aboutsummaryrefslogtreecommitdiff
path: root/gdb/ada-lang.c
blob: d77fa3c54b801cc138e22dfdab88cee9b2cfc617 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
/* Ada language support routines for GDB, the GNU debugger.

   Copyright (C) 1992-2024 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */


#include <ctype.h>
#include "event-top.h"
#include "exceptions.h"
#include "extract-store-integer.h"
#include "gdbsupport/gdb_regex.h"
#include "frame.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "cli/cli-cmds.h"
#include "expression.h"
#include "parser-defs.h"
#include "language.h"
#include "varobj.h"
#include "inferior.h"
#include "symfile.h"
#include "objfiles.h"
#include "breakpoint.h"
#include "gdbcore.h"
#include "hashtab.h"
#include "gdbsupport/gdb_obstack.h"
#include "ada-lang.h"
#include "completer.h"
#include "ui-out.h"
#include "block.h"
#include "infcall.h"
#include "annotate.h"
#include "valprint.h"
#include "source.h"
#include "observable.h"
#include "stack.h"
#include "typeprint.h"
#include "namespace.h"
#include "cli/cli-style.h"
#include "cli/cli-decode.h"

#include "value.h"
#include "mi/mi-common.h"
#include "arch-utils.h"
#include "cli/cli-utils.h"
#include "gdbsupport/function-view.h"
#include "gdbsupport/byte-vector.h"
#include "gdbsupport/selftest.h"
#include <algorithm>
#include "ada-exp.h"
#include "charset.h"
#include "ax-gdb.h"

static struct type *desc_base_type (struct type *);

static struct type *desc_bounds_type (struct type *);

static struct value *desc_bounds (struct value *);

static int fat_pntr_bounds_bitpos (struct type *);

static int fat_pntr_bounds_bitsize (struct type *);

static struct type *desc_data_target_type (struct type *);

static struct value *desc_data (struct value *);

static int fat_pntr_data_bitpos (struct type *);

static int fat_pntr_data_bitsize (struct type *);

static struct value *desc_one_bound (struct value *, int, int);

static int desc_bound_bitpos (struct type *, int, int);

static int desc_bound_bitsize (struct type *, int, int);

static struct type *desc_index_type (struct type *, int);

static int desc_arity (struct type *);

static int ada_args_match (struct symbol *, struct value **, int);

static struct value *make_array_descriptor (struct type *, struct value *);

static void ada_add_block_symbols (std::vector<struct block_symbol> &,
				   const struct block *,
				   const lookup_name_info &lookup_name,
				   domain_search_flags, struct objfile *);

static void ada_add_all_symbols (std::vector<struct block_symbol> &,
				 const struct block *,
				 const lookup_name_info &lookup_name,
				 domain_search_flags, int, int *);

static int is_nonfunction (const std::vector<struct block_symbol> &);

static void add_defn_to_vec (std::vector<struct block_symbol> &,
			     struct symbol *,
			     const struct block *);

static int possible_user_operator_p (enum exp_opcode, struct value **);

static const char *ada_decoded_op_name (enum exp_opcode);

static int numeric_type_p (struct type *);

static int integer_type_p (struct type *);

static int scalar_type_p (struct type *);

static int discrete_type_p (struct type *);

static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
						int, int);

static struct type *ada_find_parallel_type_with_name (struct type *,
						      const char *);

static int is_dynamic_field (struct type *, int);

static struct type *to_fixed_variant_branch_type (struct type *,
						  const gdb_byte *,
						  CORE_ADDR, struct value *);

static struct type *to_fixed_array_type (struct type *, struct value *, int);

static struct type *to_fixed_range_type (struct type *, struct value *);

static struct type *to_static_fixed_type (struct type *);
static struct type *static_unwrap_type (struct type *type);

static struct value *unwrap_value (struct value *);

static struct type *constrained_packed_array_type (struct type *, long *);

static struct type *decode_constrained_packed_array_type (struct type *);

static long decode_packed_array_bitsize (struct type *);

static struct value *decode_constrained_packed_array (struct value *);

static int ada_is_unconstrained_packed_array_type (struct type *);

static struct value *value_subscript_packed (struct value *, int,
					     struct value **);

static struct value *coerce_unspec_val_to_type (struct value *,
						struct type *);

static int lesseq_defined_than (struct symbol *, struct symbol *);

static int equiv_types (struct type *, struct type *);

static int is_name_suffix (const char *);

static int advance_wild_match (const char **, const char *, char);

static bool wild_match (const char *name, const char *patn);

static struct value *ada_coerce_ref (struct value *);

static LONGEST pos_atr (struct value *);

static struct value *val_atr (struct type *, LONGEST);

static struct value *ada_search_struct_field (const char *, struct value *, int,
					      struct type *);

static int find_struct_field (const char *, struct type *, int,
			      struct type **, int *, int *, int *, int *);

static int ada_resolve_function (std::vector<struct block_symbol> &,
				 struct value **, int, const char *,
				 struct type *, bool);

static int ada_is_direct_array_type (struct type *);

static struct value *ada_index_struct_field (int, struct value *, int,
					     struct type *);

static struct type *ada_find_any_type (const char *name);

static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
  (const lookup_name_info &lookup_name);

static int symbols_are_identical_enums
  (const std::vector<struct block_symbol> &syms);

static int ada_identical_enum_types_p (struct type *type1, struct type *type2);


/* The character set used for source files.  */
static const char *ada_source_charset;

/* The string "UTF-8".  This is here so we can check for the UTF-8
   charset using == rather than strcmp.  */
static const char ada_utf8[] = "UTF-8";

/* Each entry in the UTF-32 case-folding table is of this form.  */
struct utf8_entry
{
  /* The start and end, inclusive, of this range of codepoints.  */
  uint32_t start, end;
  /* The delta to apply to get the upper-case form.  0 if this is
     already upper-case.  */
  int upper_delta;
  /* The delta to apply to get the lower-case form.  0 if this is
     already lower-case.  */
  int lower_delta;

  bool operator< (uint32_t val) const
  {
    return end < val;
  }
};

static const utf8_entry ada_case_fold[] =
{
#include "ada-casefold.h"
};



static const char ada_completer_word_break_characters[] =
#ifdef VMS
  " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
#else
  " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
#endif

/* The name of the symbol to use to get the name of the main subprogram.  */
static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
  = "__gnat_ada_main_program_name";

/* Limit on the number of warnings to raise per expression evaluation.  */
static int warning_limit = 2;

/* Number of warning messages issued; reset to 0 by cleanups after
   expression evaluation.  */
static int warnings_issued = 0;

static const char * const known_runtime_file_name_patterns[] = {
  ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
};

static const char * const known_auxiliary_function_name_patterns[] = {
  ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
};

/* Maintenance-related settings for this module.  */

static struct cmd_list_element *maint_set_ada_cmdlist;
static struct cmd_list_element *maint_show_ada_cmdlist;

/* The "maintenance ada set/show ignore-descriptive-type" value.  */

static bool ada_ignore_descriptive_types_p = false;

			/* Inferior-specific data.  */

/* Per-inferior data for this module.  */

struct ada_inferior_data
{
  /* The ada__tags__type_specific_data type, which is used when decoding
     tagged types.  With older versions of GNAT, this type was directly
     accessible through a component ("tsd") in the object tag.  But this
     is no longer the case, so we cache it for each inferior.  */
  struct type *tsd_type = nullptr;

  /* The exception_support_info data.  This data is used to determine
     how to implement support for Ada exception catchpoints in a given
     inferior.  */
  const struct exception_support_info *exception_info = nullptr;
};

/* Our key to this module's inferior data.  */
static const registry<inferior>::key<ada_inferior_data> ada_inferior_data;

/* Return our inferior data for the given inferior (INF).

   This function always returns a valid pointer to an allocated
   ada_inferior_data structure.  If INF's inferior data has not
   been previously set, this functions creates a new one with all
   fields set to zero, sets INF's inferior to it, and then returns
   a pointer to that newly allocated ada_inferior_data.  */

static struct ada_inferior_data *
get_ada_inferior_data (struct inferior *inf)
{
  struct ada_inferior_data *data;

  data = ada_inferior_data.get (inf);
  if (data == NULL)
    data = ada_inferior_data.emplace (inf);

  return data;
}

/* Perform all necessary cleanups regarding our module's inferior data
   that is required after the inferior INF just exited.  */

static void
ada_inferior_exit (struct inferior *inf)
{
  ada_inferior_data.clear (inf);
}


			/* program-space-specific data.  */

/* The result of a symbol lookup to be stored in our symbol cache.  */

struct cache_entry
{
  /* The name used to perform the lookup.  */
  std::string name;
  /* The namespace used during the lookup.  */
  domain_search_flags domain = 0;
  /* The symbol returned by the lookup, or NULL if no matching symbol
     was found.  */
  struct symbol *sym = nullptr;
  /* The block where the symbol was found, or NULL if no matching
     symbol was found.  */
  const struct block *block = nullptr;
};

/* The symbol cache uses this type when searching.  */

struct cache_entry_search
{
  const char *name;
  domain_search_flags domain;

  hashval_t hash () const
  {
    /* This must agree with hash_cache_entry, below.  */
    return htab_hash_string (name);
  }
};

/* Hash function for cache_entry.  */

static hashval_t
hash_cache_entry (const void *v)
{
  const cache_entry *entry = (const cache_entry *) v;
  return htab_hash_string (entry->name.c_str ());
}

/* Equality function for cache_entry.  */

static int
eq_cache_entry (const void *a, const void *b)
{
  const cache_entry *entrya = (const cache_entry *) a;
  const cache_entry_search *entryb = (const cache_entry_search *) b;

  return entrya->domain == entryb->domain && entrya->name == entryb->name;
}

/* Key to our per-program-space data.  */
static const registry<program_space>::key<htab, htab_deleter>
  ada_pspace_data_handle;

/* Return this module's data for the given program space (PSPACE).
   If not is found, add a zero'ed one now.

   This function always returns a valid object.  */

static htab_t
get_ada_pspace_data (struct program_space *pspace)
{
  htab_t data = ada_pspace_data_handle.get (pspace);
  if (data == nullptr)
    {
      data = htab_create_alloc (10, hash_cache_entry, eq_cache_entry,
				htab_delete_entry<cache_entry>,
				xcalloc, xfree);
      ada_pspace_data_handle.set (pspace, data);
    }

  return data;
}

			/* Utilities */

/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
   all typedef layers have been peeled.  Otherwise, return TYPE.

   Normally, we really expect a typedef type to only have 1 typedef layer.
   In other words, we really expect the target type of a typedef type to be
   a non-typedef type.  This is particularly true for Ada units, because
   the language does not have a typedef vs not-typedef distinction.
   In that respect, the Ada compiler has been trying to eliminate as many
   typedef definitions in the debugging information, since they generally
   do not bring any extra information (we still use typedef under certain
   circumstances related mostly to the GNAT encoding).

   Unfortunately, we have seen situations where the debugging information
   generated by the compiler leads to such multiple typedef layers.  For
   instance, consider the following example with stabs:

     .stabs  "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
     .stabs  "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0

   This is an error in the debugging information which causes type
   pck__float_array___XUP to be defined twice, and the second time,
   it is defined as a typedef of a typedef.

   This is on the fringe of legality as far as debugging information is
   concerned, and certainly unexpected.  But it is easy to handle these
   situations correctly, so we can afford to be lenient in this case.  */

static struct type *
ada_typedef_target_type (struct type *type)
{
  while (type->code () == TYPE_CODE_TYPEDEF)
    type = type->target_type ();
  return type;
}

/* Given DECODED_NAME a string holding a symbol name in its
   decoded form (ie using the Ada dotted notation), returns
   its unqualified name.  */

static const char *
ada_unqualified_name (const char *decoded_name)
{
  const char *result;
  
  /* If the decoded name starts with '<', it means that the encoded
     name does not follow standard naming conventions, and thus that
     it is not your typical Ada symbol name.  Trying to unqualify it
     is therefore pointless and possibly erroneous.  */
  if (decoded_name[0] == '<')
    return decoded_name;

  result = strrchr (decoded_name, '.');
  if (result != NULL)
    result++;                   /* Skip the dot...  */
  else
    result = decoded_name;

  return result;
}

/* Return a string starting with '<', followed by STR, and '>'.  */

static std::string
add_angle_brackets (const char *str)
{
  return string_printf ("<%s>", str);
}

/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
   suffix of FIELD_NAME beginning "___".  */

static int
field_name_match (const char *field_name, const char *target)
{
  int len = strlen (target);

  return
    (strncmp (field_name, target, len) == 0
     && (field_name[len] == '\0'
	 || (startswith (field_name + len, "___")
	     && strcmp (field_name + strlen (field_name) - 6,
			"___XVN") != 0)));
}


/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
   a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
   and return its index.  This function also handles fields whose name
   have ___ suffixes because the compiler sometimes alters their name
   by adding such a suffix to represent fields with certain constraints.
   If the field could not be found, return a negative number if
   MAYBE_MISSING is set.  Otherwise raise an error.  */

int
ada_get_field_index (const struct type *type, const char *field_name,
		     int maybe_missing)
{
  int fieldno;
  struct type *struct_type = check_typedef ((struct type *) type);

  for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
    if (field_name_match (struct_type->field (fieldno).name (), field_name))
      return fieldno;

  if (!maybe_missing)
    error (_("Unable to find field %s in struct %s.  Aborting"),
	   field_name, struct_type->name ());

  return -1;
}

/* The length of the prefix of NAME prior to any "___" suffix.  */

int
ada_name_prefix_len (const char *name)
{
  if (name == NULL)
    return 0;
  else
    {
      const char *p = strstr (name, "___");

      if (p == NULL)
	return strlen (name);
      else
	return p - name;
    }
}

/* Return non-zero if SUFFIX is a suffix of STR.
   Return zero if STR is null.  */

static int
is_suffix (const char *str, const char *suffix)
{
  int len1, len2;

  if (str == NULL)
    return 0;
  len1 = strlen (str);
  len2 = strlen (suffix);
  return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
}

/* The contents of value VAL, treated as a value of type TYPE.  The
   result is an lval in memory if VAL is.  */

static struct value *
coerce_unspec_val_to_type (struct value *val, struct type *type)
{
  type = ada_check_typedef (type);
  if (val->type () == type)
    return val;
  else
    {
      struct value *result;

      if (val->optimized_out ())
	result = value::allocate_optimized_out (type);
      else if (val->lazy ()
	       /* Be careful not to make a lazy not_lval value.  */
	       || (val->lval () != not_lval
		   && type->length () > val->type ()->length ()))
	result = value::allocate_lazy (type);
      else
	{
	  result = value::allocate (type);
	  val->contents_copy (result, 0, 0, type->length ());
	}
      result->set_component_location (val);
      result->set_bitsize (val->bitsize ());
      result->set_bitpos (val->bitpos ());
      if (result->lval () == lval_memory)
	result->set_address (val->address ());
      return result;
    }
}

static const gdb_byte *
cond_offset_host (const gdb_byte *valaddr, long offset)
{
  if (valaddr == NULL)
    return NULL;
  else
    return valaddr + offset;
}

static CORE_ADDR
cond_offset_target (CORE_ADDR address, long offset)
{
  if (address == 0)
    return 0;
  else
    return address + offset;
}

/* Issue a warning (as for the definition of warning in utils.c, but
   with exactly one argument rather than ...), unless the limit on the
   number of warnings has passed during the evaluation of the current
   expression.  */

/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
   provided by "complaint".  */
static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);

static void
lim_warning (const char *format, ...)
{
  va_list args;

  va_start (args, format);
  warnings_issued += 1;
  if (warnings_issued <= warning_limit)
    vwarning (format, args);

  va_end (args);
}

/* Maximum value of a SIZE-byte signed integer type.  */
static LONGEST
max_of_size (int size)
{
  LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);

  return top_bit | (top_bit - 1);
}

/* Minimum value of a SIZE-byte signed integer type.  */
static LONGEST
min_of_size (int size)
{
  return -max_of_size (size) - 1;
}

/* Maximum value of a SIZE-byte unsigned integer type.  */
static ULONGEST
umax_of_size (int size)
{
  ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);

  return top_bit | (top_bit - 1);
}

/* Maximum value of integral type T, as a signed quantity.  */
static LONGEST
max_of_type (struct type *t)
{
  if (t->is_unsigned ())
    return (LONGEST) umax_of_size (t->length ());
  else
    return max_of_size (t->length ());
}

/* Minimum value of integral type T, as a signed quantity.  */
static LONGEST
min_of_type (struct type *t)
{
  if (t->is_unsigned ())
    return 0;
  else
    return min_of_size (t->length ());
}

/* The largest value in the domain of TYPE, a discrete type, as an integer.  */
LONGEST
ada_discrete_type_high_bound (struct type *type)
{
  type = resolve_dynamic_type (type, {}, 0);
  switch (type->code ())
    {
    case TYPE_CODE_RANGE:
      {
	const dynamic_prop &high = type->bounds ()->high;

	if (high.is_constant ())
	  return high.const_val ();
	else
	  {
	    gdb_assert (!high.is_available ());

	    /* This happens when trying to evaluate a type's dynamic bound
	       without a live target.  There is nothing relevant for us to
	       return here, so return 0.  */
	    return 0;
	  }
      }
    case TYPE_CODE_ENUM:
      return type->field (type->num_fields () - 1).loc_enumval ();
    case TYPE_CODE_BOOL:
      return 1;
    case TYPE_CODE_CHAR:
    case TYPE_CODE_INT:
      return max_of_type (type);
    default:
      error (_("Unexpected type in ada_discrete_type_high_bound."));
    }
}

/* The smallest value in the domain of TYPE, a discrete type, as an integer.  */
LONGEST
ada_discrete_type_low_bound (struct type *type)
{
  type = resolve_dynamic_type (type, {}, 0);
  switch (type->code ())
    {
    case TYPE_CODE_RANGE:
      {
	const dynamic_prop &low = type->bounds ()->low;

	if (low.is_constant ())
	  return low.const_val ();
	else
	  {
	    gdb_assert (!low.is_available ());

	    /* This happens when trying to evaluate a type's dynamic bound
	       without a live target.  There is nothing relevant for us to
	       return here, so return 0.  */
	    return 0;
	  }
      }
    case TYPE_CODE_ENUM:
      return type->field (0).loc_enumval ();
    case TYPE_CODE_BOOL:
      return 0;
    case TYPE_CODE_CHAR:
    case TYPE_CODE_INT:
      return min_of_type (type);
    default:
      error (_("Unexpected type in ada_discrete_type_low_bound."));
    }
}

/* The identity on non-range types.  For range types, the underlying
   non-range scalar type.  */

static struct type *
get_base_type (struct type *type)
{
  while (type != NULL && type->code () == TYPE_CODE_RANGE)
    {
      if (type == type->target_type () || type->target_type () == NULL)
	return type;
      type = type->target_type ();
    }
  return type;
}

/* Return a decoded version of the given VALUE.  This means returning
   a value whose type is obtained by applying all the GNAT-specific
   encodings, making the resulting type a static but standard description
   of the initial type.  */

struct value *
ada_get_decoded_value (struct value *value)
{
  struct type *type = ada_check_typedef (value->type ());

  if (ada_is_array_descriptor_type (type)
      || (ada_is_constrained_packed_array_type (type)
	  && type->code () != TYPE_CODE_PTR))
    {
      if (type->code () == TYPE_CODE_TYPEDEF)  /* array access type.  */
	value = ada_coerce_to_simple_array_ptr (value);
      else
	value = ada_coerce_to_simple_array (value);
    }
  else
    value = ada_to_fixed_value (value);

  return value;
}

/* Same as ada_get_decoded_value, but with the given TYPE.
   Because there is no associated actual value for this type,
   the resulting type might be a best-effort approximation in
   the case of dynamic types.  */

struct type *
ada_get_decoded_type (struct type *type)
{
  type = to_static_fixed_type (type);
  if (ada_is_constrained_packed_array_type (type))
    type = ada_coerce_to_simple_array_type (type);
  return type;
}



				/* Language Selection */

/* If the main procedure is written in Ada, then return its name.
   The result is good until the next call.  Return NULL if the main
   procedure doesn't appear to be in Ada.  */

const char *
ada_main_name ()
{
  static gdb::unique_xmalloc_ptr<char> main_program_name;

  /* For Ada, the name of the main procedure is stored in a specific
     string constant, generated by the binder.  Look for that symbol,
     extract its address, and then read that string.  If we didn't find
     that string, then most probably the main procedure is not written
     in Ada.  */
  bound_minimal_symbol msym
    = lookup_minimal_symbol (current_program_space,
			     ADA_MAIN_PROGRAM_SYMBOL_NAME);

  if (msym.minsym != NULL)
    {
      CORE_ADDR main_program_name_addr = msym.value_address ();
      if (main_program_name_addr == 0)
	error (_("Invalid address for Ada main program name."));

      /* Force trust_readonly, because we always want to fetch this
	 string from the executable, not from inferior memory.  If the
	 user changes the exec-file and invokes "start", we want to
	 pick the "main" from the new executable, not one that may
	 come from the still-live inferior.  */
      scoped_restore save_trust_readonly
	= make_scoped_restore (&trust_readonly, true);
      main_program_name = target_read_string (main_program_name_addr, 1024);
      return main_program_name.get ();
    }

