aboutsummaryrefslogtreecommitdiff
path: root/gdb/f-lang.c
blob: 1b66ae341598605957de656f3b8b01297e81e802 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
/* Fortran language support routines for GDB, the GNU debugger.

   Copyright (C) 1993-2021 Free Software Foundation, Inc.

   Contributed by Motorola.  Adapted from the C parser by Farooq Butt
   (fmbutt@engage.sps.mot.com).

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "expression.h"
#include "parser-defs.h"
#include "language.h"
#include "varobj.h"
#include "gdbcore.h"
#include "f-lang.h"
#include "valprint.h"
#include "value.h"
#include "cp-support.h"
#include "charset.h"
#include "c-lang.h"
#include "target-float.h"
#include "gdbarch.h"
#include "gdbcmd.h"
#include "f-array-walker.h"
#include "f-exp.h"

#include <math.h>

/* Whether GDB should repack array slices created by the user.  */
static bool repack_array_slices = false;

/* Implement 'show fortran repack-array-slices'.  */
static void
show_repack_array_slices (struct ui_file *file, int from_tty,
			  struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Repacking of Fortran array slices is %s.\n"),
		    value);
}

/* Debugging of Fortran's array slicing.  */
static bool fortran_array_slicing_debug = false;

/* Implement 'show debug fortran-array-slicing'.  */
static void
show_fortran_array_slicing_debug (struct ui_file *file, int from_tty,
				  struct cmd_list_element *c,
				  const char *value)
{
  fprintf_filtered (file, _("Debugging of Fortran array slicing is %s.\n"),
		    value);
}

/* Local functions */

static value *fortran_prepare_argument (struct expression *exp,
					expr::operation *subexp,
					int arg_num, bool is_internal_call_p,
					struct type *func_type, enum noside noside);

/* Return the encoding that should be used for the character type
   TYPE.  */

const char *
f_language::get_encoding (struct type *type)
{
  const char *encoding;

  switch (TYPE_LENGTH (type))
    {
    case 1:
      encoding = target_charset (type->arch ());
      break;
    case 4:
      if (type_byte_order (type) == BFD_ENDIAN_BIG)
	encoding = "UTF-32BE";
      else
	encoding = "UTF-32LE";
      break;

    default:
      error (_("unrecognized character type"));
    }

  return encoding;
}



/* A helper function for the "bound" intrinsics that checks that TYPE
   is an array.  LBOUND_P is true for lower bound; this is used for
   the error message, if any.  */

static void
fortran_require_array (struct type *type, bool lbound_p)
{
  type = check_typedef (type);
  if (type->code () != TYPE_CODE_ARRAY)
    {
      if (lbound_p)
	error (_("LBOUND can only be applied to arrays"));
      else
	error (_("UBOUND can only be applied to arrays"));
    }
}

/* Create an array containing the lower bounds (when LBOUND_P is true) or
   the upper bounds (when LBOUND_P is false) of ARRAY (which must be of
   array type).  GDBARCH is the current architecture.  */

static struct value *
fortran_bounds_all_dims (bool lbound_p,
			 struct gdbarch *gdbarch,
			 struct value *array)
{
  type *array_type = check_typedef (value_type (array));
  int ndimensions = calc_f77_array_dims (array_type);

  /* Allocate a result value of the correct type.  */
  struct type *range
    = create_static_range_type (nullptr,
				builtin_type (gdbarch)->builtin_int,
				1, ndimensions);
  struct type *elm_type = builtin_type (gdbarch)->builtin_long_long;
  struct type *result_type = create_array_type (nullptr, elm_type, range);
  struct value *result = allocate_value (result_type);

  /* Walk the array dimensions backwards due to the way the array will be
     laid out in memory, the first dimension will be the most inner.  */
  LONGEST elm_len = TYPE_LENGTH (elm_type);
  for (LONGEST dst_offset = elm_len * (ndimensions - 1);
       dst_offset >= 0;
       dst_offset -= elm_len)
    {
      LONGEST b;

      /* Grab the required bound.  */
      if (lbound_p)
	b = f77_get_lowerbound (array_type);
      else
	b = f77_get_upperbound (array_type);

      /* And copy the value into the result value.  */
      struct value *v = value_from_longest (elm_type, b);
      gdb_assert (dst_offset + TYPE_LENGTH (value_type (v))
		  <= TYPE_LENGTH (value_type (result)));
      gdb_assert (TYPE_LENGTH (value_type (v)) == elm_len);
      value_contents_copy (result, dst_offset, v, 0, elm_len);

      /* Peel another dimension of the array.  */
      array_type = TYPE_TARGET_TYPE (array_type);
    }

  return result;
}

/* Return the lower bound (when LBOUND_P is true) or the upper bound (when
   LBOUND_P is false) for dimension DIM_VAL (which must be an integer) of
   ARRAY (which must be an array).  GDBARCH is the current architecture.  */

static struct value *
fortran_bounds_for_dimension (bool lbound_p,
			      struct gdbarch *gdbarch,
			      struct value *array,
			      struct value *dim_val)
{
  /* Check the requested dimension is valid for this array.  */
  type *array_type = check_typedef (value_type (array));
  int ndimensions = calc_f77_array_dims (array_type);
  long dim = value_as_long (dim_val);
  if (dim < 1 || dim > ndimensions)
    {
      if (lbound_p)
	error (_("LBOUND dimension must be from 1 to %d"), ndimensions);
      else
	error (_("UBOUND dimension must be from 1 to %d"), ndimensions);
    }

  /* The type for the result.  */
  struct type *bound_type = builtin_type (gdbarch)->builtin_long_long;

  /* Walk the dimensions backwards, due to the ordering in which arrays are
     laid out the first dimension is the most inner.  */
  for (int i = ndimensions - 1; i >= 0; --i)
    {
      /* If this is the requested dimension then we're done.  Grab the
	 bounds and return.  */
      if (i == dim - 1)
	{
	  LONGEST b;

	  if (lbound_p)
	    b = f77_get_lowerbound (array_type);
	  else
	    b = f77_get_upperbound (array_type);

	  return value_from_longest (bound_type, b);
	}

      /* Peel off another dimension of the array.  */
      array_type = TYPE_TARGET_TYPE (array_type);
    }

  gdb_assert_not_reached ("failed to find matching dimension");
}


/* Return the number of dimensions for a Fortran array or string.  */

int
calc_f77_array_dims (struct type *array_type)
{
  int ndimen = 1;
  struct type *tmp_type;

  if ((array_type->code () == TYPE_CODE_STRING))
    return 1;

  if ((array_type->code () != TYPE_CODE_ARRAY))
    error (_("Can't get dimensions for a non-array type"));

  tmp_type = array_type;

  while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
    {
      if (tmp_type->code () == TYPE_CODE_ARRAY)
	++ndimen;
    }
  return ndimen;
}

