR
ppc64_update_call_site_pc (struct gdbarch *gdbarch, CORE_ADDR pc)
{
/* Some versions of GCC emit:
. bl function
. nop
. ...
but emit DWARF where the DW_AT_call_return_pc points to
instruction after the 'nop'. Note that while the compiler emits
a 'nop', the linker might put some other instruction there -- so
we just unconditionally check the next instruction. */
return pc + 4;
}
/* Initialize the current architecture based on INFO. If possible, re-use an
architecture from ARCHES, which is a list of architectures already created
during this debugging session.
Called e.g. at program startup, when reading a core file, and when reading
a binary file. */
static struct gdbarch *
rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
int wordsize, from_xcoff_exec, from_elf_exec;
enum bfd_architecture arch;
unsigned long mach;
bfd abfd;
enum auto_boolean soft_float_flag = powerpc_soft_float_global;
int soft_float;
enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
int have_fpu = 0, have_spe = 0, have_mq = 0, have_altivec = 0;
int have_dfp = 0, have_vsx = 0, have_ppr = 0, have_dscr = 0;
int have_tar = 0, have_ebb = 0, have_pmu = 0, have_htm_spr = 0;
int have_htm_core = 0, have_htm_fpu = 0, have_htm_altivec = 0;
int have_htm_vsx = 0, have_htm_ppr = 0, have_htm_dscr = 0;
int have_htm_tar = 0;
int tdesc_wordsize = -1;
const struct target_desc *tdesc = info.target_desc;
tdesc_arch_data_up tdesc_data;
int num_pseudoregs = 0;
int cur_reg;
from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
/* Check word size. If INFO is from a binary file, infer it from
that, else choose a likely default. */
if (from_xcoff_exec)
{
if (bfd_xcoff_is_xcoff64 (info.abfd))
wordsize = 8;
else
wordsize = 4;
}
else if (from_elf_exec)
{
if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
wordsize = 8;
else
wordsize = 4;
}
else if (tdesc_has_registers (tdesc))
wordsize = -1;
else
{
if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
wordsize = (info.bfd_arch_info->bits_per_word
/ info.bfd_arch_info->bits_per_byte);
else
wordsize = 4;
}
/* Get the architecture and machine from the BFD. */
arch = info.bfd_arch_info->arch;
mach = info.bfd_arch_info->mach;
/* For e500 executables, the apuinfo section is of help here. Such
section contains the identifier and revision number of each
Application-specific Processing Unit that is present on the
chip. The content of the section is determined by the assembler
which looks at each instruction and determines which unit (and
which version of it) can execute it. Grovel through the section
looking for relevant e500 APUs. */
if (bfd_uses_spe_extensions (info.abfd))
{
arch = info.bfd_arch_info->arch;
mach = bfd_mach_ppc_e500;
bfd_default_set_arch_mach (&abfd, arch, mach);
info.bfd_arch_info = bfd_get_arch_info (&abfd);
}
/* Find a default target description which describes our register
layout, if we do not already have one. */
if (! tdesc_has_registers (tdesc))
{
const struct ppc_variant *v;
/* Choose variant. */
v = find_variant_by_arch (arch, mach);
if (!v)
return NULL;
tdesc = *v->tdesc;
}
gdb_assert (tdesc_has_registers (tdesc));
/* Check any target description for validity. */
if (tdesc_has_registers (tdesc))
{
static const char *const gprs[] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
};
const struct tdesc_feature *feature;
int i, valid_p;
static const char *const msr_names[] = { "msr", "ps" };
static const char *const cr_names[] = { "cr", "cnd" };
static const char *const ctr_names[] = { "ctr", "cnt" };
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.core");
if (feature == NULL)
return NULL;
tdesc_data = tdesc_data_alloc ();
valid_p = 1;
for (i = 0; i < ppc_num_gprs; i++)
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
i, gprs[i]);
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_PC_REGNUM, "pc");
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_LR_REGNUM, "lr");