  /* The main procedure doesn't seem to be in Ada.  */
  return NULL;
}

				/* Symbols */

/* Table of Ada operators and their GNAT-encoded names.  Last entry is pair
   of NULLs.  */

const struct ada_opname_map ada_opname_table[] = {
  {"Oadd", "\"+\"", BINOP_ADD},
  {"Osubtract", "\"-\"", BINOP_SUB},
  {"Omultiply", "\"*\"", BINOP_MUL},
  {"Odivide", "\"/\"", BINOP_DIV},
  {"Omod", "\"mod\"", BINOP_MOD},
  {"Orem", "\"rem\"", BINOP_REM},
  {"Oexpon", "\"**\"", BINOP_EXP},
  {"Olt", "\"<\"", BINOP_LESS},
  {"Ole", "\"<=\"", BINOP_LEQ},
  {"Ogt", "\">\"", BINOP_GTR},
  {"Oge", "\">=\"", BINOP_GEQ},
  {"Oeq", "\"=\"", BINOP_EQUAL},
  {"One", "\"/=\"", BINOP_NOTEQUAL},
  {"Oand", "\"and\"", BINOP_BITWISE_AND},
  {"Oor", "\"or\"", BINOP_BITWISE_IOR},
  {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
  {"Oconcat", "\"&\"", BINOP_CONCAT},
  {"Oabs", "\"abs\"", UNOP_ABS},
  {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
  {"Oadd", "\"+\"", UNOP_PLUS},
  {"Osubtract", "\"-\"", UNOP_NEG},
  {NULL, NULL}
};

/* If STR is a decoded version of a compiler-provided suffix (like the
   "[cold]" in "symbol[cold]"), return true.  Otherwise, return
   false.  */

static bool
is_compiler_suffix (const char *str)
{
  gdb_assert (*str == '[');
  ++str;
  while (*str != '\0' && isalpha (*str))
    ++str;
  /* We accept a missing "]" in order to support completion.  */
  return *str == '\0' || (str[0] == ']' && str[1] == '\0');
}

/* Append a non-ASCII character to RESULT.  */
static void
append_hex_encoded (std::string &result, uint32_t one_char)
{
  if (one_char <= 0xff)
    {
      result.append ("U");
      result.append (phex (one_char, 1));
    }
  else if (one_char <= 0xffff)
    {
      result.append ("W");
      result.append (phex (one_char, 2));
    }
  else
    {
      result.append ("WW");
      result.append (phex (one_char, 4));
    }
}

/* Return a string that is a copy of the data in STORAGE, with
   non-ASCII characters replaced by the appropriate hex encoding.  A
   template is used because, for UTF-8, we actually want to work with
   UTF-32 codepoints.  */
template<typename T>
std::string
copy_and_hex_encode (struct obstack *storage)
{
  const T *chars = (T *) obstack_base (storage);
  int num_chars = obstack_object_size (storage) / sizeof (T);
  std::string result;
  for (int i = 0; i < num_chars; ++i)
    {
      if (chars[i] <= 0x7f)
	{
	  /* The host character set has to be a superset of ASCII, as
	     are all the other character sets we can use.  */
	  result.push_back (chars[i]);
	}
      else
	append_hex_encoded (result, chars[i]);
    }
  return result;
}

/* The "encoded" form of DECODED, according to GNAT conventions.  If
   THROW_ERRORS, throw an error if invalid operator name is found.
   Otherwise, return the empty string in that case.  */

static std::string
ada_encode_1 (const char *decoded, bool throw_errors)
{
  if (decoded == NULL)
    return {};

  std::string encoding_buffer;
  bool saw_non_ascii = false;
  for (const char *p = decoded; *p != '\0'; p += 1)
    {
      if ((*p & 0x80) != 0)
	saw_non_ascii = true;

      if (*p == '.')
	encoding_buffer.append ("__");
      else if (*p == '[' && is_compiler_suffix (p))
	{
	  encoding_buffer = encoding_buffer + "." + (p + 1);
	  if (encoding_buffer.back () == ']')
	    encoding_buffer.pop_back ();
	  break;
	}
      else if (*p == '"')
	{
	  const struct ada_opname_map *mapping;

	  for (mapping = ada_opname_table;
	       mapping->encoded != NULL
	       && !startswith (p, mapping->decoded); mapping += 1)
	    ;
	  if (mapping->encoded == NULL)
	    {
	      if (throw_errors)
		error (_("invalid Ada operator name: %s"), p);
	      else
		return {};
	    }
	  encoding_buffer.append (mapping->encoded);
	  break;
	}
      else
	encoding_buffer.push_back (*p);
    }

  /* If a non-ASCII character is seen, we must convert it to the
     appropriate hex form.  As this is more expensive, we keep track
     of whether it is even necessary.  */
  if (saw_non_ascii)
    {
      auto_obstack storage;
      bool is_utf8 = ada_source_charset == ada_utf8;
      try
	{
	  convert_between_encodings
	    (host_charset (),
	     is_utf8 ? HOST_UTF32 : ada_source_charset,
	     (const gdb_byte *) encoding_buffer.c_str (),
	     encoding_buffer.length (), 1,
	     &storage, translit_none);
	}
      catch (const gdb_exception &)
	{
	  static bool warned = false;

	  /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
	     might like to know why.  */
	  if (!warned)
	    {
	      warned = true;
	      warning (_("charset conversion failure for '%s'.\n"
			 "You may have the wrong value for 'set ada source-charset'."),
		       encoding_buffer.c_str ());
	    }

	  /* We don't try to recover from errors.  */
	  return encoding_buffer;
	}

      if (is_utf8)
	return copy_and_hex_encode<uint32_t> (&storage);
      return copy_and_hex_encode<gdb_byte> (&storage);
    }

  return encoding_buffer;
}

/* Find the entry for C in the case-folding table.  Return nullptr if
   the entry does not cover C.  */
static const utf8_entry *
find_case_fold_entry (uint32_t c)
{
  auto iter = std::lower_bound (std::begin (ada_case_fold),
				std::end (ada_case_fold),
				c);
  if (iter == std::end (ada_case_fold)
      || c < iter->start
      || c > iter->end)
    return nullptr;
  return &*iter;
}

/* Return NAME folded to lower case, or, if surrounded by single
   quotes, unfolded, but with the quotes stripped away.  If
   THROW_ON_ERROR is true, encoding failures will throw an exception
   rather than emitting a warning.  Result good to next call.  */

static const char *
ada_fold_name (std::string_view name, bool throw_on_error = false)
{
  static std::string fold_storage;

  if (!name.empty () && name[0] == '\'')
    fold_storage = name.substr (1, name.size () - 2);
  else
    {
      /* Why convert to UTF-32 and implement our own case-folding,
	 rather than convert to wchar_t and use the platform's
	 functions?  I'm glad you asked.

	 The main problem is that GNAT implements an unusual rule for
	 case folding.  For ASCII letters, letters in single-byte
	 encodings (such as ISO-8859-*), and Unicode letters that fit
	 in a single byte (i.e., code point is <= 0xff), the letter is
	 folded to lower case.  Other Unicode letters are folded to
	 upper case.

	 This rule means that the code must be able to examine the
	 value of the character.  And, some hosts do not use Unicode
	 for wchar_t, so examining the value of such characters is
	 forbidden.  */
      auto_obstack storage;
      try
	{
	  convert_between_encodings
	    (host_charset (), HOST_UTF32,
	     (const gdb_byte *) name.data (),
	     name.length (), 1,
	     &storage, translit_none);
	}
      catch (const gdb_exception &)
	{
	  if (throw_on_error)
	    throw;

	  static bool warned = false;

	  /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
	     might like to know why.  */
	  if (!warned)
	    {
	      warned = true;
	      warning (_("could not convert '%s' from the host encoding (%s) to UTF-32.\n"
			 "This normally should not happen, please file a bug report."),
		       std::string (name).c_str (), host_charset ());
	    }

	  /* We don't try to recover from errors; just return the
	     original string.  */
	  fold_storage = name;
	  return fold_storage.c_str ();
	}

      bool is_utf8 = ada_source_charset == ada_utf8;
      uint32_t *chars = (uint32_t *) obstack_base (&storage);
      int num_chars = obstack_object_size (&storage) / sizeof (uint32_t);
      for (int i = 0; i < num_chars; ++i)
	{
	  const struct utf8_entry *entry = find_case_fold_entry (chars[i]);
	  if (entry != nullptr)
	    {
	      uint32_t low = chars[i] + entry->lower_delta;
	      if (!is_utf8 || low <= 0xff)
		chars[i] = low;
	      else
		chars[i] = chars[i] + entry->upper_delta;
	    }
	}

      /* Now convert back to ordinary characters.  */
      auto_obstack reconverted;
      try
	{
	  convert_between_encodings (HOST_UTF32,
				     host_charset (),
				     (const gdb_byte *) chars,
				     num_chars * sizeof (uint32_t),
				     sizeof (uint32_t),
				     &reconverted,
				     translit_none);
	  obstack_1grow (&reconverted, '\0');
	  fold_storage = std::string ((const char *) obstack_base (&reconverted));
	}
      catch (const gdb_exception &)
	{
	  if (throw_on_error)
	    throw;

	  static bool warned = false;

	  /* Converting back from UTF-32 shouldn't normally fail, but
	     there are some host encodings without upper/lower
	     equivalence.  */
	  if (!warned)
	    {
	      warned = true;
	      warning (_("could not convert the lower-cased variant of '%s'\n"
			 "from UTF-32 to the host encoding (%s)."),
		       std::string (name).c_str (), host_charset ());
	    }

	  /* We don't try to recover from errors; just return the
	     original string.  */
	  fold_storage = name;
	}
    }

  return fold_storage.c_str ();
}

/* The "encoded" form of DECODED, according to GNAT conventions.  If
   FOLD is true (the default), case-fold any ordinary symbol.  Symbols
   with <...> quoting are not folded in any case.  */

std::string
ada_encode (const char *decoded, bool fold)
{
  if (fold && decoded[0] != '<')
    decoded = ada_fold_name (decoded);
  return ada_encode_1 (decoded, true);
}

/* Return nonzero if C is either a digit or a lowercase alphabet character.  */

static int
is_lower_alphanum (const char c)
{
  return (isdigit (c) || (isalpha (c) && islower (c)));
}

/* ENCODED is the linkage name of a symbol and LEN contains its length.
   This function saves in LEN the length of that same symbol name but
   without either of these suffixes:
     . .{DIGIT}+
     . ${DIGIT}+
     . ___{DIGIT}+
     . __{DIGIT}+.

   These are suffixes introduced by the compiler for entities such as
   nested subprogram for instance, in order to avoid name clashes.
   They do not serve any purpose for the debugger.  */

static void
ada_remove_trailing_digits (const char *encoded, int *len)
{
  if (*len > 1 && isdigit (encoded[*len - 1]))
    {
      int i = *len - 2;

      while (i > 0 && isdigit (encoded[i]))
	i--;
      if (i >= 0 && encoded[i] == '.')
	*len = i;
      else if (i >= 0 && encoded[i] == '$')
	*len = i;
      else if (i >= 2 && startswith (encoded + i - 2, "___"))
	*len = i - 2;
      else if (i >= 1 && startswith (encoded + i - 1, "__"))
	*len = i - 1;
    }
}

/* Remove the suffix introduced by the compiler for protected object
   subprograms.  */

static void
ada_remove_po_subprogram_suffix (const char *encoded, int *len)
{
  /* Remove trailing N.  */

  /* Protected entry subprograms are broken into two
     separate subprograms: The first one is unprotected, and has
     a 'N' suffix; the second is the protected version, and has
     the 'P' suffix.  The second calls the first one after handling
     the protection.  Since the P subprograms are internally generated,
     we leave these names undecoded, giving the user a clue that this
     entity is internal.  */

  if (*len > 1
      && encoded[*len - 1] == 'N'
      && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
    *len = *len - 1;
}

/* If ENCODED ends with a compiler-provided suffix (like ".cold"),
   then update *LEN to remove the suffix and return the offset of the
   character just past the ".".  Otherwise, return -1.  */

static int
remove_compiler_suffix (const char *encoded, int *len)
{
  int offset = *len - 1;
  while (offset > 0 && isalpha (encoded[offset]))
    --offset;
  if (offset > 0 && encoded[offset] == '.')
    {
      *len = offset;
      return offset + 1;
    }
  return -1;
}

/* Convert an ASCII hex string to a number.  Reads exactly N
   characters from STR.  Returns true on success, false if one of the
   digits was not a hex digit.  */
static bool
convert_hex (const char *str, int n, uint32_t *out)
{
  uint32_t result = 0;

  for (int i = 0; i < n; ++i)
    {
      if (!isxdigit (str[i]))
	return false;
      result <<= 4;
      result |= fromhex (str[i]);
    }

  *out = result;
  return true;
}

/* Convert a wide character from its ASCII hex representation in STR
   (consisting of exactly N characters) to the host encoding,
   appending the resulting bytes to OUT.  If N==2 and the Ada source
   charset is not UTF-8, then hex refers to an encoding in the
   ADA_SOURCE_CHARSET; otherwise, use UTF-32.  Return true on success.
   Return false and do not modify OUT on conversion failure.  */
static bool
convert_from_hex_encoded (std::string &out, const char *str, int n)
{
  uint32_t value;

  if (!convert_hex (str, n, &value))
    return false;
  try
    {
      auto_obstack bytes;
      /* In the 'U' case, the hex digits encode the character in the
	 Ada source charset.  However, if the source charset is UTF-8,
	 this really means it is a single-byte UTF-32 character.  */
      if (n == 2 && ada_source_charset != ada_utf8)
	{
	  gdb_byte one_char = (gdb_byte) value;

	  convert_between_encodings (ada_source_charset, host_charset (),
				     &one_char,
				     sizeof (one_char), sizeof (one_char),
				     &bytes, translit_none);
	}
      else
	convert_between_encodings (HOST_UTF32, host_charset (),
				   (const gdb_byte *) &value,
				   sizeof (value), sizeof (value),
				   &bytes, translit_none);
      obstack_1grow (&bytes, '\0');
      out.append ((const char *) obstack_base (&bytes));
    }
  catch (const gdb_exception &)
    {
      /* On failure, the caller will just let the encoded form
	 through, which seems basically reasonable.  */
      return false;
    }

  return true;
}

/* See ada-lang.h.  */

std::string
ada_decode (const char *encoded, bool wrap, bool operators, bool wide)
{
  int i;
  int len0;
  const char *p;
  int at_start_name;
  std::string decoded;
  int suffix = -1;

  /* With function descriptors on PPC64, the value of a symbol named
     ".FN", if it exists, is the entry point of the function "FN".  */
  if (encoded[0] == '.')
    encoded += 1;

  /* The name of the Ada main procedure starts with "_ada_".
     This prefix is not part of the decoded name, so skip this part
     if we see this prefix.  */
  if (startswith (encoded, "_ada_"))
    encoded += 5;
  /* The "___ghost_" prefix is used for ghost entities.  Normally
     these aren't preserved but when they are, it's useful to see
     them.  */
  if (startswith (encoded, "___ghost_"))
    encoded += 9;

  /* If the name starts with '_', then it is not a properly encoded
     name, so do not attempt to decode it.  Similarly, if the name
     starts with '<', the name should not be decoded.  */
  if (encoded[0] == '_' || encoded[0] == '<')
    goto Suppress;

  len0 = strlen (encoded);

  suffix = remove_compiler_suffix (encoded, &len0);

  ada_remove_trailing_digits (encoded, &len0);
  ada_remove_po_subprogram_suffix (encoded, &len0);

  /* Remove the ___X.* suffix if present.  Do not forget to verify that
     the suffix is located before the current "end" of ENCODED.  We want
     to avoid re-matching parts of ENCODED that have previously been
     marked as discarded (by decrementing LEN0).  */
  p = strstr (encoded, "___");
  if (p != NULL && p - encoded < len0 - 3)
    {
      if (p[3] == 'X')
	len0 = p - encoded;
      else
	goto Suppress;
    }

  /* Remove any trailing TKB suffix.  It tells us that this symbol
     is for the body of a task, but that information does not actually
     appear in the decoded name.  */

  if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
    len0 -= 3;

  /* Remove any trailing TB suffix.  The TB suffix is slightly different
     from the TKB suffix because it is used for non-anonymous task
     bodies.  */

  if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
    len0 -= 2;

  /* Remove trailing "B" suffixes.  */
  /* FIXME: brobecker/2006-04-19: Not sure what this are used for...  */

  if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
    len0 -= 1;

  /* Remove trailing __{digit}+ or trailing ${digit}+.  */

  if (len0 > 1 && isdigit (encoded[len0 - 1]))
    {
      i = len0 - 2;
      while ((i >= 0 && isdigit (encoded[i]))
	     || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
	i -= 1;
      if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
	len0 = i - 1;
      else if (i >= 0 && encoded[i] == '$')
	len0 = i;
    }

  /* The first few characters that are not alphabetic are not part
     of any encoding we use, so we can copy them over verbatim.  */

  for (i = 0; i < len0 && !isalpha (encoded[i]); i += 1)
    decoded.push_back (encoded[i]);

  at_start_name = 1;
  while (i < len0)
    {
      /* Is this a symbol function?  */
      if (operators && at_start_name && encoded[i] == 'O')
	{
	  int k;

	  for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
	    {
	      int op_len = strlen (ada_opname_table[k].encoded);
	      if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
			    op_len - 1) == 0)
		  && !isalnum (encoded[i + op_len]))
		{
		  decoded.append (ada_opname_table[k].decoded);
		  at_start_name = 0;
		  i += op_len;
		  break;
		}
	    }
	  if (ada_opname_table[k].encoded != NULL)
	    continue;
	}
      at_start_name = 0;

      /* Replace "TK__" with "__", which will eventually be translated
	 into "." (just below).  */

      if (i < len0 - 4 && startswith (encoded + i, "TK__"))
	i += 2;

      /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
	 be translated into "." (just below).  These are internal names
	 generated for anonymous blocks inside which our symbol is nested.  */

      if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
	  && encoded [i+2] == 'B' && encoded [i+3] == '_'
	  && isdigit (encoded [i+4]))
	{
	  int k = i + 5;
	  
	  while (k < len0 && isdigit (encoded[k]))
	    k++;  /* Skip any extra digit.  */

	  /* Double-check that the "__B_{DIGITS}+" sequence we found
	     is indeed followed by "__".  */
	  if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
	    i = k;
	}

      /* Remove _E{DIGITS}+[sb] */

      /* Just as for protected object subprograms, there are 2 categories
	 of subprograms created by the compiler for each entry.  The first
	 one implements the actual entry code, and has a suffix following
	 the convention above; the second one implements the barrier and
	 uses the same convention as above, except that the 'E' is replaced
	 by a 'B'.