/* A class used by FORTRAN_VALUE_SUBARRAY when repacking Fortran array
   slices.  This is a base class for two alternative repacking mechanisms,
   one for when repacking from a lazy value, and one for repacking from a
   non-lazy (already loaded) value.  */
class fortran_array_repacker_base_impl
  : public fortran_array_walker_base_impl
{
public:
  /* Constructor, DEST is the value we are repacking into.  */
  fortran_array_repacker_base_impl (struct value *dest)
    : m_dest (dest),
      m_dest_offset (0)
  { /* Nothing.  */ }

  /* When we start processing the inner most dimension, this is where we
     will be creating values for each element as we load them and then copy
     them into the M_DEST value.  Set a value mark so we can free these
     temporary values.  */
  void start_dimension (bool inner_p)
  {
    if (inner_p)
      {
	gdb_assert (m_mark == nullptr);
	m_mark = value_mark ();
      }
  }

  /* When we finish processing the inner most dimension free all temporary
     value that were created.  */
  void finish_dimension (bool inner_p, bool last_p)
  {
    if (inner_p)
      {
	gdb_assert (m_mark != nullptr);
	value_free_to_mark (m_mark);
	m_mark = nullptr;
      }
  }

protected:
  /* Copy the contents of array element ELT into M_DEST at the next
     available offset.  */
  void copy_element_to_dest (struct value *elt)
  {
    value_contents_copy (m_dest, m_dest_offset, elt, 0,
			 TYPE_LENGTH (value_type (elt)));
    m_dest_offset += TYPE_LENGTH (value_type (elt));
  }

  /* The value being written to.  */
  struct value *m_dest;

  /* The byte offset in M_DEST at which the next element should be
     written.  */
  LONGEST m_dest_offset;

  /* Set with a call to VALUE_MARK, and then reset after calling
     VALUE_FREE_TO_MARK.  */
  struct value *m_mark = nullptr;
};

/* A class used by FORTRAN_VALUE_SUBARRAY when repacking Fortran array
   slices.  This class is specialised for repacking an array slice from a
   lazy array value, as such it does not require the parent array value to
   be loaded into GDB's memory; the parent value could be huge, while the
   slice could be tiny.  */
class fortran_lazy_array_repacker_impl
  : public fortran_array_repacker_base_impl
{
public:
  /* Constructor.  TYPE is the type of the slice being loaded from the
     parent value, so this type will correctly reflect the strides required
     to find all of the elements from the parent value.  ADDRESS is the
     address in target memory of value matching TYPE, and DEST is the value
     we are repacking into.  */
  explicit fortran_lazy_array_repacker_impl (struct type *type,
					     CORE_ADDR address,
					     struct value *dest)
    : fortran_array_repacker_base_impl (dest),
      m_addr (address)
  { /* Nothing.  */ }

  /* Create a lazy value in target memory representing a single element,
     then load the element into GDB's memory and copy the contents into the
     destination value.  */
  void process_element (struct type *elt_type, LONGEST elt_off, bool last_p)
  {
    copy_element_to_dest (value_at_lazy (elt_type, m_addr + elt_off));
  }

private:
  /* The address in target memory where the parent value starts.  */
  CORE_ADDR m_addr;
};

/* A class used by FORTRAN_VALUE_SUBARRAY when repacking Fortran array
   slices.  This class is specialised for repacking an array slice from a
   previously loaded (non-lazy) array value, as such it fetches the
   element values from the contents of the parent value.  */
class fortran_array_repacker_impl
  : public fortran_array_repacker_base_impl
{
public:
  /* Constructor.  TYPE is the type for the array slice within the parent
     value, as such it has stride values as required to find the elements
     within the original parent value.  ADDRESS is the address in target
     memory of the value matching TYPE.  BASE_OFFSET is the offset from
     the start of VAL's content buffer to the start of the object of TYPE,
     VAL is the parent object from which we are loading the value, and
     DEST is the value into which we are repacking.  */
  explicit fortran_array_repacker_impl (struct type *type, CORE_ADDR address,
					LONGEST base_offset,
					struct value *val, struct value *dest)
    : fortran_array_repacker_base_impl (dest),
      m_base_offset (base_offset),
      m_val (val)
  {
    gdb_assert (!value_lazy (val));
  }

  /* Extract an element of ELT_TYPE at offset (M_BASE_OFFSET + ELT_OFF)
     from the content buffer of M_VAL then copy this extracted value into
     the repacked destination value.  */
  void process_element (struct type *elt_type, LONGEST elt_off, bool last_p)
  {
    struct value *elt
      = value_from_component (m_val, elt_type, (elt_off + m_base_offset));
    copy_element_to_dest (elt);
  }

private:
  /* The offset into the content buffer of M_VAL to the start of the slice
     being extracted.  */
  LONGEST m_base_offset;

  /* The parent value from which we are extracting a slice.  */
  struct value *m_val;
};


/* Evaluate FORTRAN_ASSOCIATED expressions.  Both GDBARCH and LANG are
   extracted from the expression being evaluated.  POINTER is the required
   first argument to the 'associated' keyword, and TARGET is the optional
   second argument, this will be nullptr if the user only passed one
   argument to their use of 'associated'.  */

static struct value *
fortran_associated (struct gdbarch *gdbarch, const language_defn *lang,
		    struct value *pointer, struct value *target = nullptr)
{
  struct type *result_type = language_bool_type (lang, gdbarch);

  /* All Fortran pointers should have the associated property, this is
     how we know the pointer is pointing at something or not.  */
  struct type *pointer_type = check_typedef (value_type (pointer));
  if (TYPE_ASSOCIATED_PROP (pointer_type) == nullptr
      && pointer_type->code () != TYPE_CODE_PTR)
    error (_("ASSOCIATED can only be applied to pointers"));

  /* Get an address from POINTER.  Fortran (or at least gfortran) models
     array pointers as arrays with a dynamic data address, so we need to
     use two approaches here, for real pointers we take the contents of the
     pointer as an address.  For non-pointers we take the address of the
     content.  */
  CORE_ADDR pointer_addr;
  if (pointer_type->code () == TYPE_CODE_PTR)
    pointer_addr = value_as_address (pointer);
  else
    pointer_addr = value_address (pointer);

  /* The single argument case, is POINTER associated with anything?  */
  if (target == nullptr)
    {
      bool is_associated = false;

      /* If POINTER is an actual pointer and doesn't have an associated
	 property then we need to figure out whether this pointer is
	 associated by looking at the value of the pointer itself.  We make
	 the assumption that a non-associated pointer will be set to 0.
	 This is probably true for most targets, but might not be true for
	 everyone.  */
      if (pointer_type->code () == TYPE_CODE_PTR
	  && TYPE_ASSOCIATED_PROP (pointer_type) == nullptr)
	is_associated = (pointer_addr != 0);
      else
	is_associated = !type_not_associated (pointer_type);
      return value_from_longest (result_type, is_associated ? 1 : 0);
    }