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_XER_REGNUM, "xer");
/* Allow alternate names for these registers, to accomodate GDB's
historic naming. */
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
PPC_MSR_REGNUM, msr_names);
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
PPC_CR_REGNUM, cr_names);
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
PPC_CTR_REGNUM, ctr_names);
if (!valid_p)
return NULL;
have_mq = tdesc_numbered_register (feature, tdesc_data.get (),
PPC_MQ_REGNUM, "mq");
tdesc_wordsize = tdesc_register_bitsize (feature, "pc") / 8;
if (wordsize == -1)
wordsize = tdesc_wordsize;
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.fpu");
if (feature != NULL)
{
static const char *const fprs[] = {
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
};
valid_p = 1;
for (i = 0; i < ppc_num_fprs; i++)
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_F0_REGNUM + i, fprs[i]);
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_FPSCR_REGNUM, "fpscr");
if (!valid_p)
return NULL;
have_fpu = 1;
/* The fpscr register was expanded in isa 2.05 to 64 bits
along with the addition of the decimal floating point
facility. */
if (tdesc_register_bitsize (feature, "fpscr") > 32)
have_dfp = 1;
}
else
have_fpu = 0;
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.altivec");
if (feature != NULL)
{
static const char *const vector_regs[] = {
"vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
"vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
"vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
"vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
};
valid_p = 1;
for (i = 0; i < ppc_num_gprs; i++)
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_VR0_REGNUM + i,
vector_regs[i]);
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_VSCR_REGNUM, "vscr");
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_VRSAVE_REGNUM, "vrsave");
if (have_spe || !valid_p)
return NULL;
have_altivec = 1;
}
else
have_altivec = 0;
/* Check for POWER7 VSX registers support. */
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.vsx");
if (feature != NULL)
{
static const char *const vsx_regs[] = {
"vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
"vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
"vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
"vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
"vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
"vs30h", "vs31h"
};
valid_p = 1;
for (i = 0; i < ppc_num_vshrs; i++)
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_VSR0_UPPER_REGNUM + i,
vsx_regs[i]);
if (!valid_p || !have_fpu || !have_altivec)
return NULL;
have_vsx = 1;
}
else
have_vsx = 0;
/* On machines supporting the SPE APU, the general-purpose registers
are 64 bits long. There are SIMD vector instructions to treat them
as pairs of floats, but the rest of the instruction set treats them
as 32-bit registers, and only operates on their lower halves.
In the GDB regcache, we treat their high and low halves as separate
registers. The low halves we present as the general-purpose
registers, and then we have pseudo-registers that stitch together
the upper and lower halves and present them as pseudo-registers.
Thus, the target description is expected to supply the upper
halves separately. */
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.spe");
if (feature != NULL)
{
static const char *const upper_spe[] = {
"ev0h", "ev1h", "ev2h", "ev3h",
"ev4h", "ev5h", "ev6h", "ev7h",
"ev8h", "ev9h", "ev10h", "ev11h",
"ev12h", "ev13h", "ev14h", "ev15h",
"ev16h", "ev17h", "ev18h", "ev19h",
"ev20h", "ev21h", "ev22h", "ev23h",
"ev24h", "ev25h", "ev26h", "ev27h",
"ev28h", "ev29h", "ev30h", "ev31h"
};
valid_p = 1;
for (i = 0; i < ppc_num_gprs; i++)
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_SPE_UPPER_GP0_REGNUM + i,
upper_spe[i]);
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_SPE_ACC_REGNUM, "acc");