	 Just as above, we do not decode the name of barrier functions
	 to give the user a clue that the code he is debugging has been
	 internally generated.  */

      if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
	  && isdigit (encoded[i+2]))
	{
	  int k = i + 3;

	  while (k < len0 && isdigit (encoded[k]))
	    k++;

	  if (k < len0
	      && (encoded[k] == 'b' || encoded[k] == 's'))
	    {
	      k++;
	      /* Just as an extra precaution, make sure that if this
		 suffix is followed by anything else, it is a '_'.
		 Otherwise, we matched this sequence by accident.  */
	      if (k == len0
		  || (k < len0 && encoded[k] == '_'))
		i = k;
	    }
	}

      /* Remove trailing "N" in [a-z0-9]+N__.  The N is added by
	 the GNAT front-end in protected object subprograms.  */

      if (i < len0 + 3
	  && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
	{
	  /* Backtrack a bit up until we reach either the begining of
	     the encoded name, or "__".  Make sure that we only find
	     digits or lowercase characters.  */
	  const char *ptr = encoded + i - 1;

	  while (ptr >= encoded && is_lower_alphanum (ptr[0]))
	    ptr--;
	  if (ptr < encoded
	      || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
	    i++;
	}

      if (wide && i < len0 + 3 && encoded[i] == 'U' && isxdigit (encoded[i + 1]))
	{
	  if (convert_from_hex_encoded (decoded, &encoded[i + 1], 2))
	    {
	      i += 3;
	      continue;
	    }
	}
      else if (wide && i < len0 + 5 && encoded[i] == 'W' && isxdigit (encoded[i + 1]))
	{
	  if (convert_from_hex_encoded (decoded, &encoded[i + 1], 4))
	    {
	      i += 5;
	      continue;
	    }
	}
      else if (wide && i < len0 + 10 && encoded[i] == 'W' && encoded[i + 1] == 'W'
	       && isxdigit (encoded[i + 2]))
	{
	  if (convert_from_hex_encoded (decoded, &encoded[i + 2], 8))
	    {
	      i += 10;
	      continue;
	    }
	}

      if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
	{
	  /* This is a X[bn]* sequence not separated from the previous
	     part of the name with a non-alpha-numeric character (in other
	     words, immediately following an alpha-numeric character), then
	     verify that it is placed at the end of the encoded name.  If
	     not, then the encoding is not valid and we should abort the
	     decoding.  Otherwise, just skip it, it is used in body-nested
	     package names.  */
	  do
	    i += 1;
	  while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
	  if (i < len0)
	    goto Suppress;
	}
      else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
	{
	 /* Replace '__' by '.'.  */
	  decoded.push_back ('.');
	  at_start_name = 1;
	  i += 2;
	}
      else
	{
	  /* It's a character part of the decoded name, so just copy it
	     over.  */
	  decoded.push_back (encoded[i]);
	  i += 1;
	}
    }

  /* Decoded names should never contain any uppercase character.
     Double-check this, and abort the decoding if we find one.  */

  if (operators)
    {
      for (i = 0; i < decoded.length(); ++i)
	if (isupper (decoded[i]) || decoded[i] == ' ')
	  goto Suppress;
    }

  /* If the compiler added a suffix, append it now.  */
  if (suffix >= 0)
    decoded = decoded + "[" + &encoded[suffix] + "]";

  return decoded;

Suppress:
  if (!wrap)
    return {};

  if (encoded[0] == '<')
    decoded = encoded;
  else
    decoded = '<' + std::string(encoded) + '>';
  return decoded;
}

#ifdef GDB_SELF_TEST

static void
ada_decode_tests ()
{
  /* This isn't valid, but used to cause a crash.  PR gdb/30639.  The
     result does not really matter very much.  */
  SELF_CHECK (ada_decode ("44") == "44");
}

#endif

/* Table for keeping permanent unique copies of decoded names.  Once
   allocated, names in this table are never released.  While this is a
   storage leak, it should not be significant unless there are massive
   changes in the set of decoded names in successive versions of a 
   symbol table loaded during a single session.  */
static struct htab *decoded_names_store;

/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
   in the language-specific part of GSYMBOL, if it has not been
   previously computed.  Tries to save the decoded name in the same
   obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
   in any case, the decoded symbol has a lifetime at least that of
   GSYMBOL).
   The GSYMBOL parameter is "mutable" in the C++ sense: logically
   const, but nevertheless modified to a semantically equivalent form
   when a decoded name is cached in it.  */

const char *
ada_decode_symbol (const struct general_symbol_info *arg)
{
  struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
  const char **resultp =
    &gsymbol->language_specific.demangled_name;

  if (!gsymbol->ada_mangled)
    {
      std::string decoded = ada_decode (gsymbol->linkage_name ());
      struct obstack *obstack = gsymbol->language_specific.obstack;

      gsymbol->ada_mangled = 1;

      if (obstack != NULL)
	*resultp = obstack_strdup (obstack, decoded.c_str ());
      else
	{
	  /* Sometimes, we can't find a corresponding objfile, in
	     which case, we put the result on the heap.  Since we only
	     decode when needed, we hope this usually does not cause a
	     significant memory leak (FIXME).  */

	  char **slot = (char **) htab_find_slot (decoded_names_store,
						  decoded.c_str (), INSERT);

	  if (*slot == NULL)
	    *slot = xstrdup (decoded.c_str ());
	  *resultp = *slot;
	}
    }

  return *resultp;
}



				/* Arrays */

/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
   generated by the GNAT compiler to describe the index type used
   for each dimension of an array, check whether it follows the latest
   known encoding.  If not, fix it up to conform to the latest encoding.
   Otherwise, do nothing.  This function also does nothing if
   INDEX_DESC_TYPE is NULL.

   The GNAT encoding used to describe the array index type evolved a bit.
   Initially, the information would be provided through the name of each
   field of the structure type only, while the type of these fields was
   described as unspecified and irrelevant.  The debugger was then expected
   to perform a global type lookup using the name of that field in order
   to get access to the full index type description.  Because these global
   lookups can be very expensive, the encoding was later enhanced to make
   the global lookup unnecessary by defining the field type as being
   the full index type description.

   The purpose of this routine is to allow us to support older versions
   of the compiler by detecting the use of the older encoding, and by
   fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
   we essentially replace each field's meaningless type by the associated
   index subtype).  */

void
ada_fixup_array_indexes_type (struct type *index_desc_type)
{
  int i;

  if (index_desc_type == NULL)
    return;
  gdb_assert (index_desc_type->num_fields () > 0);

  /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
     to check one field only, no need to check them all).  If not, return
     now.

     If our INDEX_DESC_TYPE was generated using the older encoding,
     the field type should be a meaningless integer type whose name
     is not equal to the field name.  */
  if (index_desc_type->field (0).type ()->name () != NULL
      && strcmp (index_desc_type->field (0).type ()->name (),
		 index_desc_type->field (0).name ()) == 0)
    return;

  /* Fixup each field of INDEX_DESC_TYPE.  */
  for (i = 0; i < index_desc_type->num_fields (); i++)
   {
     const char *name = index_desc_type->field (i).name ();
     struct type *raw_type = ada_check_typedef (ada_find_any_type (name));

     if (raw_type)
       index_desc_type->field (i).set_type (raw_type);
   }
}

/* The desc_* routines return primitive portions of array descriptors
   (fat pointers).  */

/* The descriptor or array type, if any, indicated by TYPE; removes
   level of indirection, if needed.  */

static struct type *
desc_base_type (struct type *type)
{
  if (type == NULL)
    return NULL;
  type = ada_check_typedef (type);
  if (type->code () == TYPE_CODE_TYPEDEF)
    type = ada_typedef_target_type (type);

  if (type != NULL
      && (type->code () == TYPE_CODE_PTR
	  || type->code () == TYPE_CODE_REF))
    return ada_check_typedef (type->target_type ());
  else
    return type;
}

/* True iff TYPE indicates a "thin" array pointer type.  */

static int
is_thin_pntr (struct type *type)
{
  return
    is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
    || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
}

/* The descriptor type for thin pointer type TYPE.  */

static struct type *
thin_descriptor_type (struct type *type)
{
  struct type *base_type = desc_base_type (type);

  if (base_type == NULL)
    return NULL;
  if (is_suffix (ada_type_name (base_type), "___XVE"))
    return base_type;
  else
    {
      struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");

      if (alt_type == NULL)
	return base_type;
      else
	return alt_type;
    }
}

/* A pointer to the array data for thin-pointer value VAL.  */

static struct value *
thin_data_pntr (struct value *val)
{
  struct type *type = ada_check_typedef (val->type ());
  struct type *data_type = desc_data_target_type (thin_descriptor_type (type));

  data_type = lookup_pointer_type (data_type);

  if (type->code () == TYPE_CODE_PTR)
    return value_cast (data_type, val->copy ());
  else
    return value_from_longest (data_type, val->address ());
}

/* True iff TYPE indicates a "thick" array pointer type.  */

static int
is_thick_pntr (struct type *type)
{
  type = desc_base_type (type);
  return (type != NULL && type->code () == TYPE_CODE_STRUCT
	  && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
}

/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
   pointer to one, the type of its bounds data; otherwise, NULL.  */

static struct type *
desc_bounds_type (struct type *type)
{
  struct type *r;

  type = desc_base_type (type);

  if (type == NULL)
    return NULL;
  else if (is_thin_pntr (type))
    {
      type = thin_descriptor_type (type);
      if (type == NULL)
	return NULL;
      r = lookup_struct_elt_type (type, "BOUNDS", 1);
      if (r != NULL)
	return ada_check_typedef (r);
    }
  else if (type->code () == TYPE_CODE_STRUCT)
    {
      r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
      if (r != NULL)
	return ada_check_typedef (ada_check_typedef (r)->target_type ());
    }
  return NULL;
}

/* If ARR is an array descriptor (fat or thin pointer), or pointer to
   one, a pointer to its bounds data.   Otherwise NULL.  */

static struct value *
desc_bounds (struct value *arr)
{
  struct type *type = ada_check_typedef (arr->type ());

  if (is_thin_pntr (type))
    {
      struct type *bounds_type =
	desc_bounds_type (thin_descriptor_type (type));
      LONGEST addr;

      if (bounds_type == NULL)
	error (_("Bad GNAT array descriptor"));

      /* NOTE: The following calculation is not really kosher, but
	 since desc_type is an XVE-encoded type (and shouldn't be),
	 the correct calculation is a real pain.  FIXME (and fix GCC).  */
      if (type->code () == TYPE_CODE_PTR)
	addr = value_as_long (arr);
      else
	addr = arr->address ();

      return
	value_from_longest (lookup_pointer_type (bounds_type),
			    addr - bounds_type->length ());
    }

  else if (is_thick_pntr (type))
    {
      struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
					       _("Bad GNAT array descriptor"));
      struct type *p_bounds_type = p_bounds->type ();

      if (p_bounds_type
	  && p_bounds_type->code () == TYPE_CODE_PTR)
	{
	  struct type *target_type = p_bounds_type->target_type ();

	  if (target_type->is_stub ())
	    p_bounds = value_cast (lookup_pointer_type
				   (ada_check_typedef (target_type)),
				   p_bounds);
	}
      else
	error (_("Bad GNAT array descriptor"));

      return p_bounds;
    }
  else
    return NULL;
}

/* If TYPE is the type of an array-descriptor (fat pointer),  the bit
   position of the field containing the address of the bounds data.  */

static int
fat_pntr_bounds_bitpos (struct type *type)
{
  return desc_base_type (type)->field (1).loc_bitpos ();
}

/* If TYPE is the type of an array-descriptor (fat pointer), the bit
   size of the field containing the address of the bounds data.  */

static int
fat_pntr_bounds_bitsize (struct type *type)
{
  type = desc_base_type (type);

  if (type->field (1).bitsize () > 0)
    return type->field (1).bitsize ();
  else
    return 8 * ada_check_typedef (type->field (1).type ())->length ();
}

/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
   pointer to one, the type of its array data (a array-with-no-bounds type);
   otherwise, NULL.  Use ada_type_of_array to get an array type with bounds
   data.  */

static struct type *
desc_data_target_type (struct type *type)
{
  type = desc_base_type (type);

  /* NOTE: The following is bogus; see comment in desc_bounds.  */
  if (is_thin_pntr (type))
    return desc_base_type (thin_descriptor_type (type)->field (1).type ());
  else if (is_thick_pntr (type))
    {
      struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);

      if (data_type
	  && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
	return ada_check_typedef (data_type->target_type ());
    }

  return NULL;
}

/* If ARR is an array descriptor (fat or thin pointer), a pointer to
   its array data.  */

static struct value *
desc_data (struct value *arr)
{
  struct type *type = arr->type ();

  if (is_thin_pntr (type))
    return thin_data_pntr (arr);
  else if (is_thick_pntr (type))
    return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
			     _("Bad GNAT array descriptor"));
  else
    return NULL;
}


/* If TYPE is the type of an array-descriptor (fat pointer), the bit
   position of the field containing the address of the data.  */

static int
fat_pntr_data_bitpos (struct type *type)
{
  return desc_base_type (type)->field (0).loc_bitpos ();
}

/* If TYPE is the type of an array-descriptor (fat pointer), the bit
   size of the field containing the address of the data.  */

static int
fat_pntr_data_bitsize (struct type *type)
{
  type = desc_base_type (type);

  if (type->field (0).bitsize () > 0)
    return type->field (0).bitsize ();
  else
    return TARGET_CHAR_BIT * type->field (0).type ()->length ();
}

/* If BOUNDS is an array-bounds structure (or pointer to one), return
   the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
   bound, if WHICH is 1.  The first bound is I=1.  */

static struct value *
desc_one_bound (struct value *bounds, int i, int which)
{
  char bound_name[20];
  xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
	     which ? 'U' : 'L', i - 1);
  return value_struct_elt (&bounds, {}, bound_name, NULL,
			   _("Bad GNAT array descriptor bounds"));
}

/* If BOUNDS is an array-bounds structure type, return the bit position
   of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
   bound, if WHICH is 1.  The first bound is I=1.  */

static int
desc_bound_bitpos (struct type *type, int i, int which)
{
  return desc_base_type (type)->field (2 * i + which - 2).loc_bitpos ();
}

/* If BOUNDS is an array-bounds structure type, return the bit field size
   of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
   bound, if WHICH is 1.  The first bound is I=1.  */

static int
desc_bound_bitsize (struct type *type, int i, int which)
{
  type = desc_base_type (type);

  if (type->field (2 * i + which - 2).bitsize () > 0)
    return type->field (2 * i + which - 2).bitsize ();
  else
    return 8 * type->field (2 * i + which - 2).type ()->length ();
}

/* If TYPE is the type of an array-bounds structure, the type of its
   Ith bound (numbering from 1).  Otherwise, NULL.  */

static struct type *
desc_index_type (struct type *type, int i)
{
  type = desc_base_type (type);

  if (type->code () == TYPE_CODE_STRUCT)
    {
      char bound_name[20];
      xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
      return lookup_struct_elt_type (type, bound_name, 1);
    }
  else
    return NULL;
}

/* The number of index positions in the array-bounds type TYPE.
   Return 0 if TYPE is NULL.  */

static int
desc_arity (struct type *type)
{
  type = desc_base_type (type);

  if (type != NULL)
    return type->num_fields () / 2;
  return 0;
}

/* Non-zero iff TYPE is a simple array type (not a pointer to one) or 
   an array descriptor type (representing an unconstrained array
   type).  */

static int
ada_is_direct_array_type (struct type *type)
{
  if (type == NULL)
    return 0;
  type = ada_check_typedef (type);
  return (type->code () == TYPE_CODE_ARRAY
	  || ada_is_array_descriptor_type (type));
}

/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
 * to one.  */

static int
ada_is_array_type (struct type *type)
{
  while (type != NULL
	 && (type->code () == TYPE_CODE_PTR
	     || type->code () == TYPE_CODE_REF))
    type = type->target_type ();
  return ada_is_direct_array_type (type);
}

/* Non-zero iff TYPE is a simple array type or pointer to one.  */

int
ada_is_simple_array_type (struct type *type)
{
  if (type == NULL)
    return 0;
  type = ada_check_typedef (type);
  return (type->code () == TYPE_CODE_ARRAY
	  || (type->code () == TYPE_CODE_PTR
	      && (ada_check_typedef (type->target_type ())->code ()
		  == TYPE_CODE_ARRAY)));
}

/* Non-zero iff TYPE belongs to a GNAT array descriptor.  */

int
ada_is_array_descriptor_type (struct type *type)
{
  struct type *data_type = desc_data_target_type (type);

  if (type == NULL)
    return 0;
  type = ada_check_typedef (type);
  return (data_type != NULL
	  && data_type->code () == TYPE_CODE_ARRAY
	  && desc_arity (desc_bounds_type (type)) > 0);
}

/* If ARR has a record type in the form of a standard GNAT array descriptor,
   (fat pointer) returns the type of the array data described---specifically,
   a pointer-to-array type.  If BOUNDS is non-zero, the bounds data are filled
   in from the descriptor; otherwise, they are left unspecified.  If
   the ARR denotes a null array descriptor and BOUNDS is non-zero,
   returns NULL.  The result is simply the type of ARR if ARR is not
   a descriptor.  */

static struct type *
ada_type_of_array (struct value *arr, int bounds)
{
  if (ada_is_constrained_packed_array_type (arr->type ()))
    return decode_constrained_packed_array_type (arr->type ());

  if (!ada_is_array_descriptor_type (arr->type ()))
    return arr->type ();

  if (!bounds)
    {
      struct type *array_type =
	ada_check_typedef (desc_data_target_type (arr->type ()));

      if (ada_is_unconstrained_packed_array_type (arr->type ()))
	array_type->field (0).set_bitsize
	  (decode_packed_array_bitsize (arr->type ()));

      return array_type;
    }
  else
    {
      struct type *elt_type;
      int arity;
      struct value *descriptor;

      elt_type = ada_array_element_type (arr->type (), -1);
      arity = ada_array_arity (arr->type ());

      if (elt_type == NULL || arity == 0)
	return ada_check_typedef (arr->type ());

      descriptor = desc_bounds (arr);
      if (value_as_long (descriptor) == 0)
	return NULL;
      while (arity > 0)
	{
	  type_allocator alloc (arr->type ());
	  struct value *low = desc_one_bound (descriptor, arity, 0);
	  struct value *high = desc_one_bound (descriptor, arity, 1);

	  arity -= 1;
	  struct type *range_type
	    = create_static_range_type (alloc, low->type (),
					longest_to_int (value_as_long (low)),
					longest_to_int (value_as_long (high)));
	  elt_type = create_array_type (alloc, elt_type, range_type);
	  INIT_GNAT_SPECIFIC (elt_type);

	  if (ada_is_unconstrained_packed_array_type (arr->type ()))
	    {
	      /* We need to store the element packed bitsize, as well as
		 recompute the array size, because it was previously
		 computed based on the unpacked element size.  */
	      LONGEST lo = value_as_long (low);
	      LONGEST hi = value_as_long (high);

	      elt_type->field (0).set_bitsize
		(decode_packed_array_bitsize (arr->type ()));

	      /* If the array has no element, then the size is already
		 zero, and does not need to be recomputed.  */
	      if (lo < hi)
		{
		  int array_bitsize =
			(hi - lo + 1) * elt_type->field (0).bitsize ();

		  elt_type->set_length ((array_bitsize + 7) / 8);
		}
	    }
	}

      return lookup_pointer_type (elt_type);
    }
}

/* If ARR does not represent an array, returns ARR unchanged.
   Otherwise, returns either a standard GDB array with bounds set
   appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
   GDB array.  Returns NULL if ARR is a null fat pointer.  */

struct value *
ada_coerce_to_simple_array_ptr (struct value *arr)
{
  if (ada_is_array_descriptor_type (arr->type ()))
    {
      struct type *arrType = ada_type_of_array (arr, 1);

      if (arrType == NULL)
	return NULL;
      return value_cast (arrType, desc_data (arr)->copy ());
    }
  else if (ada_is_constrained_packed_array_type (arr->type ()))
    return decode_constrained_packed_array (arr);
  else
    return arr;
}

/* If ARR does not represent an array, returns ARR unchanged.
   Otherwise, returns a standard GDB array describing ARR (which may
   be ARR itself if it already is in the proper form).  */

struct value *
ada_coerce_to_simple_array (struct value *arr)
{
  if (ada_is_array_descriptor_type (arr->type ()))
    {
      struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);

      if (arrVal == NULL)
	error (_("Bounds unavailable for null array pointer."));
      return value_ind (arrVal);
    }
  else if (ada_is_constrained_packed_array_type (arr->type ()))
    return decode_constrained_packed_array (arr);
  else
    return arr;
}

/* If TYPE represents a GNAT array type, return it translated to an
   ordinary GDB array type (possibly with BITSIZE fields indicating
   packing).  For other types, is the identity.  */

struct type *
ada_coerce_to_simple_array_type (struct type *type)
{
  if (ada_is_constrained_packed_array_type (type))
    return decode_constrained_packed_array_type (type);

  if (ada_is_array_descriptor_type (type))
    return ada_check_typedef (desc_data_target_type (type));

  return type;
}

/* Non-zero iff TYPE represents a standard GNAT packed-array type.  */

static int
ada_is_gnat_encoded_packed_array_type  (struct type *type)
{
  if (type == NULL)
    return 0;
  type = desc_base_type (type);
  type = ada_check_typedef (type);
  return
    ada_type_name (type) != NULL
    && strstr (ada_type_name (type), "___XP") != NULL;
}

/* Non-zero iff TYPE represents a standard GNAT constrained
   packed-array type.  */

int
ada_is_constrained_packed_array_type (struct type *type)
{
  return ada_is_gnat_encoded_packed_array_type (type)
    && !ada_is_array_descriptor_type (type);
}

/* Non-zero iff TYPE represents an array descriptor for a
   unconstrained packed-array type.  */

static int
ada_is_unconstrained_packed_array_type (struct type *type)
{
  if (!ada_is_array_descriptor_type (type))
    return 0;

  if (ada_is_gnat_encoded_packed_array_type (type))
    return 1;

  /* If we saw GNAT encodings, then the above code is sufficient.
     However, with minimal encodings, we will just have a thick
     pointer instead.  */
  if (is_thick_pntr (type))
    {
      type = desc_base_type (type);
      /* The structure's first field is a pointer to an array, so this
	 fetches the array type.  */
      type = type->field (0).type ()->target_type ();
      if (type->code () == TYPE_CODE_TYPEDEF)
	type = ada_typedef_target_type (type);
      /* Now we can see if the array elements are packed.  */
      return type->field (0).bitsize () > 0;
    }

  return 0;
}

/* Return true if TYPE is a (Gnat-encoded) constrained packed array
   type, or if it is an ordinary (non-Gnat-encoded) packed array.  */

static bool
ada_is_any_packed_array_type (struct type *type)
{
  return (ada_is_constrained_packed_array_type (type)
	  || (type->code () == TYPE_CODE_ARRAY
	      && type->field (0).bitsize () % 8 != 0));
}

/* Given that TYPE encodes a packed array type (constrained or unconstrained),
   return the size of its elements in bits.  */

static long
decode_packed_array_bitsize (struct type *type)
{
  const char *raw_name;
  const char *tail;
  long bits;

  /* Access to arrays implemented as fat pointers are encoded as a typedef
     of the fat pointer type.  We need the name of the fat pointer type
     to do the decoding, so strip the typedef layer.  */
  if (type->code () == TYPE_CODE_TYPEDEF)
    type = ada_typedef_target_type (type);

  raw_name = ada_type_name (ada_check_typedef (type));
  if (!raw_name)
    raw_name = ada_type_name (desc_base_type (type));

  if (!raw_name)
    return 0;

  tail = strstr (raw_name, "___XP");
  if (tail == nullptr)
    {
      gdb_assert (is_thick_pntr (type));
      /* The structure's first field is a pointer to an array, so this
	 fetches the array type.  */
      type = type->field (0).type ()->target_type ();
      /* Now we can see if the array elements are packed.  */
      return type->field (0).bitsize ();
    }

  if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
    {
      lim_warning
	(_("could not understand bit size information on packed array"));
      return 0;
    }

  return bits;
}

/* Given that TYPE is a standard GDB array type with all bounds filled
   in, and that the element size of its ultimate scalar constituents
   (that is, either its elements, or, if it is an array of arrays, its
   elements' elements, etc.) is *ELT_BITS, return an identical type,
   but with the bit sizes of its elements (and those of any
   constituent arrays) recorded in the BITSIZE components of its
   TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
   in bits.