  /* The two argument case, is POINTER associated with TARGET?  */

  struct type *target_type = check_typedef (value_type (target));

  struct type *pointer_target_type;
  if (pointer_type->code () == TYPE_CODE_PTR)
    pointer_target_type = TYPE_TARGET_TYPE (pointer_type);
  else
    pointer_target_type = pointer_type;

  struct type *target_target_type;
  if (target_type->code () == TYPE_CODE_PTR)
    target_target_type = TYPE_TARGET_TYPE (target_type);
  else
    target_target_type = target_type;

  if (pointer_target_type->code () != target_target_type->code ()
      || (pointer_target_type->code () != TYPE_CODE_ARRAY
	  && (TYPE_LENGTH (pointer_target_type)
	      != TYPE_LENGTH (target_target_type))))
    error (_("arguments to associated must be of same type and kind"));

  /* If TARGET is not in memory, or the original pointer is specifically
     known to be not associated with anything, then the answer is obviously
     false.  Alternatively, if POINTER is an actual pointer and has no
     associated property, then we have to check if its associated by
     looking the value of the pointer itself.  We make the assumption that
     a non-associated pointer will be set to 0.  This is probably true for
     most targets, but might not be true for everyone.  */
  if (value_lval_const (target) != lval_memory
      || type_not_associated (pointer_type)
      || (TYPE_ASSOCIATED_PROP (pointer_type) == nullptr
	  && pointer_type->code () == TYPE_CODE_PTR
	  && pointer_addr == 0))
    return value_from_longest (result_type, 0);

  /* See the comment for POINTER_ADDR above.  */
  CORE_ADDR target_addr;
  if (target_type->code () == TYPE_CODE_PTR)
    target_addr = value_as_address (target);
  else
    target_addr = value_address (target);

  /* Wrap the following checks inside a do { ... } while (false) loop so
     that we can use `break' to jump out of the loop.  */
  bool is_associated = false;
  do
    {
      /* If the addresses are different then POINTER is definitely not
	 pointing at TARGET.  */
      if (pointer_addr != target_addr)
	break;

      /* If POINTER is a real pointer (i.e. not an array pointer, which are
	 implemented as arrays with a dynamic content address), then this
	 is all the checking that is needed.  */
      if (pointer_type->code () == TYPE_CODE_PTR)
	{
	  is_associated = true;
	  break;
	}

      /* We have an array pointer.  Check the number of dimensions.  */
      int pointer_dims = calc_f77_array_dims (pointer_type);
      int target_dims = calc_f77_array_dims (target_type);
      if (pointer_dims != target_dims)
	break;

      /* Now check that every dimension has the same upper bound, lower
	 bound, and stride value.  */
      int dim = 0;
      while (dim < pointer_dims)
	{
	  LONGEST pointer_lowerbound, pointer_upperbound, pointer_stride;
	  LONGEST target_lowerbound, target_upperbound, target_stride;

	  pointer_type = check_typedef (pointer_type);
	  target_type = check_typedef (target_type);

	  struct type *pointer_range = pointer_type->index_type ();
	  struct type *target_range = target_type->index_type ();

	  if (!get_discrete_bounds (pointer_range, &pointer_lowerbound,
				    &pointer_upperbound))
	    break;

	  if (!get_discrete_bounds (target_range, &target_lowerbound,
				    &target_upperbound))
	    break;

	  if (pointer_lowerbound != target_lowerbound
	      || pointer_upperbound != target_upperbound)
	    break;

	  /* Figure out the stride (in bits) for both pointer and target.
	     If either doesn't have a stride then we take the element size,
	     but we need to convert to bits (hence the * 8).  */
	  pointer_stride = pointer_range->bounds ()->bit_stride ();
	  if (pointer_stride == 0)
	    pointer_stride
	      = type_length_units (check_typedef
				     (TYPE_TARGET_TYPE (pointer_type))) * 8;
	  target_stride = target_range->bounds ()->bit_stride ();
	  if (target_stride == 0)
	    target_stride
	      = type_length_units (check_typedef
				     (TYPE_TARGET_TYPE (target_type))) * 8;
	  if (pointer_stride != target_stride)
	    break;

	  ++dim;
	}

      if (dim < pointer_dims)
	break;

      is_associated = true;
    }
  while (false);

  return value_from_longest (result_type, is_associated ? 1 : 0);
}

struct value *
eval_op_f_associated (struct type *expect_type,
		      struct expression *exp,
		      enum noside noside,
		      enum exp_opcode opcode,
		      struct value *arg1)
{
  return fortran_associated (exp->gdbarch, exp->language_defn, arg1);
}

struct value *
eval_op_f_associated (struct type *expect_type,
		      struct expression *exp,
		      enum noside noside,
		      enum exp_opcode opcode,
		      struct value *arg1,
		      struct value *arg2)
{
  return fortran_associated (exp->gdbarch, exp->language_defn, arg1, arg2);
}

/* A helper function for UNOP_ABS.  */

struct value *
eval_op_f_abs (struct type *expect_type, struct expression *exp,
	       enum noside noside,
	       enum exp_opcode opcode,
	       struct value *arg1)
{
  struct type *type = value_type (arg1);
  switch (type->code ())
    {
    case TYPE_CODE_FLT:
      {
	double d
	  = fabs (target_float_to_host_double (value_contents (arg1),
					       value_type (arg1)));
	return value_from_host_double (type, d);
      }
    case TYPE_CODE_INT:
      {
	LONGEST l = value_as_long (arg1);
	l = llabs (l);
	return value_from_longest (type, l);
      }
    }
  error (_("ABS of type %s not supported"), TYPE_SAFE_NAME (type));
}

/* A helper function for BINOP_MOD.  */

struct value *
eval_op_f_mod (struct type *expect_type, struct expression *exp,
	       enum noside noside,
	       enum exp_opcode opcode,
	       struct value *arg1, struct value *arg2)
{
  struct type *type = value_type (arg1);
  if (type->code () != value_type (arg2)->code ())
    error (_("non-matching types for parameters to MOD ()"));
  switch (type->code ())
    {
    case TYPE_CODE_FLT:
      {
	double d1
	  = target_float_to_host_double (value_contents (arg1),
					 value_type (arg1));
	double d2
	  = target_float_to_host_double (value_contents (arg2),
					 value_type (arg2));
	double d3 = fmod (d1, d2);
	return value_from_host_double (type, d3);
      }
    case TYPE_CODE_INT:
      {
	LONGEST v1 = value_as_long (arg1);
	LONGEST v2 = value_as_long (arg2);
	if (v2 == 0)
	  error (_("calling MOD (N, 0) is undefined"));
	LONGEST v3 = v1 - (v1 / v2) * v2;
	return value_from_longest (value_type (arg1), v3);
      }
    }
  error (_("MOD of type %s not supported"), TYPE_SAFE_NAME (type));
}