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_SPE_FSCR_REGNUM, "spefscr");
if (have_mq || have_fpu || !valid_p)
return NULL;
have_spe = 1;
}
else
have_spe = 0;
/* Program Priority Register. */
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.ppr");
if (feature != NULL)
{
valid_p = 1;
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_PPR_REGNUM, "ppr");
if (!valid_p)
return NULL;
have_ppr = 1;
}
else
have_ppr = 0;
/* Data Stream Control Register. */
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.dscr");
if (feature != NULL)
{
valid_p = 1;
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_DSCR_REGNUM, "dscr");
if (!valid_p)
return NULL;
have_dscr = 1;
}
else
have_dscr = 0;
/* Target Address Register. */
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.tar");
if (feature != NULL)
{
valid_p = 1;
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_TAR_REGNUM, "tar");
if (!valid_p)
return NULL;
have_tar = 1;
}
else
have_tar = 0;
/* Event-based Branching Registers. */
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.ebb");
if (feature != NULL)
{
static const char *const ebb_regs[] = {
"bescr", "ebbhr", "ebbrr"
};
valid_p = 1;
for (i = 0; i < ARRAY_SIZE (ebb_regs); i++)
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_BESCR_REGNUM + i,
ebb_regs[i]);
if (!valid_p)
return NULL;
have_ebb = 1;
}
else
have_ebb = 0;
/* Subset of the ISA 2.07 Performance Monitor Registers provided
by Linux. */
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.linux.pmu");
if (feature != NULL)
{
valid_p = 1;
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_MMCR0_REGNUM,
"mmcr0");
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_MMCR2_REGNUM,
"mmcr2");
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_SIAR_REGNUM,
"siar");
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_SDAR_REGNUM,
"sdar");
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_SIER_REGNUM,
"sier");
if (!valid_p)
return NULL;
have_pmu = 1;
}
else
have_pmu = 0;
/* Hardware Transactional Memory Registers. */
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.htm.spr");
if (feature != NULL)
{
static const char *const tm_spr_regs[] = {
"tfhar", "texasr", "tfiar"
};
valid_p = 1;
for (i = 0; i < ARRAY_SIZE (tm_spr_regs); i++)
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_TFHAR_REGNUM + i,
tm_spr_regs[i]);
if (!valid_p)
return NULL;
have_htm_spr = 1;
}
else
have_htm_spr = 0;
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.htm.core");
if (feature != NULL)
{
static const char *const cgprs[] = {
"cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
"cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14",
"cr15", "cr16", "cr17", "cr18", "cr19", "cr20", "cr21",
"cr22", "cr23", "cr24", "cr25", "cr26", "cr27", "cr28",
"cr29", "cr30", "cr31", "ccr", "cxer", "clr", "cctr"
};
valid_p = 1;
for (i = 0; i < ARRAY_SIZE (cgprs); i++)
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_CR0_REGNUM + i,
cgprs[i]);
if (!valid_p)
return NULL;
have_htm_core = 1;
}
else
have_htm_core = 0;
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.htm.fpu");
if (feature != NULL)
{
valid_p = 1;
static const char *const cfprs[] = {
"cf0", "cf1", "cf2", "cf3", "cf4", "cf5", "cf6", "cf7",
"cf8", "cf9", "cf10", "cf11", "cf12", "cf13", "cf14", "cf15",
"cf16", "cf17", "cf18", "cf19", "cf20", "cf21", "cf22",
"cf23", "cf24", "cf25", "cf26", "cf27", "cf28", "cf29",
"cf30", "cf31", "cfpscr"
};
for (i = 0; i < ARRAY_SIZE (cfprs); i++)
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_CF0_REGNUM + i,
cfprs[i]);
if (!valid_p)
return NULL;
have_htm_fpu = 1;
}
else
have_htm_fpu = 0;
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.htm.altivec");
if (feature != NULL)
{
valid_p = 1;
static const char *const cvmx[] = {
"cvr0", "cvr1", "cvr2", "cvr3", "cvr4", "cvr5", "cvr6",
"cvr7", "cvr8", "cvr9", "cvr10", "cvr11", "cvr12", "cvr13",