   Note that, for arrays whose index type has an XA encoding where
   a bound references a record discriminant, getting that discriminant,
   and therefore the actual value of that bound, is not possible
   because none of the given parameters gives us access to the record.
   This function assumes that it is OK in the context where it is being
   used to return an array whose bounds are still dynamic and where
   the length is arbitrary.  */

static struct type *
constrained_packed_array_type (struct type *type, long *elt_bits)
{
  struct type *new_elt_type;
  struct type *new_type;
  struct type *index_type_desc;
  struct type *index_type;
  LONGEST low_bound, high_bound;

  type = ada_check_typedef (type);
  if (type->code () != TYPE_CODE_ARRAY)
    return type;

  index_type_desc = ada_find_parallel_type (type, "___XA");
  if (index_type_desc)
    index_type = to_fixed_range_type (index_type_desc->field (0).type (),
				      NULL);
  else
    index_type = type->index_type ();

  type_allocator alloc (type);
  new_elt_type =
    constrained_packed_array_type (ada_check_typedef (type->target_type ()),
				   elt_bits);
  new_type = create_array_type (alloc, new_elt_type, index_type);
  new_type->field (0).set_bitsize (*elt_bits);
  new_type->set_name (ada_type_name (type));

  if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
       && is_dynamic_type (check_typedef (index_type)))
      || !get_discrete_bounds (index_type, &low_bound, &high_bound))
    low_bound = high_bound = 0;
  if (high_bound < low_bound)
    {
      *elt_bits = 0;
      new_type->set_length (0);
    }
  else
    {
      *elt_bits *= (high_bound - low_bound + 1);
      new_type->set_length ((*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
    }

  new_type->set_is_fixed_instance (true);
  return new_type;
}

/* The array type encoded by TYPE, where
   ada_is_constrained_packed_array_type (TYPE).  */

static struct type *
decode_constrained_packed_array_type (struct type *type)
{
  const char *raw_name = ada_type_name (ada_check_typedef (type));
  char *name;
  const char *tail;
  struct type *shadow_type;
  long bits;

  if (!raw_name)
    raw_name = ada_type_name (desc_base_type (type));

  if (!raw_name)
    return NULL;

  name = (char *) alloca (strlen (raw_name) + 1);
  tail = strstr (raw_name, "___XP");
  type = desc_base_type (type);

  memcpy (name, raw_name, tail - raw_name);
  name[tail - raw_name] = '\000';

  shadow_type = ada_find_parallel_type_with_name (type, name);

  if (shadow_type == NULL)
    {
      lim_warning (_("could not find bounds information on packed array"));
      return NULL;
    }
  shadow_type = check_typedef (shadow_type);

  if (shadow_type->code () != TYPE_CODE_ARRAY)
    {
      lim_warning (_("could not understand bounds "
		     "information on packed array"));
      return NULL;
    }

  bits = decode_packed_array_bitsize (type);
  return constrained_packed_array_type (shadow_type, &bits);
}

/* Helper function for decode_constrained_packed_array.  Set the field
   bitsize on a series of packed arrays.  Returns the number of
   elements in TYPE.  */

static LONGEST
recursively_update_array_bitsize (struct type *type)
{
  gdb_assert (type->code () == TYPE_CODE_ARRAY);

  LONGEST low, high;
  if (!get_discrete_bounds (type->index_type (), &low, &high)
      || low > high)
    return 0;
  LONGEST our_len = high - low + 1;

  struct type *elt_type = type->target_type ();
  if (elt_type->code () == TYPE_CODE_ARRAY)
    {
      LONGEST elt_len = recursively_update_array_bitsize (elt_type);
      LONGEST elt_bitsize = elt_len * elt_type->field (0).bitsize ();
      type->field (0).set_bitsize (elt_bitsize);

      type->set_length (((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
			 / HOST_CHAR_BIT));
    }

  return our_len;
}

/* Given that ARR is a struct value *indicating a GNAT constrained packed
   array, returns a simple array that denotes that array.  Its type is a
   standard GDB array type except that the BITSIZEs of the array
   target types are set to the number of bits in each element, and the
   type length is set appropriately.  */

static struct value *
decode_constrained_packed_array (struct value *arr)
{
  struct type *type;

  /* If our value is a pointer, then dereference it. Likewise if
     the value is a reference.  Make sure that this operation does not
     cause the target type to be fixed, as this would indirectly cause
     this array to be decoded.  The rest of the routine assumes that
     the array hasn't been decoded yet, so we use the basic "coerce_ref"
     and "value_ind" routines to perform the dereferencing, as opposed
     to using "ada_coerce_ref" or "ada_value_ind".  */
  arr = coerce_ref (arr);
  if (ada_check_typedef (arr->type ())->code () == TYPE_CODE_PTR)
    arr = value_ind (arr);

  type = decode_constrained_packed_array_type (arr->type ());
  if (type == NULL)
    {
      error (_("can't unpack array"));
      return NULL;
    }

  /* Decoding the packed array type could not correctly set the field
     bitsizes for any dimension except the innermost, because the
     bounds may be variable and were not passed to that function.  So,
     we further resolve the array bounds here and then update the
     sizes.  */
  const gdb_byte *valaddr = arr->contents_for_printing ().data ();
  CORE_ADDR address = arr->address ();
  gdb::array_view<const gdb_byte> view
    = gdb::make_array_view (valaddr, type->length ());
  type = resolve_dynamic_type (type, view, address);
  recursively_update_array_bitsize (type);

  if (type_byte_order (arr->type ()) == BFD_ENDIAN_BIG
      && ada_is_modular_type (arr->type ()))
    {
       /* This is a (right-justified) modular type representing a packed
	  array with no wrapper.  In order to interpret the value through
	  the (left-justified) packed array type we just built, we must
	  first left-justify it.  */
      int bit_size, bit_pos;
      ULONGEST mod;

      mod = ada_modulus (arr->type ()) - 1;
      bit_size = 0;
      while (mod > 0)
	{
	  bit_size += 1;
	  mod >>= 1;
	}
      bit_pos = HOST_CHAR_BIT * arr->type ()->length () - bit_size;
      arr = ada_value_primitive_packed_val (arr, NULL,
					    bit_pos / HOST_CHAR_BIT,
					    bit_pos % HOST_CHAR_BIT,
					    bit_size,
					    type);
    }

  return coerce_unspec_val_to_type (arr, type);
}


/* The value of the element of packed array ARR at the ARITY indices
   given in IND.   ARR must be a simple array.  */

static struct value *
value_subscript_packed (struct value *arr, int arity, struct value **ind)
{
  int i;
  int bits, elt_off, bit_off;
  long elt_total_bit_offset;
  struct type *elt_type;
  struct value *v;

  bits = 0;
  elt_total_bit_offset = 0;
  elt_type = ada_check_typedef (arr->type ());
  for (i = 0; i < arity; i += 1)
    {
      if (elt_type->code () != TYPE_CODE_ARRAY
	  || elt_type->field (0).bitsize () == 0)
	error
	  (_("attempt to do packed indexing of "
	     "something other than a packed array"));
      else
	{
	  struct type *range_type = elt_type->index_type ();
	  LONGEST lowerbound, upperbound;
	  LONGEST idx;

	  if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
	    {
	      lim_warning (_("don't know bounds of array"));
	      lowerbound = upperbound = 0;
	    }

	  idx = pos_atr (ind[i]);
	  if (idx < lowerbound || idx > upperbound)
	    lim_warning (_("packed array index %ld out of bounds"),
			 (long) idx);
	  bits = elt_type->field (0).bitsize ();
	  elt_total_bit_offset += (idx - lowerbound) * bits;
	  elt_type = ada_check_typedef (elt_type->target_type ());
	}
    }
  elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
  bit_off = elt_total_bit_offset % HOST_CHAR_BIT;

  v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
				      bits, elt_type);
  return v;
}

/* Non-zero iff TYPE includes negative integer values.  */

static int
has_negatives (struct type *type)
{
  switch (type->code ())
    {
    default:
      return 0;
    case TYPE_CODE_INT:
      return !type->is_unsigned ();
    case TYPE_CODE_RANGE:
      return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
    }
}

/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
   unpack that data into UNPACKED.  UNPACKED_LEN is the size in bytes of
   the unpacked buffer.

   The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
   enough to contain at least BIT_OFFSET bits.  If not, an error is raised.

   IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
   zero otherwise.

   IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.

   IS_SCALAR is nonzero if the data corresponds to a signed type.  */

static void
ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
			  gdb_byte *unpacked, int unpacked_len,
			  int is_big_endian, int is_signed_type,
			  int is_scalar)
{
  int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
  int src_idx;                  /* Index into the source area */
  int src_bytes_left;           /* Number of source bytes left to process.  */
  int srcBitsLeft;              /* Number of source bits left to move */
  int unusedLS;                 /* Number of bits in next significant
				   byte of source that are unused */

  int unpacked_idx;             /* Index into the unpacked buffer */
  int unpacked_bytes_left;      /* Number of bytes left to set in unpacked.  */

  unsigned long accum;          /* Staging area for bits being transferred */
  int accumSize;                /* Number of meaningful bits in accum */
  unsigned char sign;

  /* Transmit bytes from least to most significant; delta is the direction
     the indices move.  */
  int delta = is_big_endian ? -1 : 1;

  /* Make sure that unpacked is large enough to receive the BIT_SIZE
     bits from SRC.  .*/
  if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
    error (_("Cannot unpack %d bits into buffer of %d bytes"),
	   bit_size, unpacked_len);

  srcBitsLeft = bit_size;
  src_bytes_left = src_len;
  unpacked_bytes_left = unpacked_len;
  sign = 0;

  if (is_big_endian)
    {
      src_idx = src_len - 1;
      if (is_signed_type
	  && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
	sign = ~0;

      unusedLS =
	(HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
	% HOST_CHAR_BIT;

      if (is_scalar)
	{
	  accumSize = 0;
	  unpacked_idx = unpacked_len - 1;
	}
      else
	{
	  /* Non-scalar values must be aligned at a byte boundary...  */
	  accumSize =
	    (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
	  /* ... And are placed at the beginning (most-significant) bytes
	     of the target.  */
	  unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
	  unpacked_bytes_left = unpacked_idx + 1;
	}
    }
  else
    {
      int sign_bit_offset = (bit_size + bit_offset - 1) % 8;

      src_idx = unpacked_idx = 0;
      unusedLS = bit_offset;
      accumSize = 0;

      if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
	sign = ~0;
    }

  accum = 0;
  while (src_bytes_left > 0)
    {
      /* Mask for removing bits of the next source byte that are not
	 part of the value.  */
      unsigned int unusedMSMask =
	(1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
	1;
      /* Sign-extend bits for this byte.  */
      unsigned int signMask = sign & ~unusedMSMask;

      accum |=
	(((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
      accumSize += HOST_CHAR_BIT - unusedLS;
      if (accumSize >= HOST_CHAR_BIT)
	{
	  unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
	  accumSize -= HOST_CHAR_BIT;
	  accum >>= HOST_CHAR_BIT;
	  unpacked_bytes_left -= 1;
	  unpacked_idx += delta;
	}
      srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
      unusedLS = 0;
      src_bytes_left -= 1;
      src_idx += delta;
    }
  while (unpacked_bytes_left > 0)
    {
      accum |= sign << accumSize;
      unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
      accumSize -= HOST_CHAR_BIT;
      if (accumSize < 0)
	accumSize = 0;
      accum >>= HOST_CHAR_BIT;
      unpacked_bytes_left -= 1;
      unpacked_idx += delta;
    }
}

/* Create a new value of type TYPE from the contents of OBJ starting
   at byte OFFSET, and bit offset BIT_OFFSET within that byte,
   proceeding for BIT_SIZE bits.  If OBJ is an lval in memory, then
   assigning through the result will set the field fetched from.
   VALADDR is ignored unless OBJ is NULL, in which case,
   VALADDR+OFFSET must address the start of storage containing the 
   packed value.  The value returned  in this case is never an lval.
   Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT.  */

struct value *
ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
				long offset, int bit_offset, int bit_size,
				struct type *type)
{
  struct value *v;
  const gdb_byte *src;                /* First byte containing data to unpack */
  gdb_byte *unpacked;
  const int is_scalar = is_scalar_type (type);
  const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
  gdb::byte_vector staging;

  type = ada_check_typedef (type);

  if (obj == NULL)
    src = valaddr + offset;
  else
    src = obj->contents ().data () + offset;

  if (is_dynamic_type (type))
    {
      /* The length of TYPE might by dynamic, so we need to resolve
	 TYPE in order to know its actual size, which we then use
	 to create the contents buffer of the value we return.
	 The difficulty is that the data containing our object is
	 packed, and therefore maybe not at a byte boundary.  So, what
	 we do, is unpack the data into a byte-aligned buffer, and then
	 use that buffer as our object's value for resolving the type.  */
      int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
      staging.resize (staging_len);

      ada_unpack_from_contents (src, bit_offset, bit_size,
				staging.data (), staging.size (),
				is_big_endian, has_negatives (type),
				is_scalar);
      type = resolve_dynamic_type (type, staging, 0);
      if (type->length () < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
	{
	  /* This happens when the length of the object is dynamic,
	     and is actually smaller than the space reserved for it.
	     For instance, in an array of variant records, the bit_size
	     we're given is the array stride, which is constant and
	     normally equal to the maximum size of its element.
	     But, in reality, each element only actually spans a portion
	     of that stride.  */
	  bit_size = type->length () * HOST_CHAR_BIT;
	}
    }

  if (obj == NULL)
    {
      v = value::allocate (type);
      src = valaddr + offset;
    }
  else if (obj->lval () == lval_memory && obj->lazy ())
    {
      int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
      gdb_byte *buf;

      v = value_at (type, obj->address () + offset);
      buf = (gdb_byte *) alloca (src_len);
      read_memory (v->address (), buf, src_len);
      src = buf;
    }
  else
    {
      v = value::allocate (type);
      src = obj->contents ().data () + offset;
    }

  if (obj != NULL)
    {
      long new_offset = offset;

      v->set_component_location (obj);
      v->set_bitpos (bit_offset + obj->bitpos ());
      v->set_bitsize (bit_size);
      if (v->bitpos () >= HOST_CHAR_BIT)
	{
	  ++new_offset;
	  v->set_bitpos (v->bitpos () - HOST_CHAR_BIT);
	}
      v->set_offset (new_offset);

      /* Also set the parent value.  This is needed when trying to
	 assign a new value (in inferior memory).  */
      v->set_parent (obj);
    }
  else
    v->set_bitsize (bit_size);
  unpacked = v->contents_writeable ().data ();

  if (bit_size == 0)
    {
      memset (unpacked, 0, type->length ());
      return v;
    }

  if (staging.size () == type->length ())
    {
      /* Small short-cut: If we've unpacked the data into a buffer
	 of the same size as TYPE's length, then we can reuse that,
	 instead of doing the unpacking again.  */
      memcpy (unpacked, staging.data (), staging.size ());
    }
  else
    ada_unpack_from_contents (src, bit_offset, bit_size,
			      unpacked, type->length (),
			      is_big_endian, has_negatives (type), is_scalar);

  return v;
}

/* Store the contents of FROMVAL into the location of TOVAL.
   Return a new value with the location of TOVAL and contents of
   FROMVAL.   Handles assignment into packed fields that have
   floating-point or non-scalar types.  */

static struct value *
ada_value_assign (struct value *toval, struct value *fromval)
{
  struct type *type = toval->type ();
  int bits = toval->bitsize ();

  toval = ada_coerce_ref (toval);
  fromval = ada_coerce_ref (fromval);

  if (ada_is_direct_array_type (toval->type ()))
    toval = ada_coerce_to_simple_array (toval);
  if (ada_is_direct_array_type (fromval->type ()))
    fromval = ada_coerce_to_simple_array (fromval);

  if (!toval->deprecated_modifiable ())
    error (_("Left operand of assignment is not a modifiable lvalue."));

  if (toval->lval () == lval_memory
      && bits > 0
      && (type->code () == TYPE_CODE_FLT
	  || type->code () == TYPE_CODE_STRUCT))
    {
      int len = (toval->bitpos ()
		 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
      int from_size;
      gdb_byte *buffer = (gdb_byte *) alloca (len);
      struct value *val;
      CORE_ADDR to_addr = toval->address ();

      if (type->code () == TYPE_CODE_FLT)
	fromval = value_cast (type, fromval);

      read_memory (to_addr, buffer, len);
      from_size = fromval->bitsize ();
      if (from_size == 0)
	from_size = fromval->type ()->length () * TARGET_CHAR_BIT;

      const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
      ULONGEST from_offset = 0;
      if (is_big_endian && is_scalar_type (fromval->type ()))
	from_offset = from_size - bits;
      copy_bitwise (buffer, toval->bitpos (),
		    fromval->contents ().data (), from_offset,
		    bits, is_big_endian);
      write_memory_with_notification (to_addr, buffer, len);

      val = toval->copy ();
      memcpy (val->contents_raw ().data (),
	      fromval->contents ().data (),
	      type->length ());
      val->deprecated_set_type (type);

      return val;
    }

  return value_assign (toval, fromval);
}


/* Given that COMPONENT is a memory lvalue that is part of the lvalue
   CONTAINER, assign the contents of VAL to COMPONENTS's place in
   CONTAINER.  Modifies the VALUE_CONTENTS of CONTAINER only, not
   COMPONENT, and not the inferior's memory.  The current contents
   of COMPONENT are ignored.

   Although not part of the initial design, this function also works
   when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
   had a null address, and COMPONENT had an address which is equal to
   its offset inside CONTAINER.  */

static void
value_assign_to_component (struct value *container, struct value *component,
			   struct value *val)
{
  LONGEST offset_in_container =
    (LONGEST)  (component->address () - container->address ());
  int bit_offset_in_container =
    component->bitpos () - container->bitpos ();
  int bits;

  val = value_cast (component->type (), val);

  if (component->bitsize () == 0)
    bits = TARGET_CHAR_BIT * component->type ()->length ();
  else
    bits = component->bitsize ();

  if (type_byte_order (container->type ()) == BFD_ENDIAN_BIG)
    {
      int src_offset;

      if (is_scalar_type (check_typedef (component->type ())))
	src_offset
	  = component->type ()->length () * TARGET_CHAR_BIT - bits;
      else
	src_offset = 0;
      copy_bitwise ((container->contents_writeable ().data ()
		     + offset_in_container),
		    container->bitpos () + bit_offset_in_container,
		    val->contents ().data (), src_offset, bits, 1);
    }
  else
    copy_bitwise ((container->contents_writeable ().data ()
		   + offset_in_container),
		  container->bitpos () + bit_offset_in_container,
		  val->contents ().data (), 0, bits, 0);
}

/* Determine if TYPE is an access to an unconstrained array.  */

bool
ada_is_access_to_unconstrained_array (struct type *type)
{
  return (type->code () == TYPE_CODE_TYPEDEF
	  && is_thick_pntr (ada_typedef_target_type (type)));
}

/* The value of the element of array ARR at the ARITY indices given in IND.
   ARR may be either a simple array, GNAT array descriptor, or pointer
   thereto.  */

struct value *
ada_value_subscript (struct value *arr, int arity, struct value **ind)
{
  int k;
  struct value *elt;
  struct type *elt_type;

  elt = ada_coerce_to_simple_array (arr);

  elt_type = ada_check_typedef (elt->type ());
  if (elt_type->code () == TYPE_CODE_ARRAY
      && elt_type->field (0).bitsize () > 0)
    return value_subscript_packed (elt, arity, ind);

  for (k = 0; k < arity; k += 1)
    {
      struct type *saved_elt_type = elt_type->target_type ();

      if (elt_type->code () != TYPE_CODE_ARRAY)
	error (_("too many subscripts (%d expected)"), k);

      elt = value_subscript (elt, pos_atr (ind[k]));

      if (ada_is_access_to_unconstrained_array (saved_elt_type)
	  && elt->type ()->code () != TYPE_CODE_TYPEDEF)
	{
	  /* The element is a typedef to an unconstrained array,
	     except that the value_subscript call stripped the
	     typedef layer.  The typedef layer is GNAT's way to
	     specify that the element is, at the source level, an
	     access to the unconstrained array, rather than the
	     unconstrained array.  So, we need to restore that
	     typedef layer, which we can do by forcing the element's
	     type back to its original type. Otherwise, the returned
	     value is going to be printed as the array, rather
	     than as an access.  Another symptom of the same issue
	     would be that an expression trying to dereference the
	     element would also be improperly rejected.  */
	  elt->deprecated_set_type (saved_elt_type);
	}

      elt_type = ada_check_typedef (elt->type ());
    }

  return elt;
}

/* Assuming ARR is a pointer to a GDB array, the value of the element
   of *ARR at the ARITY indices given in IND.
   Does not read the entire array into memory.