/* A helper function for UNOP_FORTRAN_CEILING.  */

struct value *
eval_op_f_ceil (struct type *expect_type, struct expression *exp,
		enum noside noside,
		enum exp_opcode opcode,
		struct value *arg1)
{
  struct type *type = value_type (arg1);
  if (type->code () != TYPE_CODE_FLT)
    error (_("argument to CEILING must be of type float"));
  double val
    = target_float_to_host_double (value_contents (arg1),
				   value_type (arg1));
  val = ceil (val);
  return value_from_host_double (type, val);
}

/* A helper function for UNOP_FORTRAN_FLOOR.  */

struct value *
eval_op_f_floor (struct type *expect_type, struct expression *exp,
		 enum noside noside,
		 enum exp_opcode opcode,
		 struct value *arg1)
{
  struct type *type = value_type (arg1);
  if (type->code () != TYPE_CODE_FLT)
    error (_("argument to FLOOR must be of type float"));
  double val
    = target_float_to_host_double (value_contents (arg1),
				   value_type (arg1));
  val = floor (val);
  return value_from_host_double (type, val);
}

/* A helper function for BINOP_FORTRAN_MODULO.  */

struct value *
eval_op_f_modulo (struct type *expect_type, struct expression *exp,
		  enum noside noside,
		  enum exp_opcode opcode,
		  struct value *arg1, struct value *arg2)
{
  struct type *type = value_type (arg1);
  if (type->code () != value_type (arg2)->code ())
    error (_("non-matching types for parameters to MODULO ()"));
  /* MODULO(A, P) = A - FLOOR (A / P) * P */
  switch (type->code ())
    {
    case TYPE_CODE_INT:
      {
	LONGEST a = value_as_long (arg1);
	LONGEST p = value_as_long (arg2);
	LONGEST result = a - (a / p) * p;
	if (result != 0 && (a < 0) != (p < 0))
	  result += p;
	return value_from_longest (value_type (arg1), result);
      }
    case TYPE_CODE_FLT:
      {
	double a
	  = target_float_to_host_double (value_contents (arg1),
					 value_type (arg1));
	double p
	  = target_float_to_host_double (value_contents (arg2),
					 value_type (arg2));
	double result = fmod (a, p);
	if (result != 0 && (a < 0.0) != (p < 0.0))
	  result += p;
	return value_from_host_double (type, result);
      }
    }
  error (_("MODULO of type %s not supported"), TYPE_SAFE_NAME (type));
}

/* A helper function for BINOP_FORTRAN_CMPLX.  */

struct value *
eval_op_f_cmplx (struct type *expect_type, struct expression *exp,
		 enum noside noside,
		 enum exp_opcode opcode,
		 struct value *arg1, struct value *arg2)
{
  struct type *type = builtin_f_type(exp->gdbarch)->builtin_complex_s16;
  return value_literal_complex (arg1, arg2, type);
}

/* A helper function for UNOP_FORTRAN_KIND.  */

struct value *
eval_op_f_kind (struct type *expect_type, struct expression *exp,
		enum noside noside,
		enum exp_opcode opcode,
		struct value *arg1)
{
  struct type *type = value_type (arg1);

  switch (type->code ())
    {
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
    case TYPE_CODE_MODULE:
    case TYPE_CODE_FUNC:
      error (_("argument to kind must be an intrinsic type"));
    }

  if (!TYPE_TARGET_TYPE (type))
    return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
			       TYPE_LENGTH (type));
  return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
			     TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
}

/* A helper function for UNOP_FORTRAN_ALLOCATED.  */

struct value *
eval_op_f_allocated (struct type *expect_type, struct expression *exp,
		     enum noside noside, enum exp_opcode op,
		     struct value *arg1)
{
  struct type *type = check_typedef (value_type (arg1));
  if (type->code () != TYPE_CODE_ARRAY)
    error (_("ALLOCATED can only be applied to arrays"));
  struct type *result_type
    = builtin_f_type (exp->gdbarch)->builtin_logical;
  LONGEST result_value = type_not_allocated (type) ? 0 : 1;
  return value_from_longest (result_type, result_value);
}

namespace expr
{

/* Called from evaluate to perform array indexing, and sub-range
   extraction, for Fortran.  As well as arrays this function also
   handles strings as they can be treated like arrays of characters.
   ARRAY is the array or string being accessed.  EXP and NOSIDE are as
   for evaluate.  */

value *
fortran_undetermined::value_subarray (value *array,
				      struct expression *exp,
				      enum noside noside)
{
  type *original_array_type = check_typedef (value_type (array));
  bool is_string_p = original_array_type->code () == TYPE_CODE_STRING;
  const std::vector<operation_up> &ops = std::get<1> (m_storage);
  int nargs = ops.size ();

  /* Perform checks for ARRAY not being available.  The somewhat overly
     complex logic here is just to keep backward compatibility with the
     errors that we used to get before FORTRAN_VALUE_SUBARRAY was
     rewritten.  Maybe a future task would streamline the error messages we
     get here, and update all the expected test results.  */
  if (ops[0]->opcode () != OP_RANGE)
    {
      if (type_not_associated (original_array_type))
	error (_("no such vector element (vector not associated)"));
      else if (type_not_allocated (original_array_type))
	error (_("no such vector element (vector not allocated)"));
    }
  else
    {
      if (type_not_associated (original_array_type))
	error (_("array not associated"));
      else if (type_not_allocated (original_array_type))
	error (_("array not allocated"));
    }

  /* First check that the number of dimensions in the type we are slicing
     matches the number of arguments we were passed.  */
  int ndimensions = calc_f77_array_dims (original_array_type);
  if (nargs != ndimensions)
    error (_("Wrong number of subscripts"));

  /* This will be initialised below with the type of the elements held in
     ARRAY.  */
  struct type *inner_element_type;

  /* Extract the types of each array dimension from the original array
     type.  We need these available so we can fill in the default upper and
     lower bounds if the user requested slice doesn't provide that
     information.  Additionally unpacking the dimensions like this gives us
     the inner element type.  */
  std::vector<struct type *> dim_types;
  {
    dim_types.reserve (ndimensions);
    struct type *type = original_array_type;
    for (int i = 0; i < ndimensions; ++i)
      {
	dim_types.push_back (type);
	type = TYPE_TARGET_TYPE (type);
      }
    /* TYPE is now the inner element type of the array, we start the new
       array slice off as this type, then as we process the requested slice
       (from the user) we wrap new types around this to build up the final
       slice type.  */
    inner_element_type = type;
  }

  /* As we analyse the new slice type we need to understand if the data
     being referenced is contiguous.  Do decide this we must track the size
     of an element at each dimension of the new slice array.  Initially the
     elements of the inner most dimension of the array are the same inner
     most elements as the original ARRAY.  */
  LONGEST slice_element_size = TYPE_LENGTH (inner_element_type);

  /* Start off assuming all data is contiguous, this will be set to false
     if access to any dimension results in non-contiguous data.  */
  bool is_all_contiguous = true;

  /* The TOTAL_OFFSET is the distance in bytes from the start of the
     original ARRAY to the start of the new slice.  This is calculated as
     we process the information from the user.  */
  LONGEST total_offset = 0;