"cvr14", "cvr15","cvr16", "cvr17", "cvr18", "cvr19", "cvr20",
"cvr21", "cvr22", "cvr23", "cvr24", "cvr25", "cvr26",
"cvr27", "cvr28", "cvr29", "cvr30", "cvr31", "cvscr",
"cvrsave"
};
for (i = 0; i < ARRAY_SIZE (cvmx); i++)
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
PPC_CVR0_REGNUM + i,
cvmx[i]);
if (!valid_p)
return NULL;
have_htm_altivec = 1;
}
else
have_htm_altivec = 0;
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.htm.vsx");
if (feature != NULL)
{
valid_p = 1;
static const char *const cvsx[] = {
"cvs0h", "cvs1h", "cvs2h", "cvs3h", "cvs4h", "cvs5h",
"cvs6h", "cvs7h", "cvs8h", "cvs9h", "cvs10h", "cvs11h",
"cvs12h", "cvs13h", "cvs14h", "cvs15h", "cvs16h", "cvs17h",
"cvs18h", "cvs19h", "cvs20h", "cvs21h", "cvs22h", "cvs23h",
"cvs24h", "cvs25h", "cvs26h", "cvs27h", "cvs28h", "cvs29h",
"cvs30h", "cvs31h"
};
for (i = 0; i < ARRAY_SIZE (cvsx); i++)
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
(PPC_CVSR0_UPPER_REGNUM
+ i),
cvsx[i]);
if (!valid_p || !have_htm_fpu || !have_htm_altivec)
return NULL;
have_htm_vsx = 1;
}
else
have_htm_vsx = 0;
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.htm.ppr");
if (feature != NULL)
{
valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
PPC_CPPR_REGNUM, "cppr");
if (!valid_p)
return NULL;
have_htm_ppr = 1;
}
else
have_htm_ppr = 0;
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.htm.dscr");
if (feature != NULL)
{
valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
PPC_CDSCR_REGNUM, "cdscr");
if (!valid_p)
return NULL;
have_htm_dscr = 1;
}
else
have_htm_dscr = 0;
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.htm.tar");
if (feature != NULL)
{
valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
PPC_CTAR_REGNUM, "ctar");
if (!valid_p)
return NULL;
have_htm_tar = 1;
}
else
have_htm_tar = 0;
}
/* If we have a 64-bit binary on a 32-bit target, complain. Also
complain for a 32-bit binary on a 64-bit target; we do not yet
support that. For instance, the 32-bit ABI routines expect
32-bit GPRs.
As long as there isn't an explicit target description, we'll
choose one based on the BFD architecture and get a word size
matching the binary (probably powerpc:common or
powerpc:common64). So there is only trouble if a 64-bit target
supplies a 64-bit description while debugging a 32-bit
binary. */
if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
return NULL;
#ifdef HAVE_ELF
if (from_elf_exec)
{
switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
{
case 1:
elf_abi = POWERPC_ELF_V1;
break;
case 2:
elf_abi = POWERPC_ELF_V2;
break;
default:
break;
}
}
if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
{
switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
Tag_GNU_Power_ABI_FP) & 3)
{
case 1:
soft_float_flag = AUTO_BOOLEAN_FALSE;
break;
case 2:
soft_float_flag = AUTO_BOOLEAN_TRUE;
break;
default:
break;
}
}
if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
{
switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
Tag_GNU_Power_ABI_FP) >> 2)
{
case 1:
long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
break;
case 3:
long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
break;
default:
break;
}
}
if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
{
switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
Tag_GNU_Power_ABI_Vector))
{
case 1:
vector_abi = POWERPC_VEC_GENERIC;
break;
case 2:
vector_abi = POWERPC_VEC_ALTIVEC;
break;
case 3:
vector_abi = POWERPC_VEC_SPE;
break;
default:
break;
}
}
#endif
/* At this point, the only supported ELF-based 64-bit little-endian
operating system is GNU/Linux, and this uses the ELFv2 ABI by
default. All other supported ELF-based operating systems use the
ELFv1 ABI by default. Therefore, if the ABI marker is missing,
e.g. because we run a legacy binary, or have attached to a process
and have not found any associated binary file, set the default