   Note: Unlike what one would expect, this function is used instead of
   ada_value_subscript for basically all non-packed array types.  The reason
   for this is that a side effect of doing our own pointer arithmetics instead
   of relying on value_subscript is that there is no implicit typedef peeling.
   This is important for arrays of array accesses, where it allows us to
   preserve the fact that the array's element is an array access, where the
   access part os encoded in a typedef layer.  */

static struct value *
ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
{
  int k;
  struct value *array_ind = ada_value_ind (arr);
  struct type *type
    = check_typedef (array_ind->enclosing_type ());

  if (type->code () == TYPE_CODE_ARRAY
      && type->field (0).bitsize () > 0)
    return value_subscript_packed (array_ind, arity, ind);

  for (k = 0; k < arity; k += 1)
    {
      LONGEST lwb, upb;

      if (type->code () != TYPE_CODE_ARRAY)
	error (_("too many subscripts (%d expected)"), k);
      arr = value_cast (lookup_pointer_type (type->target_type ()),
			arr->copy ());
      get_discrete_bounds (type->index_type (), &lwb, &upb);
      arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
      type = type->target_type ();
    }

  return value_ind (arr);
}

/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
   actual type of ARRAY_PTR is ignored), returns the Ada slice of
   HIGH'Pos-LOW'Pos+1 elements starting at index LOW.  The lower bound of
   this array is LOW, as per Ada rules.  */
static struct value *
ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
			  int low, int high)
{
  struct type *type0 = ada_check_typedef (type);
  struct type *base_index_type = type0->index_type ()->target_type ();
  type_allocator alloc (base_index_type);
  struct type *index_type
    = create_static_range_type (alloc, base_index_type, low, high);
  struct type *slice_type = create_array_type_with_stride
			      (alloc, type0->target_type (), index_type,
			       type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
			       type0->field (0).bitsize ());
  int base_low =  ada_discrete_type_low_bound (type0->index_type ());
  std::optional<LONGEST> base_low_pos, low_pos;
  CORE_ADDR base;

  low_pos = discrete_position (base_index_type, low);
  base_low_pos = discrete_position (base_index_type, base_low);

  if (!low_pos.has_value () || !base_low_pos.has_value ())
    {
      warning (_("unable to get positions in slice, use bounds instead"));
      low_pos = low;
      base_low_pos = base_low;
    }

  ULONGEST stride = slice_type->field (0).bitsize () / 8;
  if (stride == 0)
    stride = type0->target_type ()->length ();

  base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
  return value_at_lazy (slice_type, base);
}


static struct value *
ada_value_slice (struct value *array, int low, int high)
{
  struct type *type = ada_check_typedef (array->type ());
  struct type *base_index_type = type->index_type ()->target_type ();
  type_allocator alloc (type->index_type ());
  struct type *index_type
    = create_static_range_type (alloc, type->index_type (), low, high);
  struct type *slice_type = create_array_type_with_stride
			      (alloc, type->target_type (), index_type,
			       type->dyn_prop (DYN_PROP_BYTE_STRIDE),
			       type->field (0).bitsize ());
  std::optional<LONGEST> low_pos, high_pos;


  low_pos = discrete_position (base_index_type, low);
  high_pos = discrete_position (base_index_type, high);

  if (!low_pos.has_value () || !high_pos.has_value ())
    {
      warning (_("unable to get positions in slice, use bounds instead"));
      low_pos = low;
      high_pos = high;
    }

  return value_cast (slice_type,
		     value_slice (array, low, *high_pos - *low_pos + 1));
}

/* If type is a record type in the form of a standard GNAT array
   descriptor, returns the number of dimensions for type.  If arr is a
   simple array, returns the number of "array of"s that prefix its
   type designation.  Otherwise, returns 0.  */

int
ada_array_arity (struct type *type)
{
  int arity;

  if (type == NULL)
    return 0;

  type = desc_base_type (type);

  arity = 0;
  if (type->code () == TYPE_CODE_STRUCT)
    return desc_arity (desc_bounds_type (type));
  else
    while (type->code () == TYPE_CODE_ARRAY)
      {
	arity += 1;
	type = ada_check_typedef (type->target_type ());
      }

  return arity;
}

/* If TYPE is a record type in the form of a standard GNAT array
   descriptor or a simple array type, returns the element type for
   TYPE after indexing by NINDICES indices, or by all indices if
   NINDICES is -1.  Otherwise, returns NULL.  */

struct type *
ada_array_element_type (struct type *type, int nindices)
{
  type = desc_base_type (type);

  if (type->code () == TYPE_CODE_STRUCT)
    {
      int k;
      struct type *p_array_type;

      p_array_type = desc_data_target_type (type);

      k = ada_array_arity (type);
      if (k == 0)
	return NULL;

      /* Initially p_array_type = elt_type(*)[]...(k times)...[].  */
      if (nindices >= 0 && k > nindices)
	k = nindices;
      while (k > 0 && p_array_type != NULL)
	{
	  p_array_type = ada_check_typedef (p_array_type->target_type ());
	  k -= 1;
	}
      return p_array_type;
    }
  else if (type->code () == TYPE_CODE_ARRAY)
    {
      while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
	{
	  type = type->target_type ();
	  /* A multi-dimensional array is represented using a sequence
	     of array types.  If one of these types has a name, then
	     it is not another dimension of the outer array, but
	     rather the element type of the outermost array.  */
	  if (type->name () != nullptr)
	    break;
	  nindices -= 1;
	}
      return type;
    }

  return NULL;
}

/* See ada-lang.h.  */

struct type *
ada_index_type (struct type *type, int n, const char *name)
{
  struct type *result_type;

  type = desc_base_type (type);

  if (n < 0 || n > ada_array_arity (type))
    error (_("invalid dimension number to '%s"), name);

  if (ada_is_simple_array_type (type))
    {
      int i;

      for (i = 1; i < n; i += 1)
	{
	  type = ada_check_typedef (type);
	  type = type->target_type ();
	}
      result_type = ada_check_typedef (type)->index_type ()->target_type ();
      /* FIXME: The stabs type r(0,0);bound;bound in an array type
	 has a target type of TYPE_CODE_UNDEF.  We compensate here, but
	 perhaps stabsread.c would make more sense.  */
      if (result_type && result_type->code () == TYPE_CODE_UNDEF)
	result_type = NULL;
    }
  else
    {
      result_type = desc_index_type (desc_bounds_type (type), n);
      if (result_type == NULL)
	error (_("attempt to take bound of something that is not an array"));
    }

  return result_type;
}

/* Given that arr is an array type, returns the lower bound of the
   Nth index (numbering from 1) if WHICH is 0, and the upper bound if
   WHICH is 1.  This returns bounds 0 .. -1 if ARR_TYPE is an
   array-descriptor type.  It works for other arrays with bounds supplied
   by run-time quantities other than discriminants.  */

static LONGEST
ada_array_bound_from_type (struct type *arr_type, int n, int which)
{
  struct type *type, *index_type_desc, *index_type;
  int i;

  gdb_assert (which == 0 || which == 1);

  if (ada_is_constrained_packed_array_type (arr_type))
    arr_type = decode_constrained_packed_array_type (arr_type);

  if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
    return - which;

  if (arr_type->code () == TYPE_CODE_PTR)
    type = arr_type->target_type ();
  else
    type = arr_type;

  if (type->is_fixed_instance ())
    {
      /* The array has already been fixed, so we do not need to
	 check the parallel ___XA type again.  That encoding has
	 already been applied, so ignore it now.  */
      index_type_desc = NULL;
    }
  else
    {
      index_type_desc = ada_find_parallel_type (type, "___XA");
      ada_fixup_array_indexes_type (index_type_desc);
    }

  if (index_type_desc != NULL)
    index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
				      NULL);
  else
    {
      struct type *elt_type = check_typedef (type);

      for (i = 1; i < n; i++)
	elt_type = check_typedef (elt_type->target_type ());

      index_type = elt_type->index_type ();
    }

  return (which == 0
	  ? ada_discrete_type_low_bound (index_type)
	  : ada_discrete_type_high_bound (index_type));
}

/* Given that arr is an array value, returns the lower bound of the
   nth index (numbering from 1) if WHICH is 0, and the upper bound if
   WHICH is 1.  This routine will also work for arrays with bounds
   supplied by run-time quantities other than discriminants.  */

static LONGEST
ada_array_bound (struct value *arr, int n, int which)
{
  struct type *arr_type;

  if (check_typedef (arr->type ())->code () == TYPE_CODE_PTR)
    arr = value_ind (arr);
  arr_type = arr->enclosing_type ();

  if (ada_is_constrained_packed_array_type (arr_type))
    return ada_array_bound (decode_constrained_packed_array (arr), n, which);
  else if (ada_is_simple_array_type (arr_type))
    return ada_array_bound_from_type (arr_type, n, which);
  else
    return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
}

/* Given that arr is an array value, returns the length of the
   nth index.  This routine will also work for arrays with bounds
   supplied by run-time quantities other than discriminants.
   Does not work for arrays indexed by enumeration types with representation
   clauses at the moment.  */

static LONGEST
ada_array_length (struct value *arr, int n)
{
  struct type *arr_type, *index_type;
  int low, high;

  if (check_typedef (arr->type ())->code () == TYPE_CODE_PTR)
    arr = value_ind (arr);
  arr_type = arr->enclosing_type ();

  if (ada_is_constrained_packed_array_type (arr_type))
    return ada_array_length (decode_constrained_packed_array (arr), n);

  if (ada_is_simple_array_type (arr_type))
    {
      low = ada_array_bound_from_type (arr_type, n, 0);
      high = ada_array_bound_from_type (arr_type, n, 1);
    }
  else
    {
      low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
      high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
    }

  arr_type = check_typedef (arr_type);
  index_type = ada_index_type (arr_type, n, "length");
  if (index_type != NULL)
    {
      struct type *base_type;
      if (index_type->code () == TYPE_CODE_RANGE)
	base_type = index_type->target_type ();
      else
	base_type = index_type;

      low = pos_atr (value_from_longest (base_type, low));
      high = pos_atr (value_from_longest (base_type, high));
    }
  return high - low + 1;
}

/* An array whose type is that of ARR_TYPE (an array type), with
   bounds LOW to HIGH, but whose contents are unimportant.  If HIGH is
   less than LOW, then LOW-1 is used.  */

static struct value *
empty_array (struct type *arr_type, int low, int high)
{
  struct type *arr_type0 = ada_check_typedef (arr_type);
  type_allocator alloc (arr_type0->index_type ()->target_type ());
  struct type *index_type
    = create_static_range_type
	(alloc, arr_type0->index_type ()->target_type (), low,
	 high < low ? low - 1 : high);
  struct type *elt_type = ada_array_element_type (arr_type0, 1);

  return value::allocate (create_array_type (alloc, elt_type, index_type));
}


				/* Name resolution */

/* The "decoded" name for the user-definable Ada operator corresponding
   to OP.  */

static const char *
ada_decoded_op_name (enum exp_opcode op)
{
  int i;

  for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
    {
      if (ada_opname_table[i].op == op)
	return ada_opname_table[i].decoded;
    }
  error (_("Could not find operator name for opcode"));
}

/* Returns true (non-zero) iff decoded name N0 should appear before N1
   in a listing of choices during disambiguation (see sort_choices, below).
   The idea is that overloadings of a subprogram name from the
   same package should sort in their source order.  We settle for ordering
   such symbols by their trailing number (__N  or $N).  */

static int
encoded_ordered_before (const char *N0, const char *N1)
{
  if (N1 == NULL)
    return 0;
  else if (N0 == NULL)
    return 1;
  else
    {
      int k0, k1;

      for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
	;
      for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
	;
      if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
	  && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
	{
	  int n0, n1;

	  n0 = k0;
	  while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
	    n0 -= 1;
	  n1 = k1;
	  while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
	    n1 -= 1;
	  if (n0 == n1 && strncmp (N0, N1, n0) == 0)
	    return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
	}
      return (strcmp (N0, N1) < 0);
    }
}

/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
   encoded names.  */

static void
sort_choices (struct block_symbol syms[], int nsyms)
{
  int i;

  for (i = 1; i < nsyms; i += 1)
    {
      struct block_symbol sym = syms[i];
      int j;

      for (j = i - 1; j >= 0; j -= 1)
	{
	  if (encoded_ordered_before (syms[j].symbol->linkage_name (),
				      sym.symbol->linkage_name ()))
	    break;
	  syms[j + 1] = syms[j];
	}
      syms[j + 1] = sym;
    }
}

/* Whether GDB should display formals and return types for functions in the
   overloads selection menu.  */
static bool print_signatures = true;

/* Print the signature for SYM on STREAM according to the FLAGS options.  For
   all but functions, the signature is just the name of the symbol.  For
   functions, this is the name of the function, the list of types for formals
   and the return type (if any).  */

static void
ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
			    const struct type_print_options *flags)
{
  struct type *type = sym->type ();

  gdb_printf (stream, "%s", sym->print_name ());
  if (!print_signatures
      || type == NULL
      || type->code () != TYPE_CODE_FUNC)
    return;

  if (type->num_fields () > 0)
    {
      int i;

      gdb_printf (stream, " (");
      for (i = 0; i < type->num_fields (); ++i)
	{
	  if (i > 0)
	    gdb_printf (stream, "; ");
	  ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
			  flags);
	}
      gdb_printf (stream, ")");
    }
  if (type->target_type () != NULL
      && type->target_type ()->code () != TYPE_CODE_VOID)
    {
      gdb_printf (stream, " return ");
      ada_print_type (type->target_type (), NULL, stream, -1, 0, flags);
    }
}

/* Read and validate a set of numeric choices from the user in the
   range 0 .. N_CHOICES-1.  Place the results in increasing
   order in CHOICES[0 .. N-1], and return N.

   The user types choices as a sequence of numbers on one line
   separated by blanks, encoding them as follows:

     + A choice of 0 means to cancel the selection, throwing an error.
     + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
     + The user chooses k by typing k+IS_ALL_CHOICE+1.

   The user is not allowed to choose more than MAX_RESULTS values.

   ANNOTATION_SUFFIX, if present, is used to annotate the input
   prompts (for use with the -f switch).  */

static int
get_selections (int *choices, int n_choices, int max_results,
		int is_all_choice, const char *annotation_suffix)
{
  const char *args;
  const char *prompt;
  int n_chosen;
  int first_choice = is_all_choice ? 2 : 1;

  prompt = getenv ("PS2");
  if (prompt == NULL)
    prompt = "> ";

  std::string buffer;
  args = command_line_input (buffer, prompt, annotation_suffix);

  if (args == NULL)
    error_no_arg (_("one or more choice numbers"));

  n_chosen = 0;

  /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
     order, as given in args.  Choices are validated.  */
  while (1)
    {
      char *args2;
      int choice, j;

      args = skip_spaces (args);
      if (*args == '\0' && n_chosen == 0)
	error_no_arg (_("one or more choice numbers"));
      else if (*args == '\0')
	break;

      choice = strtol (args, &args2, 10);
      if (args == args2 || choice < 0
	  || choice > n_choices + first_choice - 1)
	error (_("Argument must be choice number"));
      args = args2;

      if (choice == 0)
	error (_("cancelled"));

      if (choice < first_choice)
	{
	  n_chosen = n_choices;
	  for (j = 0; j < n_choices; j += 1)
	    choices[j] = j;
	  break;
	}
      choice -= first_choice;

      for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
	{
	}

      if (j < 0 || choice != choices[j])
	{
	  int k;

	  for (k = n_chosen - 1; k > j; k -= 1)
	    choices[k + 1] = choices[k];
	  choices[j + 1] = choice;
	  n_chosen += 1;
	}
    }

  if (n_chosen > max_results)
    error (_("Select no more than %d of the above"), max_results);

  return n_chosen;
}

/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
   by asking the user (if necessary), returning the number selected,
   and setting the first elements of SYMS items.  Error if no symbols
   selected.  */

/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
   to be re-integrated one of these days.  */

static int
user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
{
  int i;
  int *chosen = XALLOCAVEC (int , nsyms);
  int n_chosen;
  int first_choice = (max_results == 1) ? 1 : 2;
  const char *select_mode = multiple_symbols_select_mode ();

  if (max_results < 1)
    error (_("Request to select 0 symbols!"));
  if (nsyms <= 1)
    return nsyms;

  if (select_mode == multiple_symbols_cancel)
    error (_("\
canceled because the command is ambiguous\n\
See set/show multiple-symbol."));

  /* If select_mode is "all", then return all possible symbols.
     Only do that if more than one symbol can be selected, of course.
     Otherwise, display the menu as usual.  */
  if (select_mode == multiple_symbols_all && max_results > 1)
    return nsyms;

  gdb_printf (_("[0] cancel\n"));
  if (max_results > 1)
    gdb_printf (_("[1] all\n"));

  sort_choices (syms, nsyms);

  for (i = 0; i < nsyms; i += 1)
    {
      if (syms[i].symbol == NULL)
	continue;

      if (syms[i].symbol->aclass () == LOC_BLOCK)
	{
	  struct symtab_and_line sal =
	    find_function_start_sal (syms[i].symbol, 1);

	  gdb_printf ("[%d] ", i + first_choice);
	  ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
				      &type_print_raw_options);
	  if (sal.symtab == NULL)
	    gdb_printf (_(" at %p[<no source file available>%p]:%d\n"),
			metadata_style.style ().ptr (), nullptr, sal.line);
	  else
	    gdb_printf
	      (_(" at %ps:%d\n"),
	       styled_string (file_name_style.style (),
			      symtab_to_filename_for_display (sal.symtab)),
	       sal.line);
	  continue;
	}
      else
	{
	  int is_enumeral =
	    (syms[i].symbol->aclass () == LOC_CONST
	     && syms[i].symbol->type () != NULL
	     && syms[i].symbol->type ()->code () == TYPE_CODE_ENUM);
	  struct symtab *symtab = NULL;

	  if (syms[i].symbol->is_objfile_owned ())
	    symtab = syms[i].symbol->symtab ();

	  if (syms[i].symbol->line () != 0 && symtab != NULL)
	    {
	      gdb_printf ("[%d] ", i + first_choice);
	      ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
					  &type_print_raw_options);
	      gdb_printf (_(" at %s:%d\n"),
			  symtab_to_filename_for_display (symtab),
			  syms[i].symbol->line ());
	    }
	  else if (is_enumeral
		   && syms[i].symbol->type ()->name () != NULL)
	    {
	      gdb_printf (("[%d] "), i + first_choice);
	      ada_print_type (syms[i].symbol->type (), NULL,
			      gdb_stdout, -1, 0, &type_print_raw_options);
	      gdb_printf (_("'(%s) (enumeral)\n"),
			  syms[i].symbol->print_name ());
	    }
	  else
	    {
	      gdb_printf ("[%d] ", i + first_choice);
	      ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
					  &type_print_raw_options);

	      if (symtab != NULL)
		gdb_printf (is_enumeral
			    ? _(" in %s (enumeral)\n")
			    : _(" at %s:?\n"),
			    symtab_to_filename_for_display (symtab));
	      else
		gdb_printf (is_enumeral
			    ? _(" (enumeral)\n")
			    : _(" at ?\n"));
	    }
	}
    }

  n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
			     "overload-choice");

  for (i = 0; i < n_chosen; i += 1)
    syms[i] = syms[chosen[i]];

  return n_chosen;
}

/* See ada-lang.h.  */

block_symbol
ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
			  int nargs, value *argvec[])
{
  if (possible_user_operator_p (op, argvec))
    {
      std::vector<struct block_symbol> candidates
	= ada_lookup_symbol_list (ada_decoded_op_name (op),
				  NULL, SEARCH_VFT);

      int i = ada_resolve_function (candidates, argvec,
				    nargs, ada_decoded_op_name (op), NULL,
				    parse_completion);
      if (i >= 0)
	return candidates[i];
    }
  return {};
}

/* See ada-lang.h.  */

block_symbol
ada_resolve_funcall (struct symbol *sym, const struct block *block,
		     struct type *context_type,
		     bool parse_completion,
		     int nargs, value *argvec[],
		     innermost_block_tracker *tracker)
{
  std::vector<struct block_symbol> candidates
    = ada_lookup_symbol_list (sym->linkage_name (), block, SEARCH_VFT);

  int i;
  if (candidates.size () == 1)
    i = 0;
  else
    {
      i = ada_resolve_function
	(candidates,
	 argvec, nargs,
	 sym->linkage_name (),
	 context_type, parse_completion);
      if (i < 0)
	error (_("Could not find a match for %s"), sym->print_name ());
    }

  tracker->update (candidates[i]);
  return candidates[i];
}

/* Resolve a mention of a name where the context type is an
   enumeration type.  */

static int
ada_resolve_enum (std::vector<struct block_symbol> &syms,
		  const char *name, struct type *context_type,
		  bool parse_completion)
{
  gdb_assert (context_type->code () == TYPE_CODE_ENUM);
  context_type = ada_check_typedef (context_type);