  /* A structure representing information about each dimension of the
     resulting slice.  */
  struct slice_dim
  {
    /* Constructor.  */
    slice_dim (LONGEST l, LONGEST h, LONGEST s, struct type *idx)
      : low (l),
	high (h),
	stride (s),
	index (idx)
    { /* Nothing.  */ }

    /* The low bound for this dimension of the slice.  */
    LONGEST low;

    /* The high bound for this dimension of the slice.  */
    LONGEST high;

    /* The byte stride for this dimension of the slice.  */
    LONGEST stride;

    struct type *index;
  };

  /* The dimensions of the resulting slice.  */
  std::vector<slice_dim> slice_dims;

  /* Process the incoming arguments.   These arguments are in the reverse
     order to the array dimensions, that is the first argument refers to
     the last array dimension.  */
  if (fortran_array_slicing_debug)
    debug_printf ("Processing array access:\n");
  for (int i = 0; i < nargs; ++i)
    {
      /* For each dimension of the array the user will have either provided
	 a ranged access with optional lower bound, upper bound, and
	 stride, or the user will have supplied a single index.  */
      struct type *dim_type = dim_types[ndimensions - (i + 1)];
      fortran_range_operation *range_op
	= dynamic_cast<fortran_range_operation *> (ops[i].get ());
      if (range_op != nullptr)
	{
	  enum range_flag range_flag = range_op->get_flags ();

	  LONGEST low, high, stride;
	  low = high = stride = 0;

	  if ((range_flag & RANGE_LOW_BOUND_DEFAULT) == 0)
	    low = value_as_long (range_op->evaluate0 (exp, noside));
	  else
	    low = f77_get_lowerbound (dim_type);
	  if ((range_flag & RANGE_HIGH_BOUND_DEFAULT) == 0)
	    high = value_as_long (range_op->evaluate1 (exp, noside));
	  else
	    high = f77_get_upperbound (dim_type);
	  if ((range_flag & RANGE_HAS_STRIDE) == RANGE_HAS_STRIDE)
	    stride = value_as_long (range_op->evaluate2 (exp, noside));
	  else
	    stride = 1;

	  if (stride == 0)
	    error (_("stride must not be 0"));

	  /* Get information about this dimension in the original ARRAY.  */
	  struct type *target_type = TYPE_TARGET_TYPE (dim_type);
	  struct type *index_type = dim_type->index_type ();
	  LONGEST lb = f77_get_lowerbound (dim_type);
	  LONGEST ub = f77_get_upperbound (dim_type);
	  LONGEST sd = index_type->bit_stride ();
	  if (sd == 0)
	    sd = TYPE_LENGTH (target_type) * 8;

	  if (fortran_array_slicing_debug)
	    {
	      debug_printf ("|-> Range access\n");
	      std::string str = type_to_string (dim_type);
	      debug_printf ("|   |-> Type: %s\n", str.c_str ());
	      debug_printf ("|   |-> Array:\n");
	      debug_printf ("|   |   |-> Low bound: %s\n", plongest (lb));
	      debug_printf ("|   |   |-> High bound: %s\n", plongest (ub));
	      debug_printf ("|   |   |-> Bit stride: %s\n", plongest (sd));
	      debug_printf ("|   |   |-> Byte stride: %s\n", plongest (sd / 8));
	      debug_printf ("|   |   |-> Type size: %s\n",
			    pulongest (TYPE_LENGTH (dim_type)));
	      debug_printf ("|   |   '-> Target type size: %s\n",
			    pulongest (TYPE_LENGTH (target_type)));
	      debug_printf ("|   |-> Accessing:\n");
	      debug_printf ("|   |   |-> Low bound: %s\n",
			    plongest (low));
	      debug_printf ("|   |   |-> High bound: %s\n",
			    plongest (high));
	      debug_printf ("|   |   '-> Element stride: %s\n",
			    plongest (stride));
	    }

	  /* Check the user hasn't asked for something invalid.  */
	  if (high > ub || low < lb)
	    error (_("array subscript out of bounds"));

	  /* Calculate what this dimension of the new slice array will look
	     like.  OFFSET is the byte offset from the start of the
	     previous (more outer) dimension to the start of this
	     dimension.  E_COUNT is the number of elements in this
	     dimension.  REMAINDER is the number of elements remaining
	     between the last included element and the upper bound.  For
	     example an access '1:6:2' will include elements 1, 3, 5 and
	     have a remainder of 1 (element #6).  */
	  LONGEST lowest = std::min (low, high);
	  LONGEST offset = (sd / 8) * (lowest - lb);
	  LONGEST e_count = std::abs (high - low) + 1;
	  e_count = (e_count + (std::abs (stride) - 1)) / std::abs (stride);
	  LONGEST new_low = 1;
	  LONGEST new_high = new_low + e_count - 1;
	  LONGEST new_stride = (sd * stride) / 8;
	  LONGEST last_elem = low + ((e_count - 1) * stride);
	  LONGEST remainder = high - last_elem;
	  if (low > high)
	    {
	      offset += std::abs (remainder) * TYPE_LENGTH (target_type);
	      if (stride > 0)
		error (_("incorrect stride and boundary combination"));
	    }
	  else if (stride < 0)
	    error (_("incorrect stride and boundary combination"));

	  /* Is the data within this dimension contiguous?  It is if the
	     newly computed stride is the same size as a single element of
	     this dimension.  */
	  bool is_dim_contiguous = (new_stride == slice_element_size);
	  is_all_contiguous &= is_dim_contiguous;

	  if (fortran_array_slicing_debug)
	    {
	      debug_printf ("|   '-> Results:\n");
	      debug_printf ("|       |-> Offset = %s\n", plongest (offset));
	      debug_printf ("|       |-> Elements = %s\n", plongest (e_count));
	      debug_printf ("|       |-> Low bound = %s\n", plongest (new_low));
	      debug_printf ("|       |-> High bound = %s\n",
			    plongest (new_high));
	      debug_printf ("|       |-> Byte stride = %s\n",
			    plongest (new_stride));
	      debug_printf ("|       |-> Last element = %s\n",
			    plongest (last_elem));
	      debug_printf ("|       |-> Remainder = %s\n",
			    plongest (remainder));
	      debug_printf ("|       '-> Contiguous = %s\n",
			    (is_dim_contiguous ? "Yes" : "No"));
	    }

	  /* Figure out how big (in bytes) an element of this dimension of
	     the new array slice will be.  */
	  slice_element_size = std::abs (new_stride * e_count);

	  slice_dims.emplace_back (new_low, new_high, new_stride,
				   index_type);

	  /* Update the total offset.  */
	  total_offset += offset;
	}
      else
	{
	  /* There is a single index for this dimension.  */
	  LONGEST index
	    = value_as_long (ops[i]->evaluate_with_coercion (exp, noside));