according to this heuristic. */
if (elf_abi == POWERPC_ELF_AUTO)
{
if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
elf_abi = POWERPC_ELF_V2;
else
elf_abi = POWERPC_ELF_V1;
}
if (soft_float_flag == AUTO_BOOLEAN_TRUE)
soft_float = 1;
else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
soft_float = 0;
else
soft_float = !have_fpu;
/* If we have a hard float binary or setting but no floating point
registers, downgrade to soft float anyway. We're still somewhat
useful in this scenario. */
if (!soft_float && !have_fpu)
soft_float = 1;
/* Similarly for vector registers. */
if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
vector_abi = POWERPC_VEC_GENERIC;
if (vector_abi == POWERPC_VEC_SPE && !have_spe)
vector_abi = POWERPC_VEC_GENERIC;
if (vector_abi == POWERPC_VEC_AUTO)
{
if (have_altivec)
vector_abi = POWERPC_VEC_ALTIVEC;
else if (have_spe)
vector_abi = POWERPC_VEC_SPE;
else
vector_abi = POWERPC_VEC_GENERIC;
}
/* Do not limit the vector ABI based on available hardware, since we
do not yet know what hardware we'll decide we have. Yuck! FIXME! */
/* Find a candidate among extant architectures. */
for (arches = gdbarch_list_lookup_by_info (arches, &info);
arches != NULL;
arches = gdbarch_list_lookup_by_info (arches->next, &info))
{
/* Word size in the various PowerPC bfd_arch_info structs isn't
meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
separate word size check. */
ppc_gdbarch_tdep *tdep
= gdbarch_tdep<ppc_gdbarch_tdep> (arches->gdbarch);
if (tdep && tdep->elf_abi != elf_abi)
continue;
if (tdep && tdep->soft_float != soft_float)
continue;
if (tdep && tdep->long_double_abi != long_double_abi)
continue;
if (tdep && tdep->vector_abi != vector_abi)
continue;
if (tdep && tdep->wordsize == wordsize)
return arches->gdbarch;
}
/* None found, create a new architecture from INFO, whose bfd_arch_info
validity depends on the source:
- executable useless
- rs6000_host_arch() good
- core file good
- "set arch" trust blindly
- GDB startup useless but harmless */
gdbarch *gdbarch
= gdbarch_alloc (&info, gdbarch_tdep_up (new ppc_gdbarch_tdep));
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
tdep->wordsize = wordsize;
tdep->elf_abi = elf_abi;
tdep->soft_float = soft_float;
tdep->long_double_abi = long_double_abi;
tdep->vector_abi = vector_abi;
tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
tdep->ppc_cr_regnum = PPC_CR_REGNUM;
tdep->ppc_lr_regnum = PPC_LR_REGNUM;
tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
tdep->ppc_xer_regnum = PPC_XER_REGNUM;
tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
tdep->ppc_ppr_regnum = have_ppr ? PPC_PPR_REGNUM : -1;
tdep->ppc_dscr_regnum = have_dscr ? PPC_DSCR_REGNUM : -1;
tdep->ppc_tar_regnum = have_tar ? PPC_TAR_REGNUM : -1;
tdep->have_ebb = have_ebb;
/* If additional pmu registers are added, care must be taken when
setting new fields in the tdep below, to maintain compatibility
with features that only provide some of the registers. Currently
gdb access to the pmu registers is only supported in linux, and
linux only provides a subset of the pmu registers defined in the
architecture. */
tdep->ppc_mmcr0_regnum = have_pmu ? PPC_MMCR0_REGNUM : -1;
tdep->ppc_mmcr2_regnum = have_pmu ? PPC_MMCR2_REGNUM : -1;
tdep->ppc_siar_regnum = have_pmu ? PPC_SIAR_REGNUM : -1;
tdep->ppc_sdar_regnum = have_pmu ? PPC_SDAR_REGNUM : -1;
tdep->ppc_sier_regnum = have_pmu ? PPC_SIER_REGNUM : -1;
tdep->have_htm_spr = have_htm_spr;
tdep->have_htm_core = have_htm_core;
tdep->have_htm_fpu = have_htm_fpu;
tdep->have_htm_altivec = have_htm_altivec;
tdep->have_htm_vsx = have_htm_vsx;
tdep->ppc_cppr_regnum = have_htm_ppr ? PPC_CPPR_REGNUM : -1;
tdep->ppc_cdscr_regnum = have_htm_dscr ? PPC_CDSCR_REGNUM : -1;
tdep->ppc_ctar_regnum = have_htm_tar ? PPC_CTAR_REGNUM : -1;
set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
/* The XML specification for PowerPC sensibly calls the MSR "msr".