  /* We already know the name matches, so we're just looking for
     an element of the correct enum type.  */
  struct type *type1 = context_type;
  for (int i = 0; i < syms.size (); ++i)
    {
      struct type *type2 = ada_check_typedef (syms[i].symbol->type ());
      if (type1 == type2)
	return i;
    }

  for (int i = 0; i < syms.size (); ++i)
    {
      struct type *type2 = ada_check_typedef (syms[i].symbol->type ());
      if (type1->num_fields () != type2->num_fields ())
	continue;
      if (strcmp (type1->name (), type2->name ()) != 0)
	continue;
      if (ada_identical_enum_types_p (type1, type2))
	return i;
    }

  error (_("No name '%s' in enumeration type '%s'"), name,
	 ada_type_name (context_type));
}

/* See ada-lang.h.  */

block_symbol
ada_resolve_variable (struct symbol *sym, const struct block *block,
		      struct type *context_type,
		      bool parse_completion,
		      int deprocedure_p,
		      innermost_block_tracker *tracker)
{
  std::vector<struct block_symbol> candidates
    = ada_lookup_symbol_list (sym->linkage_name (), block, SEARCH_VFT);

  if (std::any_of (candidates.begin (),
		   candidates.end (),
		   [] (block_symbol &bsym)
		   {
		     switch (bsym.symbol->aclass ())
		       {
		       case LOC_REGISTER:
		       case LOC_ARG:
		       case LOC_REF_ARG:
		       case LOC_REGPARM_ADDR:
		       case LOC_LOCAL:
		       case LOC_COMPUTED:
			 return true;
		       default:
			 return false;
		       }
		   }))
    {
      /* Types tend to get re-introduced locally, so if there
	 are any local symbols that are not types, first filter
	 out all types.  */
      candidates.erase
	(std::remove_if
	 (candidates.begin (),
	  candidates.end (),
	  [] (block_symbol &bsym)
	  {
	    return bsym.symbol->aclass () == LOC_TYPEDEF;
	  }),
	 candidates.end ());
    }

  /* Filter out artificial symbols.  */
  candidates.erase
    (std::remove_if
     (candidates.begin (),
      candidates.end (),
      [] (block_symbol &bsym)
      {
	return bsym.symbol->is_artificial ();
      }),
     candidates.end ());

  int i;
  if (candidates.empty ())
    error (_("No definition found for %s"), sym->print_name ());
  else if (candidates.size () == 1)
    i = 0;
  else if (context_type != nullptr
	   && context_type->code () == TYPE_CODE_ENUM)
    i = ada_resolve_enum (candidates, sym->linkage_name (), context_type,
			  parse_completion);
  else if (context_type == nullptr
	   && symbols_are_identical_enums (candidates))
    {
      /* If all the remaining symbols are identical enumerals, then
	 just keep the first one and discard the rest.

	 Unlike what we did previously, we do not discard any entry
	 unless they are ALL identical.  This is because the symbol
	 comparison is not a strict comparison, but rather a practical
	 comparison.  If all symbols are considered identical, then
	 we can just go ahead and use the first one and discard the rest.
	 But if we cannot reduce the list to a single element, we have
	 to ask the user to disambiguate anyways.  And if we have to
	 present a multiple-choice menu, it's less confusing if the list
	 isn't missing some choices that were identical and yet distinct.  */
      candidates.resize (1);
      i = 0;
    }
  else if (deprocedure_p && !is_nonfunction (candidates))
    {
      i = ada_resolve_function
	(candidates, NULL, 0,
	 sym->linkage_name (),
	 context_type, parse_completion);
      if (i < 0)
	error (_("Could not find a match for %s"), sym->print_name ());
    }
  else
    {
      gdb_printf (_("Multiple matches for %s\n"), sym->print_name ());
      user_select_syms (candidates.data (), candidates.size (), 1);
      i = 0;
    }

  tracker->update (candidates[i]);
  return candidates[i];
}

static bool ada_type_match (struct type *ftype, struct type *atype);

/* Helper for ada_type_match that checks that two array types are
   compatible.  As with that function, FTYPE is the formal type and
   ATYPE is the actual type.  */

static bool
ada_type_match_arrays (struct type *ftype, struct type *atype)
{
  if (ftype->code () != TYPE_CODE_ARRAY
      && !ada_is_array_descriptor_type (ftype))
    return false;
  if (atype->code () != TYPE_CODE_ARRAY
      && !ada_is_array_descriptor_type (atype))
    return false;

  if (ada_array_arity (ftype) != ada_array_arity (atype))
    return false;

  struct type *f_elt_type = ada_array_element_type (ftype, -1);
  struct type *a_elt_type = ada_array_element_type (atype, -1);
  return ada_type_match (f_elt_type, a_elt_type);
}

/* Return non-zero if formal type FTYPE matches actual type ATYPE.
   The term "match" here is rather loose.  The match is heuristic and
   liberal -- while it tries to reject matches that are obviously
   incorrect, it may still let through some that do not strictly
   correspond to Ada rules.  */

static bool
ada_type_match (struct type *ftype, struct type *atype)
{
  ftype = ada_check_typedef (ftype);
  atype = ada_check_typedef (atype);

  if (ftype->code () == TYPE_CODE_REF)
    ftype = ftype->target_type ();
  if (atype->code () == TYPE_CODE_REF)
    atype = atype->target_type ();

  switch (ftype->code ())
    {
    default:
      return ftype->code () == atype->code ();
    case TYPE_CODE_PTR:
      if (atype->code () != TYPE_CODE_PTR)
	return false;
      atype = atype->target_type ();
      /* This can only happen if the actual argument is 'null'.  */
      if (atype->code () == TYPE_CODE_INT && atype->length () == 0)
	return true;
      return ada_type_match (ftype->target_type (), atype);
    case TYPE_CODE_INT:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_RANGE:
      switch (atype->code ())
	{
	case TYPE_CODE_INT:
	case TYPE_CODE_ENUM:
	case TYPE_CODE_RANGE:
	  return true;
	default:
	  return false;
	}

    case TYPE_CODE_STRUCT:
      if (!ada_is_array_descriptor_type (ftype))
	return (atype->code () == TYPE_CODE_STRUCT
		&& !ada_is_array_descriptor_type (atype));

      [[fallthrough]];
    case TYPE_CODE_ARRAY:
      return ada_type_match_arrays (ftype, atype);

    case TYPE_CODE_UNION:
    case TYPE_CODE_FLT:
      return (atype->code () == ftype->code ());
    }
}

/* Return non-zero if the formals of FUNC "sufficiently match" the
   vector of actual argument types ACTUALS of size N_ACTUALS.  FUNC
   may also be an enumeral, in which case it is treated as a 0-
   argument function.  */

static int
ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
{
  int i;
  struct type *func_type = func->type ();

  if (func->aclass () == LOC_CONST
      && func_type->code () == TYPE_CODE_ENUM)
    return (n_actuals == 0);
  else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
    return 0;

  if (func_type->num_fields () != n_actuals)
    return 0;

  for (i = 0; i < n_actuals; i += 1)
    {
      if (actuals[i] == NULL)
	return 0;
      else
	{
	  struct type *ftype = ada_check_typedef (func_type->field (i).type ());
	  struct type *atype = ada_check_typedef (actuals[i]->type ());

	  if (!ada_type_match (ftype, atype))
	    return 0;
	}
    }
  return 1;
}

/* False iff function type FUNC_TYPE definitely does not produce a value
   compatible with type CONTEXT_TYPE.  Conservatively returns 1 if
   FUNC_TYPE is not a valid function type with a non-null return type
   or an enumerated type.  A null CONTEXT_TYPE indicates any non-void type.  */

static int
return_match (struct type *func_type, struct type *context_type)
{
  struct type *return_type;

  if (func_type == NULL)
    return 1;

  if (func_type->code () == TYPE_CODE_FUNC)
    return_type = get_base_type (func_type->target_type ());
  else
    return_type = get_base_type (func_type);
  if (return_type == NULL)
    return 1;

  context_type = get_base_type (context_type);

  if (return_type->code () == TYPE_CODE_ENUM)
    return context_type == NULL || return_type == context_type;
  else if (context_type == NULL)
    return return_type->code () != TYPE_CODE_VOID;
  else
    return return_type->code () == context_type->code ();
}


/* Returns the index in SYMS that contains the symbol for the
   function (if any) that matches the types of the NARGS arguments in
   ARGS.  If CONTEXT_TYPE is non-null and there is at least one match
   that returns that type, then eliminate matches that don't.  If
   CONTEXT_TYPE is void and there is at least one match that does not
   return void, eliminate all matches that do.

   Asks the user if there is more than one match remaining.  Returns -1
   if there is no such symbol or none is selected.  NAME is used
   solely for messages.  May re-arrange and modify SYMS in
   the process; the index returned is for the modified vector.  */

static int
ada_resolve_function (std::vector<struct block_symbol> &syms,
		      struct value **args, int nargs,
		      const char *name, struct type *context_type,
		      bool parse_completion)
{
  int fallback;
  int k;
  int m;                        /* Number of hits */

  m = 0;
  /* In the first pass of the loop, we only accept functions matching
     context_type.  If none are found, we add a second pass of the loop
     where every function is accepted.  */
  for (fallback = 0; m == 0 && fallback < 2; fallback++)
    {
      for (k = 0; k < syms.size (); k += 1)
	{
	  struct type *type = ada_check_typedef (syms[k].symbol->type ());

	  if (ada_args_match (syms[k].symbol, args, nargs)
	      && (fallback || return_match (type, context_type)))
	    {
	      syms[m] = syms[k];
	      m += 1;
	    }
	}
    }

  /* If we got multiple matches, ask the user which one to use.  Don't do this
     interactive thing during completion, though, as the purpose of the
     completion is providing a list of all possible matches.  Prompting the
     user to filter it down would be completely unexpected in this case.  */
  if (m == 0)
    return -1;
  else if (m > 1 && !parse_completion)
    {
      gdb_printf (_("Multiple matches for %s\n"), name);
      user_select_syms (syms.data (), m, 1);
      return 0;
    }
  return 0;
}

/* Type-class predicates */

/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
   or FLOAT).  */

static int
numeric_type_p (struct type *type)
{
  if (type == NULL)
    return 0;
  else
    {
      switch (type->code ())
	{
	case TYPE_CODE_INT:
	case TYPE_CODE_FLT:
	case TYPE_CODE_FIXED_POINT:
	  return 1;
	case TYPE_CODE_RANGE:
	  return (type == type->target_type ()
		  || numeric_type_p (type->target_type ()));
	default:
	  return 0;
	}
    }
}

/* True iff TYPE is integral (an INT or RANGE of INTs).  */

static int
integer_type_p (struct type *type)
{
  if (type == NULL)
    return 0;
  else
    {
      switch (type->code ())
	{
	case TYPE_CODE_INT:
	  return 1;
	case TYPE_CODE_RANGE:
	  return (type == type->target_type ()
		  || integer_type_p (type->target_type ()));
	default:
	  return 0;
	}
    }
}

/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM).  */

static int
scalar_type_p (struct type *type)
{
  if (type == NULL)
    return 0;
  else
    {
      switch (type->code ())
	{
	case TYPE_CODE_INT:
	case TYPE_CODE_RANGE:
	case TYPE_CODE_ENUM:
	case TYPE_CODE_FLT:
	case TYPE_CODE_FIXED_POINT:
	  return 1;
	default:
	  return 0;
	}
    }
}

/* True iff TYPE is discrete, as defined in the Ada Reference Manual.
   This essentially means one of (INT, RANGE, ENUM) -- but note that
   "enum" includes character and boolean as well.  */

static int
discrete_type_p (struct type *type)
{
  if (type == NULL)
    return 0;
  else
    {
      switch (type->code ())
	{
	case TYPE_CODE_INT:
	case TYPE_CODE_RANGE:
	case TYPE_CODE_ENUM:
	case TYPE_CODE_BOOL:
	case TYPE_CODE_CHAR:
	  return 1;
	default:
	  return 0;
	}
    }
}

/* Returns non-zero if OP with operands in the vector ARGS could be
   a user-defined function.  Errs on the side of pre-defined operators
   (i.e., result 0).  */

static int
possible_user_operator_p (enum exp_opcode op, struct value *args[])
{
  struct type *type0 =
    (args[0] == NULL) ? NULL : ada_check_typedef (args[0]->type ());
  struct type *type1 =
    (args[1] == NULL) ? NULL : ada_check_typedef (args[1]->type ());

  if (type0 == NULL)
    return 0;

  switch (op)
    {
    default:
      return 0;

    case BINOP_ADD:
    case BINOP_SUB:
    case BINOP_MUL:
    case BINOP_DIV:
      return (!(numeric_type_p (type0) && numeric_type_p (type1)));

    case BINOP_REM:
    case BINOP_MOD:
    case BINOP_BITWISE_AND:
    case BINOP_BITWISE_IOR:
    case BINOP_BITWISE_XOR:
      return (!(integer_type_p (type0) && integer_type_p (type1)));

    case BINOP_EQUAL:
    case BINOP_NOTEQUAL:
    case BINOP_LESS:
    case BINOP_GTR:
    case BINOP_LEQ:
    case BINOP_GEQ:
      return (!(scalar_type_p (type0) && scalar_type_p (type1)));

    case BINOP_CONCAT:
      return !ada_is_array_type (type0) || !ada_is_array_type (type1);

    case BINOP_EXP:
      return (!(numeric_type_p (type0) && integer_type_p (type1)));

    case UNOP_NEG:
    case UNOP_PLUS:
    case UNOP_LOGICAL_NOT:
    case UNOP_ABS:
      return (!numeric_type_p (type0));

    }
}

				/* Renaming */

/* NOTES: 

   1. In the following, we assume that a renaming type's name may
      have an ___XD suffix.  It would be nice if this went away at some
      point.
   2. We handle both the (old) purely type-based representation of 
      renamings and the (new) variable-based encoding.  At some point,
      it is devoutly to be hoped that the former goes away 
      (FIXME: hilfinger-2007-07-09).
   3. Subprogram renamings are not implemented, although the XRS
      suffix is recognized (FIXME: hilfinger-2007-07-09).  */

/* If SYM encodes a renaming, 

       <renaming> renames <renamed entity>,

   sets *LEN to the length of the renamed entity's name,
   *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
   the string describing the subcomponent selected from the renamed
   entity.  Returns ADA_NOT_RENAMING if SYM does not encode a renaming
   (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
   are undefined).  Otherwise, returns a value indicating the category
   of entity renamed: an object (ADA_OBJECT_RENAMING), exception
   (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
   subprogram (ADA_SUBPROGRAM_RENAMING).  Does no allocation; the
   strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
   deallocated.  The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
   may be NULL, in which case they are not assigned.

   [Currently, however, GCC does not generate subprogram renamings.]  */

enum ada_renaming_category
ada_parse_renaming (struct symbol *sym,
		    const char **renamed_entity, int *len, 
		    const char **renaming_expr)
{
  enum ada_renaming_category kind;
  const char *info;
  const char *suffix;

  if (sym == NULL)
    return ADA_NOT_RENAMING;
  switch (sym->aclass ()) 
    {
    default:
      return ADA_NOT_RENAMING;
    case LOC_LOCAL:
    case LOC_STATIC:
    case LOC_COMPUTED:
    case LOC_OPTIMIZED_OUT:
      info = strstr (sym->linkage_name (), "___XR");
      if (info == NULL)
	return ADA_NOT_RENAMING;
      switch (info[5])
	{
	case '_':
	  kind = ADA_OBJECT_RENAMING;
	  info += 6;
	  break;
	case 'E':
	  kind = ADA_EXCEPTION_RENAMING;
	  info += 7;
	  break;
	case 'P':
	  kind = ADA_PACKAGE_RENAMING;
	  info += 7;
	  break;
	case 'S':
	  kind = ADA_SUBPROGRAM_RENAMING;
	  info += 7;
	  break;
	default:
	  return ADA_NOT_RENAMING;
	}
    }

  if (renamed_entity != NULL)
    *renamed_entity = info;
  suffix = strstr (info, "___XE");
  if (suffix == NULL || suffix == info)
    return ADA_NOT_RENAMING;
  if (len != NULL)
    *len = strlen (info) - strlen (suffix);
  suffix += 5;
  if (renaming_expr != NULL)
    *renaming_expr = suffix;
  return kind;
}

/* Compute the value of the given RENAMING_SYM, which is expected to
   be a symbol encoding a renaming expression.  BLOCK is the block
   used to evaluate the renaming.  */

static struct value *
ada_read_renaming_var_value (struct symbol *renaming_sym,
			     const struct block *block)
{
  const char *sym_name;

  sym_name = renaming_sym->linkage_name ();
  expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
  return expr->evaluate ();
}


				/* Evaluation: Function Calls */

/* Return an lvalue containing the value VAL.  This is the identity on
   lvalues, and otherwise has the side-effect of allocating memory
   in the inferior where a copy of the value contents is copied.  */

static struct value *
ensure_lval (struct value *val)
{
  if (val->lval () == not_lval
      || val->lval () == lval_internalvar)
    {
      int len = ada_check_typedef (val->type ())->length ();
      const CORE_ADDR addr =
	value_as_long (value_allocate_space_in_inferior (len));

      val->set_lval (lval_memory);
      val->set_address (addr);
      write_memory (addr, val->contents ().data (), len);
    }

  return val;
}

/* Given ARG, a value of type (pointer or reference to a)*
   structure/union, extract the component named NAME from the ultimate
   target structure/union and return it as a value with its
   appropriate type.

   The routine searches for NAME among all members of the structure itself
   and (recursively) among all members of any wrapper members
   (e.g., '_parent').