	  /* Get information about this dimension in the original ARRAY.  */
	  struct type *target_type = TYPE_TARGET_TYPE (dim_type);
	  struct type *index_type = dim_type->index_type ();
	  LONGEST lb = f77_get_lowerbound (dim_type);
	  LONGEST ub = f77_get_upperbound (dim_type);
	  LONGEST sd = index_type->bit_stride () / 8;
	  if (sd == 0)
	    sd = TYPE_LENGTH (target_type);

	  if (fortran_array_slicing_debug)
	    {
	      debug_printf ("|-> Index access\n");
	      std::string str = type_to_string (dim_type);
	      debug_printf ("|   |-> Type: %s\n", str.c_str ());
	      debug_printf ("|   |-> Array:\n");
	      debug_printf ("|   |   |-> Low bound: %s\n", plongest (lb));
	      debug_printf ("|   |   |-> High bound: %s\n", plongest (ub));
	      debug_printf ("|   |   |-> Byte stride: %s\n", plongest (sd));
	      debug_printf ("|   |   |-> Type size: %s\n",
			    pulongest (TYPE_LENGTH (dim_type)));
	      debug_printf ("|   |   '-> Target type size: %s\n",
			    pulongest (TYPE_LENGTH (target_type)));
	      debug_printf ("|   '-> Accessing:\n");
	      debug_printf ("|       '-> Index: %s\n",
			    plongest (index));
	    }

	  /* If the array has actual content then check the index is in
	     bounds.  An array without content (an unbound array) doesn't
	     have a known upper bound, so don't error check in that
	     situation.  */
	  if (index < lb
	      || (dim_type->index_type ()->bounds ()->high.kind () != PROP_UNDEFINED
		  && index > ub)
	      || (VALUE_LVAL (array) != lval_memory
		  && dim_type->index_type ()->bounds ()->high.kind () == PROP_UNDEFINED))
	    {
	      if (type_not_associated (dim_type))
		error (_("no such vector element (vector not associated)"));
	      else if (type_not_allocated (dim_type))
		error (_("no such vector element (vector not allocated)"));
	      else
		error (_("no such vector element"));
	    }

	  /* Calculate using the type stride, not the target type size.  */
	  LONGEST offset = sd * (index - lb);
	  total_offset += offset;
	}
    }

  /* Build a type that represents the new array slice in the target memory
     of the original ARRAY, this type makes use of strides to correctly
     find only those elements that are part of the new slice.  */
  struct type *array_slice_type = inner_element_type;
  for (const auto &d : slice_dims)
    {
      /* Create the range.  */
      dynamic_prop p_low, p_high, p_stride;

      p_low.set_const_val (d.low);
      p_high.set_const_val (d.high);
      p_stride.set_const_val (d.stride);

      struct type *new_range
	= create_range_type_with_stride ((struct type *) NULL,
					 TYPE_TARGET_TYPE (d.index),
					 &p_low, &p_high, 0, &p_stride,
					 true);
      array_slice_type
	= create_array_type (nullptr, array_slice_type, new_range);
    }

  if (fortran_array_slicing_debug)
    {
      debug_printf ("'-> Final result:\n");
      debug_printf ("    |-> Type: %s\n",
		    type_to_string (array_slice_type).c_str ());
      debug_printf ("    |-> Total offset: %s\n",
		    plongest (total_offset));
      debug_printf ("    |-> Base address: %s\n",
		    core_addr_to_string (value_address (array)));
      debug_printf ("    '-> Contiguous = %s\n",
		    (is_all_contiguous ? "Yes" : "No"));
    }

  /* Should we repack this array slice?  */
  if (!is_all_contiguous && (repack_array_slices || is_string_p))
    {
      /* Build a type for the repacked slice.  */
      struct type *repacked_array_type = inner_element_type;
      for (const auto &d : slice_dims)
	{
	  /* Create the range.  */
	  dynamic_prop p_low, p_high, p_stride;

	  p_low.set_const_val (d.low);
	  p_high.set_const_val (d.high);
	  p_stride.set_const_val (TYPE_LENGTH (repacked_array_type));

	  struct type *new_range
	    = create_range_type_with_stride ((struct type *) NULL,
					     TYPE_TARGET_TYPE (d.index),
					     &p_low, &p_high, 0, &p_stride,
					     true);
	  repacked_array_type
	    = create_array_type (nullptr, repacked_array_type, new_range);
	}

      /* Now copy the elements from the original ARRAY into the packed
	 array value DEST.  */
      struct value *dest = allocate_value (repacked_array_type);
      if (value_lazy (array)
	  || (total_offset + TYPE_LENGTH (array_slice_type)
	      > TYPE_LENGTH (check_typedef (value_type (array)))))
	{
	  fortran_array_walker<fortran_lazy_array_repacker_impl> p
	    (array_slice_type, value_address (array) + total_offset, dest);
	  p.walk ();
	}
      else
	{
	  fortran_array_walker<fortran_array_repacker_impl> p
	    (array_slice_type, value_address (array) + total_offset,
	     total_offset, array, dest);
	  p.walk ();
	}
      array = dest;
    }
  else
    {
      if (VALUE_LVAL (array) == lval_memory)
	{
	  /* If the value we're taking a slice from is not yet loaded, or
	     the requested slice is outside the values content range then
	     just create a new lazy value pointing at the memory where the
	     contents we're looking for exist.  */
	  if (value_lazy (array)
	      || (total_offset + TYPE_LENGTH (array_slice_type)
		  > TYPE_LENGTH (check_typedef (value_type (array)))))
	    array = value_at_lazy (array_slice_type,
				   value_address (array) + total_offset);
	  else
	    array = value_from_contents_and_address (array_slice_type,
						     (value_contents (array)
						      + total_offset),
						     (value_address (array)
						      + total_offset));
	}
      else if (!value_lazy (array))
	array = value_from_component (array, array_slice_type, total_offset);
      else
	error (_("cannot subscript arrays that are not in memory"));
    }

  return array;
}

value *
fortran_undetermined::evaluate (struct type *expect_type,
				struct expression *exp,
				enum noside noside)
{
  value *callee = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
  struct type *type = check_typedef (value_type (callee));
  enum type_code code = type->code ();

  if (code == TYPE_CODE_PTR)
    {
      /* Fortran always passes variable to subroutines as pointer.
	 So we need to look into its target type to see if it is
	 array, string or function.  If it is, we need to switch
	 to the target value the original one points to.  */
      struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));

      if (target_type->code () == TYPE_CODE_ARRAY
	  || target_type->code () == TYPE_CODE_STRING
	  || target_type->code () == TYPE_CODE_FUNC)
	{
	  callee = value_ind (callee);
	  type = check_typedef (value_type (callee));
	  code = type->code ();
	}
    }

  switch (code)
    {
    case TYPE_CODE_ARRAY:
    case TYPE_CODE_STRING:
      return value_subarray (callee, exp, noside);