GDB traditionally called it "ps", though, so let GDB add an
alias. */
set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
if (wordsize == 8)
{
set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
set_gdbarch_get_return_buf_addr (gdbarch,
ppc64_sysv_get_return_buf_addr);
set_gdbarch_update_call_site_pc (gdbarch, ppc64_update_call_site_pc);
}
else
set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
/* Set lr_frame_offset. */
if (wordsize == 8)
tdep->lr_frame_offset = 16;
else
tdep->lr_frame_offset = 4;
if (have_spe || have_dfp || have_altivec
|| have_vsx || have_htm_fpu || have_htm_vsx)
{
set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
set_gdbarch_pseudo_register_write (gdbarch,
rs6000_pseudo_register_write);
set_gdbarch_ax_pseudo_register_collect (gdbarch,
rs6000_ax_pseudo_register_collect);
}
set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
if (have_spe)
num_pseudoregs += 32;
if (have_dfp)
num_pseudoregs += 16;
if (have_altivec)
num_pseudoregs += 32;
if (have_vsx)
/* Include both VSX and Extended FP registers. */
num_pseudoregs += 96;
if (have_htm_fpu)
num_pseudoregs += 16;
/* Include both checkpointed VSX and EFP registers. */
if (have_htm_vsx)
num_pseudoregs += 64 + 32;
set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
set_gdbarch_char_signed (gdbarch, 0);
set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
if (wordsize == 8)
/* PPC64 SYSV. */
set_gdbarch_frame_red_zone_size (gdbarch, 288);
set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
if (wordsize == 4)
set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
else if (wordsize == 8)
set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_breakpoint_kind_from_pc (gdbarch,
rs6000_breakpoint::kind_from_pc);
set_gdbarch_sw_breakpoint_from_kind (gdbarch,
rs6000_breakpoint::bp_from_kind);
set_gdbarch_program_breakpoint_here_p (gdbarch,
rs6000_program_breakpoint_here_p);
/* The value of symbols of type N_SO and N_FUN maybe null when
it shouldn't be. */
set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
/* Handles single stepping of atomic sequences. */
set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
/* Not sure on this. FIXMEmgo */
set_gdbarch_frame_args_skip (gdbarch, 8);
/* Helpers for function argument information. */
set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
/* Trampoline. */
set_gdbarch_in_solib_return_trampoline
(gdbarch, rs6000_in_solib_return_trampoline);
set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
/* Hook in the DWARF CFI frame unwinder. */
dwarf2_append_unwinders (gdbarch);
dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
/* Frame handling. */
dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
/* Setup displaced stepping. */
set_gdbarch_displaced_step_copy_insn (gdbarch,
ppc_displaced_step_copy_insn);
set_gdbarch_displaced_step_hw_singlestep (gdbarch,
ppc_displaced_step_hw_singlestep);
set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
set_gdbarch_displaced_step_prepare (gdbarch, ppc_displaced_step_prepare);
set_gdbarch_displaced_step_finish (gdbarch, ppc_displaced_step_finish);
set_gdbarch_displaced_step_restore_all_in_ptid
(gdbarch, ppc_displaced_step_restore_all_in_ptid);
set_gdbarch_displaced_step_buffer_length (gdbarch, 2 * PPC_INSN_SIZE);
set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
/* Hook in ABI-specific overrides, if they have been registered. */
info.target_desc = tdesc;
info.tdesc_data = tdesc_data.get ();
gdbarch_init_osabi (info, gdbarch);
switch (info.osabi)
{
case GDB_OSABI_LINUX:
case GDB_OSABI_NETBSD:
case GDB_OSABI_UNKNOWN:
frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