   If NO_ERR, then simply return NULL in case of error, rather than
   calling error.  */

static struct value *
ada_value_struct_elt (struct value *arg, const char *name, int no_err)
{
  struct type *t, *t1;
  struct value *v;
  int check_tag;

  v = NULL;
  t1 = t = ada_check_typedef (arg->type ());
  if (t->code () == TYPE_CODE_REF)
    {
      t1 = t->target_type ();
      if (t1 == NULL)
	goto BadValue;
      t1 = ada_check_typedef (t1);
      if (t1->code () == TYPE_CODE_PTR)
	{
	  arg = coerce_ref (arg);
	  t = t1;
	}
    }

  while (t->code () == TYPE_CODE_PTR)
    {
      t1 = t->target_type ();
      if (t1 == NULL)
	goto BadValue;
      t1 = ada_check_typedef (t1);
      if (t1->code () == TYPE_CODE_PTR)
	{
	  arg = value_ind (arg);
	  t = t1;
	}
      else
	break;
    }

  if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
    goto BadValue;

  if (t1 == t)
    v = ada_search_struct_field (name, arg, 0, t);
  else
    {
      int bit_offset, bit_size, byte_offset;
      struct type *field_type;
      CORE_ADDR address;

      if (t->code () == TYPE_CODE_PTR)
	address = ada_value_ind (arg)->address ();
      else
	address = ada_coerce_ref (arg)->address ();

      /* Check to see if this is a tagged type.  We also need to handle
	 the case where the type is a reference to a tagged type, but
	 we have to be careful to exclude pointers to tagged types.
	 The latter should be shown as usual (as a pointer), whereas
	 a reference should mostly be transparent to the user.  */

      if (ada_is_tagged_type (t1, 0)
	  || (t1->code () == TYPE_CODE_REF
	      && ada_is_tagged_type (t1->target_type (), 0)))
	{
	  /* We first try to find the searched field in the current type.
	     If not found then let's look in the fixed type.  */

	  if (!find_struct_field (name, t1, 0,
				  nullptr, nullptr, nullptr,
				  nullptr, nullptr))
	    check_tag = 1;
	  else
	    check_tag = 0;
	}
      else
	check_tag = 0;

      /* Convert to fixed type in all cases, so that we have proper
	 offsets to each field in unconstrained record types.  */
      t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
			      address, NULL, check_tag);

      /* Resolve the dynamic type as well.  */
      arg = value_from_contents_and_address (t1, nullptr, address);
      t1 = arg->type ();

      if (find_struct_field (name, t1, 0,
			     &field_type, &byte_offset, &bit_offset,
			     &bit_size, NULL))
	{
	  if (bit_size != 0)
	    {
	      if (t->code () == TYPE_CODE_REF)
		arg = ada_coerce_ref (arg);
	      else
		arg = ada_value_ind (arg);
	      v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
						  bit_offset, bit_size,
						  field_type);
	    }
	  else
	    v = value_at_lazy (field_type, address + byte_offset);
	}
    }

  if (v != NULL || no_err)
    return v;
  else
    error (_("There is no member named %s."), name);

 BadValue:
  if (no_err)
    return NULL;
  else
    error (_("Attempt to extract a component of "
	     "a value that is not a record."));
}

/* Return the value ACTUAL, converted to be an appropriate value for a
   formal of type FORMAL_TYPE.  Use *SP as a stack pointer for
   allocating any necessary descriptors (fat pointers), or copies of
   values not residing in memory, updating it as needed.  */

struct value *
ada_convert_actual (struct value *actual, struct type *formal_type0)
{
  struct type *actual_type = ada_check_typedef (actual->type ());
  struct type *formal_type = ada_check_typedef (formal_type0);
  struct type *formal_target =
    formal_type->code () == TYPE_CODE_PTR
    ? ada_check_typedef (formal_type->target_type ()) : formal_type;
  struct type *actual_target =
    actual_type->code () == TYPE_CODE_PTR
    ? ada_check_typedef (actual_type->target_type ()) : actual_type;

  if (ada_is_array_descriptor_type (formal_target)
      && actual_target->code () == TYPE_CODE_ARRAY)
    return make_array_descriptor (formal_type, actual);
  else if (formal_type->code () == TYPE_CODE_PTR
	   || formal_type->code () == TYPE_CODE_REF)
    {
      struct value *result;

      if (formal_target->code () == TYPE_CODE_ARRAY
	  && ada_is_array_descriptor_type (actual_target))
	result = desc_data (actual);
      else if (formal_type->code () != TYPE_CODE_PTR)
	{
	  if (actual->lval () != lval_memory)
	    {
	      struct value *val;

	      actual_type = ada_check_typedef (actual->type ());
	      val = value::allocate (actual_type);
	      copy (actual->contents (), val->contents_raw ());
	      actual = ensure_lval (val);
	    }
	  result = value_addr (actual);
	}
      else
	return actual;
      return value_cast_pointers (formal_type, result, 0);
    }
  else if (actual_type->code () == TYPE_CODE_PTR)
    return ada_value_ind (actual);
  else if (ada_is_aligner_type (formal_type))
    {
      /* We need to turn this parameter into an aligner type
	 as well.  */
      struct value *aligner = value::allocate (formal_type);
      struct value *component = ada_value_struct_elt (aligner, "F", 0);

      value_assign_to_component (aligner, component, actual);
      return aligner;
    }

  return actual;
}

/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
   type TYPE.  This is usually an inefficient no-op except on some targets
   (such as AVR) where the representation of a pointer and an address
   differs.  */

static CORE_ADDR
value_pointer (struct value *value, struct type *type)
{
  unsigned len = type->length ();
  gdb_byte *buf = (gdb_byte *) alloca (len);
  CORE_ADDR addr;

  addr = value->address ();
  gdbarch_address_to_pointer (type->arch (), type, buf, addr);
  addr = extract_unsigned_integer (buf, len, type_byte_order (type));
  return addr;
}


/* Push a descriptor of type TYPE for array value ARR on the stack at
   *SP, updating *SP to reflect the new descriptor.  Return either
   an lvalue representing the new descriptor, or (if TYPE is a pointer-
   to-descriptor type rather than a descriptor type), a struct value *
   representing a pointer to this descriptor.  */

static struct value *
make_array_descriptor (struct type *type, struct value *arr)
{
  struct type *bounds_type = desc_bounds_type (type);
  struct type *desc_type = desc_base_type (type);
  struct value *descriptor = value::allocate (desc_type);
  struct value *bounds = value::allocate (bounds_type);
  int i;

  for (i = ada_array_arity (ada_check_typedef (arr->type ()));
       i > 0; i -= 1)
    {
      modify_field (bounds->type (),
		    bounds->contents_writeable ().data (),
		    ada_array_bound (arr, i, 0),
		    desc_bound_bitpos (bounds_type, i, 0),
		    desc_bound_bitsize (bounds_type, i, 0));
      modify_field (bounds->type (),
		    bounds->contents_writeable ().data (),
		    ada_array_bound (arr, i, 1),
		    desc_bound_bitpos (bounds_type, i, 1),
		    desc_bound_bitsize (bounds_type, i, 1));
    }

  bounds = ensure_lval (bounds);

  modify_field (descriptor->type (),
		descriptor->contents_writeable ().data (),
		value_pointer (ensure_lval (arr),
			       desc_type->field (0).type ()),
		fat_pntr_data_bitpos (desc_type),
		fat_pntr_data_bitsize (desc_type));

  modify_field (descriptor->type (),
		descriptor->contents_writeable ().data (),
		value_pointer (bounds,
			       desc_type->field (1).type ()),
		fat_pntr_bounds_bitpos (desc_type),
		fat_pntr_bounds_bitsize (desc_type));

  descriptor = ensure_lval (descriptor);

  if (type->code () == TYPE_CODE_PTR)
    return value_addr (descriptor);
  else
    return descriptor;
}

				/* Symbol Cache Module */

/* Performance measurements made as of 2010-01-15 indicate that
   this cache does bring some noticeable improvements.  Depending
   on the type of entity being printed, the cache can make it as much
   as an order of magnitude faster than without it.

   The descriptive type DWARF extension has significantly reduced
   the need for this cache, at least when DWARF is being used.  However,
   even in this case, some expensive name-based symbol searches are still
   sometimes necessary - to find an XVZ variable, mostly.  */

/* Clear all entries from the symbol cache.  */

static void
ada_clear_symbol_cache (program_space *pspace)
{
  ada_pspace_data_handle.clear (pspace);
}

/* Search the symbol cache for an entry matching NAME and DOMAIN.
   Return 1 if found, 0 otherwise.

   If an entry was found and SYM is not NULL, set *SYM to the entry's
   SYM.  Same principle for BLOCK if not NULL.  */

static int
lookup_cached_symbol (const char *name, domain_search_flags domain,
		      struct symbol **sym, const struct block **block)
{
  htab_t tab = get_ada_pspace_data (current_program_space);
  cache_entry_search search;
  search.name = name;
  search.domain = domain;

  cache_entry *e = (cache_entry *) htab_find_with_hash (tab, &search,
							search.hash ());
  if (e == nullptr)
    return 0;
  if (sym != nullptr)
    *sym = e->sym;
  if (block != nullptr)
    *block = e->block;
  return 1;
}

/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
   in domain DOMAIN, save this result in our symbol cache.  */

static void
cache_symbol (const char *name, domain_search_flags domain,
	      struct symbol *sym, const struct block *block)
{
  /* Symbols for builtin types don't have a block.
     For now don't cache such symbols.  */
  if (sym != NULL && !sym->is_objfile_owned ())
    return;

  /* If the symbol is a local symbol, then do not cache it, as a search
     for that symbol depends on the context.  To determine whether
     the symbol is local or not, we check the block where we found it
     against the global and static blocks of its associated symtab.  */
  if (sym != nullptr)
    {
      const blockvector &bv = *sym->symtab ()->compunit ()->blockvector ();

      if (bv.global_block () != block && bv.static_block () != block)
	return;
    }

  htab_t tab = get_ada_pspace_data (current_program_space);
  cache_entry_search search;
  search.name = name;
  search.domain = domain;

  void **slot = htab_find_slot_with_hash (tab, &search,
					  search.hash (), INSERT);

  cache_entry *e = new cache_entry;
  e->name = name;
  e->domain = domain;
  e->sym = sym;
  e->block = block;

  *slot = e;
}

				/* Symbol Lookup */

/* Return the symbol name match type that should be used used when
   searching for all symbols matching LOOKUP_NAME.

   LOOKUP_NAME is expected to be a symbol name after transformation
   for Ada lookups.  */

static symbol_name_match_type
name_match_type_from_name (const char *lookup_name)
{
  return (strstr (lookup_name, "__") == NULL
	  ? symbol_name_match_type::WILD
	  : symbol_name_match_type::FULL);
}

/* Return the result of a standard (literal, C-like) lookup of NAME in
   given DOMAIN, visible from lexical block BLOCK.  */

static struct symbol *
standard_lookup (const char *name, const struct block *block,
		 domain_search_flags domain)
{
  /* Initialize it just to avoid a GCC false warning.  */
  struct block_symbol sym = {};

  if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
    return sym.symbol;
  sym = ada_lookup_encoded_symbol (name, block, domain);
  cache_symbol (name, domain, sym.symbol, sym.block);
  return sym.symbol;
}


/* Non-zero iff there is at least one non-function/non-enumeral symbol
   in the symbol fields of SYMS.  We treat enumerals as functions, 
   since they contend in overloading in the same way.  */
static int
is_nonfunction (const std::vector<struct block_symbol> &syms)
{
  for (const block_symbol &sym : syms)
    if (sym.symbol->type ()->code () != TYPE_CODE_FUNC
	&& (sym.symbol->type ()->code () != TYPE_CODE_ENUM
	    || sym.symbol->aclass () != LOC_CONST))
      return 1;

  return 0;
}

/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
   struct types.  Otherwise, they may not.  */

static int
equiv_types (struct type *type0, struct type *type1)
{
  if (type0 == type1)
    return 1;
  if (type0 == NULL || type1 == NULL
      || type0->code () != type1->code ())
    return 0;
  if ((type0->code () == TYPE_CODE_STRUCT
       || type0->code () == TYPE_CODE_ENUM)
      && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
      && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
    return 1;

  return 0;
}

/* True iff SYM0 represents the same entity as SYM1, or one that is
   no more defined than that of SYM1.  */

static int
lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
{
  if (sym0 == sym1)
    return 1;
  if (sym0->domain () != sym1->domain ()
      || sym0->aclass () != sym1->aclass ())
    return 0;

  switch (sym0->aclass ())
    {
    case LOC_UNDEF:
      return 1;
    case LOC_TYPEDEF:
      {
	struct type *type0 = sym0->type ();
	struct type *type1 = sym1->type ();
	const char *name0 = sym0->linkage_name ();
	const char *name1 = sym1->linkage_name ();
	int len0 = strlen (name0);

	return
	  type0->code () == type1->code ()
	  && (equiv_types (type0, type1)
	      || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
		  && startswith (name1 + len0, "___XV")));
      }
    case LOC_CONST:
      return sym0->value_longest () == sym1->value_longest ()
	&& equiv_types (sym0->type (), sym1->type ());

    case LOC_STATIC:
      {
	const char *name0 = sym0->linkage_name ();
	const char *name1 = sym1->linkage_name ();
	return (strcmp (name0, name1) == 0
		&& sym0->value_address () == sym1->value_address ());
      }

    default:
      return 0;
    }
}

/* Append (SYM,BLOCK) to the end of the array of struct block_symbol
   records in RESULT.  Do nothing if SYM is a duplicate.  */

static void
add_defn_to_vec (std::vector<struct block_symbol> &result,
		 struct symbol *sym,
		 const struct block *block)
{
  /* Do not try to complete stub types, as the debugger is probably
     already scanning all symbols matching a certain name at the
     time when this function is called.  Trying to replace the stub
     type by its associated full type will cause us to restart a scan
     which may lead to an infinite recursion.  Instead, the client
     collecting the matching symbols will end up collecting several
     matches, with at least one of them complete.  It can then filter
     out the stub ones if needed.  */

  for (int i = result.size () - 1; i >= 0; i -= 1)
    {
      if (lesseq_defined_than (sym, result[i].symbol))
	return;
      else if (lesseq_defined_than (result[i].symbol, sym))
	{
	  result[i].symbol = sym;
	  result[i].block = block;
	  return;
	}
    }

  struct block_symbol info;
  info.symbol = sym;
  info.block = block;
  result.push_back (info);
}

/* Return a bound minimal symbol matching NAME according to Ada
   decoding rules.  Returns an invalid symbol if there is no such
   minimal symbol.  Names prefixed with "standard__" are handled
   specially: "standard__" is first stripped off, and only static and
   global symbols are searched.  */

bound_minimal_symbol
ada_lookup_simple_minsym (const char *name, struct objfile *objfile)
{
  bound_minimal_symbol result;

  symbol_name_match_type match_type = name_match_type_from_name (name);
  lookup_name_info lookup_name (name, match_type);

  symbol_name_matcher_ftype *match_name
    = ada_get_symbol_name_matcher (lookup_name);

  gdbarch_iterate_over_objfiles_in_search_order
    (objfile != NULL ? objfile->arch () : current_inferior ()->arch (),
     [&result, lookup_name, match_name] (struct objfile *obj)
       {
	 for (minimal_symbol *msymbol : obj->msymbols ())
	   {
	     if (match_name (msymbol->linkage_name (), lookup_name, nullptr)
		 && msymbol->type () != mst_solib_trampoline)
	       {
		 result.minsym = msymbol;
		 result.objfile = obj;
		 return 1;
	       }
	   }

	 return 0;
       }, objfile);

  return result;
}

/* True if TYPE is definitely an artificial type supplied to a symbol
   for which no debugging information was given in the symbol file.  */

static int
is_nondebugging_type (struct type *type)
{
  const char *name = ada_type_name (type);

  return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
}

/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
   that are deemed "identical" for practical purposes.

   This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
   types and that their number of enumerals is identical (in other
   words, type1->num_fields () == type2->num_fields ()).  */

static int
ada_identical_enum_types_p (struct type *type1, struct type *type2)
{
  int i;

  /* The heuristic we use here is fairly conservative.  We consider
     that 2 enumerate types are identical if they have the same
     number of enumerals and that all enumerals have the same
     underlying value and name.  */

  /* All enums in the type should have an identical underlying value.  */
  for (i = 0; i < type1->num_fields (); i++)
    if (type1->field (i).loc_enumval () != type2->field (i).loc_enumval ())
      return 0;

  /* All enumerals should also have the same name (modulo any numerical
     suffix).  */
  for (i = 0; i < type1->num_fields (); i++)
    {
      const char *name_1 = type1->field (i).name ();
      const char *name_2 = type2->field (i).name ();
      int len_1 = strlen (name_1);
      int len_2 = strlen (name_2);

      ada_remove_trailing_digits (name_1, &len_1);
      ada_remove_trailing_digits (name_2, &len_2);
      if (len_1 != len_2 || strncmp (name_1, name_2, len_1) != 0)
	return 0;
    }

  return 1;
}

/* Return nonzero if all the symbols in SYMS are all enumeral symbols
   that are deemed "identical" for practical purposes.  Sometimes,
   enumerals are not strictly identical, but their types are so similar
   that they can be considered identical.

   For instance, consider the following code:

      type Color is (Black, Red, Green, Blue, White);
      type RGB_Color is new Color range Red .. Blue;

   Type RGB_Color is a subrange of an implicit type which is a copy
   of type Color. If we call that implicit type RGB_ColorB ("B" is
   for "Base Type"), then type RGB_ColorB is a copy of type Color.
   As a result, when an expression references any of the enumeral
   by name (Eg. "print green"), the expression is technically
   ambiguous and the user should be asked to disambiguate. But
   doing so would only hinder the user, since it wouldn't matter
   what choice he makes, the outcome would always be the same.
   So, for practical purposes, we consider them as the same.  */

static int
symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
{
  int i;

  /* Before performing a thorough comparison check of each type,
     we perform a series of inexpensive checks.  We expect that these
     checks will quickly fail in the vast majority of cases, and thus
     help prevent the unnecessary use of a more expensive comparison.
     Said comparison also expects us to make some of these checks
     (see ada_identical_enum_types_p).  */

  /* Quick check: All symbols should have an enum type.  */
  for (i = 0; i < syms.size (); i++)
    if (syms[i].symbol->type ()->code () != TYPE_CODE_ENUM)
      return 0;

  /* Quick check: They should all have the same value.  */
  for (i = 1; i < syms.size (); i++)
    if (syms[i].symbol->value_longest () != syms[0].symbol->value_longest ())
      return 0;

  /* Quick check: They should all have the same number of enumerals.  */
  for (i = 1; i < syms.size (); i++)
    if (syms[i].symbol->type ()->num_fields ()
	!= syms[0].symbol->type ()->num_fields ())
      return 0;

  /* All the sanity checks passed, so we might have a set of
     identical enumeration types.  Perform a more complete
     comparison of the type of each symbol.  */
  for (i = 1; i < syms.size (); i++)
    if (!ada_identical_enum_types_p (syms[i].symbol->type (),
				     syms[0].symbol->type ()))
      return 0;

  return 1;
}

/* Remove any non-debugging symbols in SYMS that definitely
   duplicate other symbols in the list (The only case I know of where
   this happens is when object files containing stabs-in-ecoff are
   linked with files containing ordinary ecoff debugging symbols (or no
   debugging symbols)).  Modifies SYMS to squeeze out deleted entries.  */

static void
remove_extra_symbols (std::vector<struct block_symbol> &syms)
{
  int i, j;

  /* We should never be called with less than 2 symbols, as there
     cannot be any extra symbol in that case.  But it's easy to
     handle, since we have nothing to do in that case.  */
  if (syms.size () < 2)
    return;

  i = 0;
  while (i < syms.size ())
    {
      bool remove_p = false;

      /* If two symbols have the same name and one of them is a stub type,
	 the get rid of the stub.  */

      if (syms[i].symbol->type ()->is_stub ()
	  && syms[i].symbol->linkage_name () != NULL)
	{
	  for (j = 0; !remove_p && j < syms.size (); j++)
	    {
	      if (j != i
		  && !syms[j].symbol->type ()->is_stub ()
		  && syms[j].symbol->linkage_name () != NULL
		  && strcmp (syms[i].symbol->linkage_name (),
			     syms[j].symbol->linkage_name ()) == 0)
		remove_p = true;
	    }
	}

      /* Two symbols with the same name, same class and same address
	 should be identical.  */

      else if (syms[i].symbol->linkage_name () != NULL
	  && syms[i].symbol->aclass () == LOC_STATIC
	  && is_nondebugging_type (syms[i].symbol->type ()))
	{
	  for (j = 0; !remove_p && j < syms.size (); j += 1)
	    {
	      if (i != j
		  && syms[j].symbol->linkage_name () != NULL
		  && strcmp (syms[i].symbol->linkage_name (),
			     syms[j].symbol->linkage_name ()) == 0
		  && (syms[i].symbol->aclass ()
		      == syms[j].symbol->aclass ())
		  && syms[i].symbol->value_address ()
		  == syms[j].symbol->value_address ())
		remove_p = true;
	    }
	}
      
      /* Two functions with the same block are identical.  */

      else if (syms[i].symbol->aclass () == LOC_BLOCK)
	{
	  for (j = 0; !remove_p && j < syms.size (); j += 1)
	    {
	      if (i != j
		  && syms[j].symbol->aclass () == LOC_BLOCK
		  && (syms[i].symbol->value_block ()
		      == syms[j].symbol->value_block ()))
		remove_p = true;
	    }
	}

      if (remove_p)
	syms.erase (syms.begin () + i);
      else
	i += 1;
    }
}

/* Given a type that corresponds to a renaming entity, use the type name
   to extract the scope (package name or function name, fully qualified,
   and following the GNAT encoding convention) where this renaming has been
   defined.  */

static std::string
xget_renaming_scope (struct type *renaming_type)
{
  /* The renaming types adhere to the following convention:
     <scope>__<rename>___<XR extension>.
     So, to extract the scope, we search for the "___XR" extension,
     and then backtrack until we find the first "__".  */

  const char *name = renaming_type->name ();
  const char *suffix = strstr (name, "___XR");
  const char *last;

  /* Now, backtrack a bit until we find the first "__".  Start looking
     at suffix - 3, as the <rename> part is at least one character long.  */

  for (last = suffix - 3; last > name; last--)
    if (last[0] == '_' && last[1] == '_')
      break;

  /* Make a copy of scope and return it.  */
  return std::string (name, last);
}

/* Return nonzero if NAME corresponds to a package name.  */

static int
is_package_name (const char *name)
{
  /* Here, We take advantage of the fact that no symbols are generated
     for packages, while symbols are generated for each function.
     So the condition for NAME represent a package becomes equivalent
     to NAME not existing in our list of symbols.  There is only one
     small complication with library-level functions (see below).  */

  /* If it is a function that has not been defined at library level,
     then we should be able to look it up in the symbols.  */
  if (standard_lookup (name, NULL, SEARCH_VFT) != NULL)
    return 0;

  /* Library-level function names start with "_ada_".  See if function
     "_ada_" followed by NAME can be found.  */

  /* Do a quick check that NAME does not contain "__", since library-level
     functions names cannot contain "__" in them.  */
  if (strstr (name, "__") != NULL)
    return 0;

  std::string fun_name = string_printf ("_ada_%s", name);

  return (standard_lookup (fun_name.c_str (), NULL, SEARCH_VFT) == NULL);
}

/* Return nonzero if SYM corresponds to a renaming entity that is
   not visible from FUNCTION_NAME.  */

static int
old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
{
  if (sym->aclass () != LOC_TYPEDEF)
    return 0;

  std::string scope = xget_renaming_scope (sym->type ());

  /* If the rename has been defined in a package, then it is visible.  */
  if (is_package_name (scope.c_str ()))
    return 0;

  /* Check that the rename is in the current function scope by checking
     that its name starts with SCOPE.  */

  /* If the function name starts with "_ada_", it means that it is
     a library-level function.  Strip this prefix before doing the
     comparison, as the encoding for the renaming does not contain
     this prefix.  */
  if (startswith (function_name, "_ada_"))
    function_name += 5;

  return !startswith (function_name, scope.c_str ());
}

/* Remove entries from SYMS that corresponds to a renaming entity that
   is not visible from the function associated with CURRENT_BLOCK or
   that is superfluous due to the presence of more specific renaming
   information.  Places surviving symbols in the initial entries of
   SYMS.