    case TYPE_CODE_PTR:
    case TYPE_CODE_FUNC:
    case TYPE_CODE_INTERNAL_FUNCTION:
      {
	/* It's a function call.  Allocate arg vector, including
	   space for the function to be called in argvec[0] and a
	   termination NULL.  */
	const std::vector<operation_up> &actual (std::get<1> (m_storage));
	std::vector<value *> argvec (actual.size ());
	bool is_internal_func = (code == TYPE_CODE_INTERNAL_FUNCTION);
	for (int tem = 0; tem < argvec.size (); tem++)
	  argvec[tem] = fortran_prepare_argument (exp, actual[tem].get (),
						  tem, is_internal_func,
						  value_type (callee),
						  noside);
	return evaluate_subexp_do_call (exp, noside, callee, argvec,
					nullptr, expect_type);
      }

    default:
      error (_("Cannot perform substring on this type"));
    }
}

value *
fortran_bound_1arg::evaluate (struct type *expect_type,
			      struct expression *exp,
			      enum noside noside)
{
  bool lbound_p = std::get<0> (m_storage) == FORTRAN_LBOUND;
  value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
  fortran_require_array (value_type (arg1), lbound_p);
  return fortran_bounds_all_dims (lbound_p, exp->gdbarch, arg1);
}

value *
fortran_bound_2arg::evaluate (struct type *expect_type,
			      struct expression *exp,
			      enum noside noside)
{
  bool lbound_p = std::get<0> (m_storage) == FORTRAN_LBOUND;
  value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
  fortran_require_array (value_type (arg1), lbound_p);

  /* User asked for the bounds of a specific dimension of the array.  */
  value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
  struct type *type = check_typedef (value_type (arg2));
  if (type->code () != TYPE_CODE_INT)
    {
      if (lbound_p)
	error (_("LBOUND second argument should be an integer"));
      else
	error (_("UBOUND second argument should be an integer"));
    }

  return fortran_bounds_for_dimension (lbound_p, exp->gdbarch, arg1, arg2);
}

} /* namespace expr */

/* See language.h.  */

void
f_language::language_arch_info (struct gdbarch *gdbarch,
				struct language_arch_info *lai) const
{
  const struct builtin_f_type *builtin = builtin_f_type (gdbarch);

  /* Helper function to allow shorter lines below.  */
  auto add  = [&] (struct type * t)
  {
    lai->add_primitive_type (t);
  };

  add (builtin->builtin_character);
  add (builtin->builtin_logical);
  add (builtin->builtin_logical_s1);
  add (builtin->builtin_logical_s2);
  add (builtin->builtin_logical_s8);
  add (builtin->builtin_real);
  add (builtin->builtin_real_s8);
  add (builtin->builtin_real_s16);
  add (builtin->builtin_complex_s8);
  add (builtin->builtin_complex_s16);
  add (builtin->builtin_void);

  lai->set_string_char_type (builtin->builtin_character);
  lai->set_bool_type (builtin->builtin_logical_s2, "logical");
}

/* See language.h.  */

unsigned int
f_language::search_name_hash (const char *name) const
{
  return cp_search_name_hash (name);
}

/* See language.h.  */

struct block_symbol
f_language::lookup_symbol_nonlocal (const char *name,
				    const struct block *block,
				    const domain_enum domain) const
{
  return cp_lookup_symbol_nonlocal (this, name, block, domain);
}

/* See language.h.  */

symbol_name_matcher_ftype *
f_language::get_symbol_name_matcher_inner
	(const lookup_name_info &lookup_name) const
{
  return cp_get_symbol_name_matcher (lookup_name);
}

/* Single instance of the Fortran language class.  */

static f_language f_language_defn;

static void *
build_fortran_types (struct gdbarch *gdbarch)
{
  struct builtin_f_type *builtin_f_type
    = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_f_type);

  builtin_f_type->builtin_void
    = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");

  builtin_f_type->builtin_character
    = arch_type (gdbarch, TYPE_CODE_CHAR, TARGET_CHAR_BIT, "character");

  builtin_f_type->builtin_logical_s1
    = arch_boolean_type (gdbarch, TARGET_CHAR_BIT, 1, "logical*1");

  builtin_f_type->builtin_integer_s2
    = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), 0,
			 "integer*2");

  builtin_f_type->builtin_integer_s8
    = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), 0,
			 "integer*8");

  builtin_f_type->builtin_logical_s2
    = arch_boolean_type (gdbarch, gdbarch_short_bit (gdbarch), 1,
			 "logical*2");

  builtin_f_type->builtin_logical_s8
    = arch_boolean_type (gdbarch, gdbarch_long_long_bit (gdbarch), 1,
			 "logical*8");

  builtin_f_type->builtin_integer
    = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), 0,
			 "integer");

  builtin_f_type->builtin_logical
    = arch_boolean_type (gdbarch, gdbarch_int_bit (gdbarch), 1,
			 "logical*4");

  builtin_f_type->builtin_real
    = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
		       "real", gdbarch_float_format (gdbarch));
  builtin_f_type->builtin_real_s8
    = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
		       "real*8", gdbarch_double_format (gdbarch));
  auto fmt = gdbarch_floatformat_for_type (gdbarch, "real(kind=16)", 128);
  if (fmt != nullptr)
    builtin_f_type->builtin_real_s16
      = arch_float_type (gdbarch, 128, "real*16", fmt);
  else if (gdbarch_long_double_bit (gdbarch) == 128)
    builtin_f_type->builtin_real_s16
      = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
			 "real*16", gdbarch_long_double_format (gdbarch));
  else
    builtin_f_type->builtin_real_s16
      = arch_type (gdbarch, TYPE_CODE_ERROR, 128, "real*16");

  builtin_f_type->builtin_complex_s8
    = init_complex_type ("complex*8", builtin_f_type->builtin_real);
  builtin_f_type->builtin_complex_s16
    = init_complex_type ("complex*16", builtin_f_type->builtin_real_s8);

  if (builtin_f_type->builtin_real_s16->code () == TYPE_CODE_ERROR)
    builtin_f_type->builtin_complex_s32
      = arch_type (gdbarch, TYPE_CODE_ERROR, 256, "complex*32");
  else
    builtin_f_type->builtin_complex_s32
      = init_complex_type ("complex*32", builtin_f_type->builtin_real_s16);

  return builtin_f_type;
}

static struct gdbarch_data *f_type_data;

const struct builtin_f_type *
builtin_f_type (struct gdbarch *gdbarch)
{
  return (const struct builtin_f_type *) gdbarch_data (gdbarch, f_type_data);
}