break;
default:
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
}
set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
set_tdesc_pseudo_register_reggroup_p (gdbarch,
rs6000_pseudo_register_reggroup_p);
tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
/* Override the normal target description method to make the SPE upper
halves anonymous. */
set_gdbarch_register_name (gdbarch, rs6000_register_name);
/* Choose register numbers for all supported pseudo-registers. */
tdep->ppc_ev0_regnum = -1;
tdep->ppc_dl0_regnum = -1;
tdep->ppc_v0_alias_regnum = -1;
tdep->ppc_vsr0_regnum = -1;
tdep->ppc_efpr0_regnum = -1;
tdep->ppc_cdl0_regnum = -1;
tdep->ppc_cvsr0_regnum = -1;
tdep->ppc_cefpr0_regnum = -1;
cur_reg = gdbarch_num_regs (gdbarch);
if (have_spe)
{
tdep->ppc_ev0_regnum = cur_reg;
cur_reg += 32;
}
if (have_dfp)
{
tdep->ppc_dl0_regnum = cur_reg;
cur_reg += 16;
}
if (have_altivec)
{
tdep->ppc_v0_alias_regnum = cur_reg;
cur_reg += 32;
}
if (have_vsx)
{
tdep->ppc_vsr0_regnum = cur_reg;
cur_reg += 64;
tdep->ppc_efpr0_regnum = cur_reg;
cur_reg += 32;
}
if (have_htm_fpu)
{
tdep->ppc_cdl0_regnum = cur_reg;
cur_reg += 16;
}
if (have_htm_vsx)
{
tdep->ppc_cvsr0_regnum = cur_reg;
cur_reg += 64;
tdep->ppc_cefpr0_regnum = cur_reg;
cur_reg += 32;
}
gdb_assert (gdbarch_num_cooked_regs (gdbarch) == cur_reg);
/* Register the ravenscar_arch_ops. */
if (mach == bfd_mach_ppc_e500)
register_e500_ravenscar_ops (gdbarch);
else
register_ppc_ravenscar_ops (gdbarch);
set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
set_gdbarch_valid_disassembler_options (gdbarch,
disassembler_options_powerpc ());
return gdbarch;
}
static void
rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
{
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
if (tdep == NULL)
return;
/* FIXME: Dump gdbarch_tdep. */
}
static void
powerpc_set_soft_float (const char *args, int from_tty,
struct cmd_list_element *c)
{
struct gdbarch_info info;
/* Update the architecture. */
if (!gdbarch_update_p (info))
internal_error (_("could not update architecture"));
}
static void
powerpc_set_vector_abi (const char *args, int from_tty,
struct cmd_list_element *c)
{
int vector_abi;
for (vector_abi = POWERPC_VEC_AUTO;
vector_abi != POWERPC_VEC_LAST;
vector_abi++)
if (strcmp (powerpc_vector_abi_string,
powerpc_vector_strings[vector_abi]) == 0)
{
powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
break;
}
if (vector_abi == POWERPC_VEC_LAST)
internal_error (_("Invalid vector ABI accepted: %s."),
powerpc_vector_abi_string);
/* Update the architecture. */
gdbarch_info info;
if (!gdbarch_update_p (info))
internal_error (_("could not update architecture"));
}
/* Show the current setting of the exact watchpoints flag. */
static void
show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
struct cmd_list_element *c,
const char *value)
{
gdb_printf (file, _("Use of exact watchpoints is %s.\n"), value);
}
/* Read a PPC instruction from memory. */
static unsigned int
read_insn (frame_info_ptr frame, CORE_ADDR pc)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
return read_memory_unsigned_integer (pc, 4, byte_order);
}
/* Return non-zero if the instructions at PC match the series
described in PATTERN, or zero otherwise. PATTERN is an array of
'struct ppc_insn_pattern' objects, terminated by an entry whose
mask is zero.
When the match is successful, fill INSNS[i] with what PATTERN[i]
matched. If PATTERN[i] is optional, and the instruction wasn't
present, set INSNS[i] to 0 (which is not a valid PPC instruction).
INSNS should have as many elements as PATTERN, minus the terminator.