/* Command-list for the "set/show fortran" prefix command.  */
static struct cmd_list_element *set_fortran_list;
static struct cmd_list_element *show_fortran_list;

void _initialize_f_language ();
void
_initialize_f_language ()
{
  f_type_data = gdbarch_data_register_post_init (build_fortran_types);

  add_basic_prefix_cmd ("fortran", no_class,
			_("Prefix command for changing Fortran-specific settings."),
			&set_fortran_list, "set fortran ", 0, &setlist);

  add_show_prefix_cmd ("fortran", no_class,
		       _("Generic command for showing Fortran-specific settings."),
		       &show_fortran_list, "show fortran ", 0, &showlist);

  add_setshow_boolean_cmd ("repack-array-slices", class_vars,
			   &repack_array_slices, _("\
Enable or disable repacking of non-contiguous array slices."), _("\
Show whether non-contiguous array slices are repacked."), _("\
When the user requests a slice of a Fortran array then we can either return\n\
a descriptor that describes the array in place (using the original array data\n\
in its existing location) or the original data can be repacked (copied) to a\n\
new location.\n\
\n\
When the content of the array slice is contiguous within the original array\n\
then the result will never be repacked, but when the data for the new array\n\
is non-contiguous within the original array repacking will only be performed\n\
when this setting is on."),
			   NULL,
			   show_repack_array_slices,
			   &set_fortran_list, &show_fortran_list);

  /* Debug Fortran's array slicing logic.  */
  add_setshow_boolean_cmd ("fortran-array-slicing", class_maintenance,
			   &fortran_array_slicing_debug, _("\
Set debugging of Fortran array slicing."), _("\
Show debugging of Fortran array slicing."), _("\
When on, debugging of Fortran array slicing is enabled."),
			    NULL,
			    show_fortran_array_slicing_debug,
			    &setdebuglist, &showdebuglist);
}

/* Ensures that function argument VALUE is in the appropriate form to
   pass to a Fortran function.  Returns a possibly new value that should
   be used instead of VALUE.

   When IS_ARTIFICIAL is true this indicates an artificial argument,
   e.g. hidden string lengths which the GNU Fortran argument passing
   convention specifies as being passed by value.

   When IS_ARTIFICIAL is false, the argument is passed by pointer.  If the
   value is already in target memory then return a value that is a pointer
   to VALUE.  If VALUE is not in memory (e.g. an integer literal), allocate
   space in the target, copy VALUE in, and return a pointer to the in
   memory copy.  */

static struct value *
fortran_argument_convert (struct value *value, bool is_artificial)
{
  if (!is_artificial)
    {
      /* If the value is not in the inferior e.g. registers values,
	 convenience variables and user input.  */
      if (VALUE_LVAL (value) != lval_memory)
	{
	  struct type *type = value_type (value);
	  const int length = TYPE_LENGTH (type);
	  const CORE_ADDR addr
	    = value_as_long (value_allocate_space_in_inferior (length));
	  write_memory (addr, value_contents (value), length);
	  struct value *val
	    = value_from_contents_and_address (type, value_contents (value),
					       addr);
	  return value_addr (val);
	}
      else
	return value_addr (value); /* Program variables, e.g. arrays.  */
    }
    return value;
}

/* Prepare (and return) an argument value ready for an inferior function
   call to a Fortran function.  EXP and POS are the expressions describing
   the argument to prepare.  ARG_NUM is the argument number being
   prepared, with 0 being the first argument and so on.  FUNC_TYPE is the
   type of the function being called.

   IS_INTERNAL_CALL_P is true if this is a call to a function of type
   TYPE_CODE_INTERNAL_FUNCTION, otherwise this parameter is false.

   NOSIDE has its usual meaning for expression parsing (see eval.c).

   Arguments in Fortran are normally passed by address, we coerce the
   arguments here rather than in value_arg_coerce as otherwise the call to
   malloc (to place the non-lvalue parameters in target memory) is hit by
   this Fortran specific logic.  This results in malloc being called with a
   pointer to an integer followed by an attempt to malloc the arguments to
   malloc in target memory.  Infinite recursion ensues.  */

static value *
fortran_prepare_argument (struct expression *exp,
			  expr::operation *subexp,
			  int arg_num, bool is_internal_call_p,
			  struct type *func_type, enum noside noside)
{
  if (is_internal_call_p)
    return subexp->evaluate_with_coercion (exp, noside);

  bool is_artificial = ((arg_num >= func_type->num_fields ())
			? true
			: TYPE_FIELD_ARTIFICIAL (func_type, arg_num));

  /* If this is an artificial argument, then either, this is an argument
     beyond the end of the known arguments, or possibly, there are no known
     arguments (maybe missing debug info).

     For these artificial arguments, if the user has prefixed it with '&'
     (for address-of), then lets always allow this to succeed, even if the
     argument is not actually in inferior memory.  This will allow the user
     to pass arguments to a Fortran function even when there's no debug
     information.

     As we already pass the address of non-artificial arguments, all we
     need to do if skip the UNOP_ADDR operator in the expression and mark
     the argument as non-artificial.  */
  if (is_artificial)
    {
      expr::unop_addr_operation *addrop
	= dynamic_cast<expr::unop_addr_operation *> (subexp);
      if (addrop != nullptr)
	{
	  subexp = addrop->get_expression ().get ();
	  is_artificial = false;
	}
    }

  struct value *arg_val = subexp->evaluate_with_coercion (exp, noside);
  return fortran_argument_convert (arg_val, is_artificial);
}

/* See f-lang.h.  */

struct type *
fortran_preserve_arg_pointer (struct value *arg, struct type *type)
{
  if (value_type (arg)->code () == TYPE_CODE_PTR)
    return value_type (arg);
  return type;
}

/* See f-lang.h.  */

CORE_ADDR
fortran_adjust_dynamic_array_base_address_hack (struct type *type,
						CORE_ADDR address)
{
  gdb_assert (type->code () == TYPE_CODE_ARRAY);

  /* We can't adjust the base address for arrays that have no content.  */
  if (type_not_allocated (type) || type_not_associated (type))
    return address;

  int ndimensions = calc_f77_array_dims (type);
  LONGEST total_offset = 0;

  /* Walk through each of the dimensions of this array type and figure out
     if any of the dimensions are "backwards", that is the base address
     for this dimension points to the element at the highest memory
     address and the stride is negative.  */
  struct type *tmp_type = type;
  for (int i = 0 ; i < ndimensions; ++i)
    {
      /* Grab the range for this dimension and extract the lower and upper
	 bounds.  */
      tmp_type = check_typedef (tmp_type);
      struct type *range_type = tmp_type->index_type ();
      LONGEST lowerbound, upperbound, stride;
      if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
	error ("failed to get range bounds");

      /* Figure out the stride for this dimension.  */
      struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
      stride = tmp_type->index_type ()->bounds ()->bit_stride ();
      if (stride == 0)
	stride = type_length_units (elt_type);
      else
	{
	  int unit_size
	    = gdbarch_addressable_memory_unit_size (elt_type->arch ());
	  stride /= (unit_size * 8);
	}

      /* If this dimension is "backward" then figure out the offset
	 adjustment required to point to the element at the lowest memory
	 address, and add this to the total offset.  */
      LONGEST offset = 0;
      if (stride < 0 && lowerbound < upperbound)
	offset = (upperbound - lowerbound) * stride;
      total_offset += offset;
      tmp_type = TYPE_TARGET_TYPE (tmp_type);
    }

  /* Adjust the address of this object and return it.  */
  address += total_offset;
  return address;
}