Note that, if PATTERN contains optional instructions which aren't
present in memory, then INSNS will have holes, so INSNS[i] isn't
necessarily the i'th instruction in memory. */
int
ppc_insns_match_pattern (frame_info_ptr frame, CORE_ADDR pc,
const struct ppc_insn_pattern *pattern,
unsigned int *insns)
{
int i;
unsigned int insn;
for (i = 0, insn = 0; pattern[i].mask; i++)
{
if (insn == 0)
insn = read_insn (frame, pc);
insns[i] = 0;
if ((insn & pattern[i].mask) == pattern[i].data)
{
insns[i] = insn;
pc += 4;
insn = 0;
}
else if (!pattern[i].optional)
return 0;
}
return 1;
}
/* Return the 'd' field of the d-form instruction INSN, properly
sign-extended. */
CORE_ADDR
ppc_insn_d_field (unsigned int insn)
{
return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
}
/* Return the 'ds' field of the ds-form instruction INSN, with the two
zero bits concatenated at the right, and properly
sign-extended. */
CORE_ADDR
ppc_insn_ds_field (unsigned int insn)
{
return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
}
CORE_ADDR
ppc_insn_prefix_dform (unsigned int insn1, unsigned int insn2)
{
/* result is 34-bits */
return (CORE_ADDR) ((((insn1 & 0x3ffff) ^ 0x20000) - 0x20000) << 16)
| (CORE_ADDR)(insn2 & 0xffff);
}
/* Initialization code. */
void _initialize_rs6000_tdep ();
void
_initialize_rs6000_tdep ()
{
gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
/* Initialize the standard target descriptions. */
initialize_tdesc_powerpc_32 ();
initialize_tdesc_powerpc_altivec32 ();
initialize_tdesc_powerpc_vsx32 ();
initialize_tdesc_powerpc_403 ();
initialize_tdesc_powerpc_403gc ();
initialize_tdesc_powerpc_405 ();
initialize_tdesc_powerpc_505 ();
initialize_tdesc_powerpc_601 ();
initialize_tdesc_powerpc_602 ();
initialize_tdesc_powerpc_603 ();
initialize_tdesc_powerpc_604 ();
initialize_tdesc_powerpc_64 ();
initialize_tdesc_powerpc_altivec64 ();
initialize_tdesc_powerpc_vsx64 ();
initialize_tdesc_powerpc_7400 ();
initialize_tdesc_powerpc_750 ();
initialize_tdesc_powerpc_860 ();
initialize_tdesc_powerpc_e500 ();
initialize_tdesc_rs6000 ();
/* Add root prefix command for all "set powerpc"/"show powerpc"
commands. */
add_setshow_prefix_cmd ("powerpc", no_class,
_("Various PowerPC-specific commands."),
_("Various PowerPC-specific commands."),
&setpowerpccmdlist, &showpowerpccmdlist,
&setlist, &showlist);
/* Add a command to allow the user to force the ABI. */
add_setshow_auto_boolean_cmd ("soft-float", class_support,
&powerpc_soft_float_global,
_("Set whether to use a soft-float ABI."),
_("Show whether to use a soft-float ABI."),
NULL,
powerpc_set_soft_float, NULL,
&setpowerpccmdlist, &showpowerpccmdlist);
add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
&powerpc_vector_abi_string,
_("Set the vector ABI."),
_("Show the vector ABI."),
NULL, powerpc_set_vector_abi, NULL,
&setpowerpccmdlist, &showpowerpccmdlist);
add_setshow_boolean_cmd ("exact-watchpoints", class_support,
&target_exact_watchpoints,
_("\
Set whether to use just one debug register for watchpoints on scalars."),
_("\
Show whether to use just one debug register for watchpoints on scalars."),
_("\
If true, GDB will use only one debug register when watching a variable of\n\
scalar type, thus assuming that the variable is accessed through the address\n\
of its first byte."),
NULL, show_powerpc_exact_watchpoints,
&setpowerpccmdlist, &showpowerpccmdlist);
}
|