   Rationale:
   First, in cases where an object renaming is implemented as a
   reference variable, GNAT may produce both the actual reference
   variable and the renaming encoding.  In this case, we discard the
   latter.

   Second, GNAT emits a type following a specified encoding for each renaming
   entity.  Unfortunately, STABS currently does not support the definition
   of types that are local to a given lexical block, so all renamings types
   are emitted at library level.  As a consequence, if an application
   contains two renaming entities using the same name, and a user tries to
   print the value of one of these entities, the result of the ada symbol
   lookup will also contain the wrong renaming type.

   This function partially covers for this limitation by attempting to
   remove from the SYMS list renaming symbols that should be visible
   from CURRENT_BLOCK.  However, there does not seem be a 100% reliable
   method with the current information available.  The implementation
   below has a couple of limitations (FIXME: brobecker-2003-05-12):  
   
      - When the user tries to print a rename in a function while there
	is another rename entity defined in a package:  Normally, the
	rename in the function has precedence over the rename in the
	package, so the latter should be removed from the list.  This is
	currently not the case.
	
      - This function will incorrectly remove valid renames if
	the CURRENT_BLOCK corresponds to a function which symbol name
	has been changed by an "Export" pragma.  As a consequence,
	the user will be unable to print such rename entities.  */

static void
remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
			     const struct block *current_block)
{
  struct symbol *current_function;
  const char *current_function_name;
  int i;
  int is_new_style_renaming;

  /* If there is both a renaming foo___XR... encoded as a variable and
     a simple variable foo in the same block, discard the latter.
     First, zero out such symbols, then compress.  */
  is_new_style_renaming = 0;
  for (i = 0; i < syms->size (); i += 1)
    {
      struct symbol *sym = (*syms)[i].symbol;
      const struct block *block = (*syms)[i].block;
      const char *name;
      const char *suffix;

      if (sym == NULL || sym->aclass () == LOC_TYPEDEF)
	continue;
      name = sym->linkage_name ();
      suffix = strstr (name, "___XR");

      if (suffix != NULL)
	{
	  int name_len = suffix - name;
	  int j;

	  is_new_style_renaming = 1;
	  for (j = 0; j < syms->size (); j += 1)
	    if (i != j && (*syms)[j].symbol != NULL
		&& strncmp (name, (*syms)[j].symbol->linkage_name (),
			    name_len) == 0
		&& block == (*syms)[j].block)
	      (*syms)[j].symbol = NULL;
	}
    }
  if (is_new_style_renaming)
    {
      int j, k;

      for (j = k = 0; j < syms->size (); j += 1)
	if ((*syms)[j].symbol != NULL)
	    {
	      (*syms)[k] = (*syms)[j];
	      k += 1;
	    }
      syms->resize (k);
      return;
    }

  /* Extract the function name associated to CURRENT_BLOCK.
     Abort if unable to do so.  */

  if (current_block == NULL)
    return;

  current_function = current_block->linkage_function ();
  if (current_function == NULL)
    return;

  current_function_name = current_function->linkage_name ();
  if (current_function_name == NULL)
    return;

  /* Check each of the symbols, and remove it from the list if it is
     a type corresponding to a renaming that is out of the scope of
     the current block.  */

  i = 0;
  while (i < syms->size ())
    {
      if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
	  == ADA_OBJECT_RENAMING
	  && old_renaming_is_invisible ((*syms)[i].symbol,
					current_function_name))
	syms->erase (syms->begin () + i);
      else
	i += 1;
    }
}

/* Add to RESULT all symbols from BLOCK (and its super-blocks)
   whose name and domain match LOOKUP_NAME and DOMAIN respectively.

   Note: This function assumes that RESULT is empty.  */

static void
ada_add_local_symbols (std::vector<struct block_symbol> &result,
		       const lookup_name_info &lookup_name,
		       const struct block *block, domain_search_flags domain)
{
  while (block != NULL)
    {
      ada_add_block_symbols (result, block, lookup_name, domain, NULL);

      /* If we found a non-function match, assume that's the one.  We
	 only check this when finding a function boundary, so that we
	 can accumulate all results from intervening blocks first.  */
      if (block->function () != nullptr && is_nonfunction (result))
	return;

      block = block->superblock ();
    }
}

/* An object of this type is used as the callback argument when
   calling the map_matching_symbols method.  */

struct match_data
{
  explicit match_data (std::vector<struct block_symbol> *rp)
    : resultp (rp)
  {
  }
  DISABLE_COPY_AND_ASSIGN (match_data);

  bool operator() (struct block_symbol *bsym);

  struct objfile *objfile = nullptr;
  std::vector<struct block_symbol> *resultp;
  struct symbol *arg_sym = nullptr;
  bool found_sym = false;
};

/* A callback for add_nonlocal_symbols that adds symbol, found in
   BSYM, to a list of symbols.  */

bool
match_data::operator() (struct block_symbol *bsym)
{
  const struct block *block = bsym->block;
  struct symbol *sym = bsym->symbol;

  if (sym == NULL)
    {
      if (!found_sym && arg_sym != NULL)
	add_defn_to_vec (*resultp, arg_sym, block);
      found_sym = false;
      arg_sym = NULL;
    }
  else 
    {
      if (sym->aclass () == LOC_UNRESOLVED)
	return true;
      else if (sym->is_argument ())
	arg_sym = sym;
      else
	{
	  found_sym = true;
	  add_defn_to_vec (*resultp, sym, block);
	}
    }
  return true;
}

/* Helper for add_nonlocal_symbols.  Find symbols in DOMAIN which are
   targeted by renamings matching LOOKUP_NAME in BLOCK.  Add these
   symbols to RESULT.  Return whether we found such symbols.  */

static int
ada_add_block_renamings (std::vector<struct block_symbol> &result,
			 const struct block *block,
			 const lookup_name_info &lookup_name,
			 domain_search_flags domain)
{
  struct using_direct *renaming;
  int defns_mark = result.size ();

  symbol_name_matcher_ftype *name_match
    = ada_get_symbol_name_matcher (lookup_name);

  for (renaming = block->get_using ();
       renaming != NULL;
       renaming = renaming->next)
    {
      const char *r_name;

      /* Avoid infinite recursions: skip this renaming if we are actually
	 already traversing it.

	 Currently, symbol lookup in Ada don't use the namespace machinery from
	 C++/Fortran support: skip namespace imports that use them.  */
      if (renaming->searched
	  || (renaming->import_src != NULL
	      && renaming->import_src[0] != '\0')
	  || (renaming->import_dest != NULL
	      && renaming->import_dest[0] != '\0'))
	continue;
      renaming->searched = 1;

      /* TODO: here, we perform another name-based symbol lookup, which can
	 pull its own multiple overloads.  In theory, we should be able to do
	 better in this case since, in DWARF, DW_AT_import is a DIE reference,
	 not a simple name.  But in order to do this, we would need to enhance
	 the DWARF reader to associate a symbol to this renaming, instead of a
	 name.  So, for now, we do something simpler: re-use the C++/Fortran
	 namespace machinery.  */
      r_name = (renaming->alias != NULL
		? renaming->alias
		: renaming->declaration);
      if (name_match (r_name, lookup_name, NULL))
	{
	  lookup_name_info decl_lookup_name (renaming->declaration,
					     lookup_name.match_type ());
	  ada_add_all_symbols (result, block, decl_lookup_name, domain,
			       1, NULL);
	}
      renaming->searched = 0;
    }
  return result.size () != defns_mark;
}

/* Convenience function to get at the Ada encoded lookup name for
   LOOKUP_NAME, as a C string.  */

static const char *
ada_lookup_name (const lookup_name_info &lookup_name)
{
  return lookup_name.ada ().lookup_name ().c_str ();
}

/* A helper for add_nonlocal_symbols.  Expand all necessary symtabs
   for OBJFILE, then walk the objfile's symtabs and update the
   results.  */

static void
map_matching_symbols (struct objfile *objfile,
		      const lookup_name_info &lookup_name,
		      domain_search_flags domain,
		      int global,
		      match_data &data)
{
  data.objfile = objfile;
  objfile->expand_symtabs_matching (nullptr, &lookup_name,
				    nullptr, nullptr,
				    global
				    ? SEARCH_GLOBAL_BLOCK
				    : SEARCH_STATIC_BLOCK,
				    domain);

  const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
  for (compunit_symtab *symtab : objfile->compunits ())
    {
      const struct block *block
	= symtab->blockvector ()->block (block_kind);
      if (!iterate_over_symbols_terminated (block, lookup_name,
					    domain, data))
	break;
    }
}

/* Add to RESULT all non-local symbols whose name and domain match
   LOOKUP_NAME and DOMAIN respectively.  The search is performed on
   GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
   symbols otherwise.  */

static void
add_nonlocal_symbols (std::vector<struct block_symbol> &result,
		      const lookup_name_info &lookup_name,
		      domain_search_flags domain, int global)
{
  struct match_data data (&result);

  bool is_wild_match = lookup_name.ada ().wild_match_p ();

  for (objfile *objfile : current_program_space->objfiles ())
    {
      map_matching_symbols (objfile, lookup_name, domain, global, data);

      for (compunit_symtab *cu : objfile->compunits ())
	{
	  const struct block *global_block
	    = cu->blockvector ()->global_block ();

	  if (ada_add_block_renamings (result, global_block, lookup_name,
				       domain))
	    data.found_sym = true;
	}
    }

  if (result.empty () && global && !is_wild_match)
    {
      const char *name = ada_lookup_name (lookup_name);
      std::string bracket_name = std::string ("<_ada_") + name + '>';
      lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);

      for (objfile *objfile : current_program_space->objfiles ())
	map_matching_symbols (objfile, name1, domain, global, data);
    }
}

/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
   FULL_SEARCH is non-zero, enclosing scope and in global scopes,
   returning the number of matches.  Add these to RESULT.

   When FULL_SEARCH is non-zero, any non-function/non-enumeral
   symbol match within the nest of blocks whose innermost member is BLOCK,
   is the one match returned (no other matches in that or
   enclosing blocks is returned).  If there are any matches in or
   surrounding BLOCK, then these alone are returned.

   Names prefixed with "standard__" are handled specially:
   "standard__" is first stripped off (by the lookup_name
   constructor), and only static and global symbols are searched.

   If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
   to lookup global symbols.  */

static void
ada_add_all_symbols (std::vector<struct block_symbol> &result,
		     const struct block *block,
		     const lookup_name_info &lookup_name,
		     domain_search_flags domain,
		     int full_search,
		     int *made_global_lookup_p)
{
  struct symbol *sym;

  if (made_global_lookup_p)
    *made_global_lookup_p = 0;

  /* Special case: If the user specifies a symbol name inside package
     Standard, do a non-wild matching of the symbol name without
     the "standard__" prefix.  This was primarily introduced in order
     to allow the user to specifically access the standard exceptions
     using, for instance, Standard.Constraint_Error when Constraint_Error
     is ambiguous (due to the user defining its own Constraint_Error
     entity inside its program).  */
  if (lookup_name.ada ().standard_p ())
    block = NULL;

  /* Check the non-global symbols.  If we have ANY match, then we're done.  */

  if (block != NULL)
    {
      if (full_search)
	ada_add_local_symbols (result, lookup_name, block, domain);
      else
	{
	  /* In the !full_search case we're are being called by
	     iterate_over_symbols, and we don't want to search
	     superblocks.  */
	  ada_add_block_symbols (result, block, lookup_name, domain, NULL);
	}
      if (!result.empty () || !full_search)
	return;
    }

  /* No non-global symbols found.  Check our cache to see if we have
     already performed this search before.  If we have, then return
     the same result.  */

  if (lookup_cached_symbol (ada_lookup_name (lookup_name),
			    domain, &sym, &block))
    {
      if (sym != NULL)
	add_defn_to_vec (result, sym, block);
      return;
    }

  if (made_global_lookup_p)
    *made_global_lookup_p = 1;

  /* Search symbols from all global blocks.  */
 
  add_nonlocal_symbols (result, lookup_name, domain, 1);

  /* Now add symbols from all per-file blocks if we've gotten no hits
     (not strictly correct, but perhaps better than an error).  */

  if (result.empty ())
    add_nonlocal_symbols (result, lookup_name, domain, 0);
}

/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
   is non-zero, enclosing scope and in global scopes.

   Returns (SYM,BLOCK) tuples, indicating the symbols found and the
   blocks and symbol tables (if any) in which they were found.

   When full_search is non-zero, any non-function/non-enumeral
   symbol match within the nest of blocks whose innermost member is BLOCK,
   is the one match returned (no other matches in that or
   enclosing blocks is returned).  If there are any matches in or
   surrounding BLOCK, then these alone are returned.

   Names prefixed with "standard__" are handled specially: "standard__"
   is first stripped off, and only static and global symbols are searched.  */

static std::vector<struct block_symbol>
ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
			       const struct block *block,
			       domain_search_flags domain,
			       int full_search)
{
  int syms_from_global_search;
  std::vector<struct block_symbol> results;

  ada_add_all_symbols (results, block, lookup_name,
		       domain, full_search, &syms_from_global_search);

  remove_extra_symbols (results);

  if (results.empty () && full_search && syms_from_global_search)
    cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);

  if (results.size () == 1 && full_search && syms_from_global_search)
    cache_symbol (ada_lookup_name (lookup_name), domain,
		  results[0].symbol, results[0].block);

  remove_irrelevant_renamings (&results, block);
  return results;
}

/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
   in global scopes, returning (SYM,BLOCK) tuples.

   See ada_lookup_symbol_list_worker for further details.  */

std::vector<struct block_symbol>
ada_lookup_symbol_list (const char *name, const struct block *block,
			domain_search_flags domain)
{
  symbol_name_match_type name_match_type = name_match_type_from_name (name);
  lookup_name_info lookup_name (name, name_match_type);

  return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
}

/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
   to 1, but choosing the first symbol found if there are multiple
   choices.  */

block_symbol
ada_lookup_encoded_symbol (const char *name, const struct block *block,
			   domain_search_flags domain)
{
  /* Since we already have an encoded name, wrap it in '<>' to force a
     verbatim match.  Otherwise, if the name happens to not look like
     an encoded name (because it doesn't include a "__"),
     ada_lookup_name_info would re-encode/fold it again, and that
     would e.g., incorrectly lowercase object renaming names like
     "R28b" -> "r28b".  */
  std::string verbatim = add_angle_brackets (name);
  return ada_lookup_symbol (verbatim.c_str (), block, domain);
}

/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
   scope and in global scopes, or NULL if none.  NAME is folded and
   encoded first.  Otherwise, the result is as for ada_lookup_symbol_list,
   choosing the first symbol if there are multiple choices.  */

struct block_symbol
ada_lookup_symbol (const char *name, const struct block *block0,
		   domain_search_flags domain)
{
  std::vector<struct block_symbol> candidates
    = ada_lookup_symbol_list (name, block0, domain);

  if (candidates.empty ())
    return {};

  return candidates[0];
}


/* True iff STR is a possible encoded suffix of a normal Ada name
   that is to be ignored for matching purposes.  Suffixes of parallel
   names (e.g., XVE) are not included here.  Currently, the possible suffixes
   are given by any of the regular expressions:

   [.$][0-9]+       [nested subprogram suffix, on platforms such as GNU/Linux]
   ___[0-9]+        [nested subprogram suffix, on platforms such as HP/UX]
   TKB              [subprogram suffix for task bodies]
   _E[0-9]+[bs]$    [protected object entry suffixes]
   (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$

   Also, any leading "__[0-9]+" sequence is skipped before the suffix
   match is performed.  This sequence is used to differentiate homonyms,
   is an optional part of a valid name suffix.  */

static int
is_name_suffix (const char *str)
{
  int k;
  const char *matching;
  const int len = strlen (str);

  /* Skip optional leading __[0-9]+.  */

  if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
    {
      str += 3;
      while (isdigit (str[0]))
	str += 1;
    }
  
  /* [.$][0-9]+ */

  if (str[0] == '.' || str[0] == '$')
    {
      matching = str + 1;
      while (isdigit (matching[0]))
	matching += 1;
      if (matching[0] == '\0')
	return 1;
    }

  /* ___[0-9]+ */

  if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
    {
      matching = str + 3;
      while (isdigit (matching[0]))
	matching += 1;
      if (matching[0] == '\0')
	return 1;
    }

  /* "TKB" suffixes are used for subprograms implementing task bodies.  */

  if (strcmp (str, "TKB") == 0)
    return 1;

#if 0
  /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
     with a N at the end.  Unfortunately, the compiler uses the same
     convention for other internal types it creates.  So treating
     all entity names that end with an "N" as a name suffix causes
     some regressions.  For instance, consider the case of an enumerated
     type.  To support the 'Image attribute, it creates an array whose
     name ends with N.
     Having a single character like this as a suffix carrying some
     information is a bit risky.  Perhaps we should change the encoding
     to be something like "_N" instead.  In the meantime, do not do
     the following check.  */
  /* Protected Object Subprograms */
  if (len == 1 && str [0] == 'N')
    return 1;
#endif

  /* _E[0-9]+[bs]$ */
  if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
    {
      matching = str + 3;
      while (isdigit (matching[0]))
	matching += 1;
      if ((matching[0] == 'b' || matching[0] == 's')
	  && matching [1] == '\0')
	return 1;
    }

  /* ??? We should not modify STR directly, as we are doing below.  This
     is fine in this case, but may become problematic later if we find
     that this alternative did not work, and want to try matching
     another one from the begining of STR.  Since we modified it, we
     won't be able to find the begining of the string anymore!  */
  if (str[0] == 'X')
    {
      str += 1;
      while (str[0] != '_' && str[0] != '\0')
	{
	  if (str[0] != 'n' && str[0] != 'b')
	    return 0;
	  str += 1;
	}
    }

  if (str[0] == '\000')
    return 1;

  if (str[0] == '_')
    {
      if (str[1] != '_' || str[2] == '\000')
	return 0;
      if (str[2] == '_')
	{
	  if (strcmp (str + 3, "JM") == 0)
	    return 1;
	  /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
	     the LJM suffix in favor of the JM one.  But we will
	     still accept LJM as a valid suffix for a reasonable
	     amount of time, just to allow ourselves to debug programs
	     compiled using an older version of GNAT.  */
	  if (strcmp (str + 3, "LJM") == 0)
	    return 1;
	  if (str[3] != 'X')
	    return 0;
	  if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
	      || str[4] == 'U' || str[4] == 'P')
	    return 1;
	  if (str[4] == 'R' && str[5] != 'T')
	    return 1;
	  return 0;
	}
      if (!isdigit (str[2]))
	return 0;
      for (k = 3; str[k] != '\0'; k += 1)
	if (!isdigit (str[k]) && str[k] != '_')
	  return 0;
      return 1;
    }
  if (str[0] == '$' && isdigit (str[1]))
    {
      for (k = 2; str[k] != '\0'; k += 1)
	if (!isdigit (str[k]) && str[k] != '_')
	  return 0;
      return 1;
    }
  return 0;
}

/* Return non-zero if the string starting at NAME and ending before
   NAME_END contains no capital letters.  */

static int
is_valid_name_for_wild_match (const char *name0)
{
  std::string decoded_name = ada_decode (name0);
  int i;

  /* If the decoded name starts with an angle bracket, it means that
     NAME0 does not follow the GNAT encoding format.  It should then
     not be allowed as a possible wild match.  */
  if (decoded_name[0] == '<')
    return 0;

  for (i=0; decoded_name[i] != '\0'; i++)
    if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
      return 0;

  return 1;
}

/* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
   character which could start a simple name.  Assumes that *NAMEP points
   somewhere inside the string beginning at NAME0.  */

static int
advance_wild_match (const char **namep, const char *name0, char target0)
{
  const char *name = *namep;

  while (1)
    {
      char t0, t1;

      t0 = *name;
      if (t0 == '_')
	{
	  t1 = name[1];
	  if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
	    {
	      name += 1;
	      if (name == name0 + 5 && startswith (name0, "_ada"))
		break;
	      else
		name += 1;
	    }
	  else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
				 || name[2] == target0))
	    {
	      name += 2;
	      break;
	    }
	  else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
	    {
	      /* Names like "pkg__B_N__name", where N is a number, are
		 block-local.  We can handle these by simply skipping
		 the "B_" here.  */
	      name += 4;
	    }
	  else
	    return 0;
	}
      else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
	name += 1;
      else
	return 0;
    }

  *namep = name;
  return 1;
}

/* Return true iff NAME encodes a name of the form prefix.PATN.
   Ignores any informational suffixes of NAME (i.e., for which
   is_name_suffix is true).  Assumes that PATN is a lower-cased Ada
   simple name.  */

static bool
wild_match (const char *name, const char *patn)
{
  const char *p;
  const char *name0 = name;

  if (startswith (name, "___ghost_"))
    name += 9;

  while (1)
    {
      const char *match = name;

      if (*name == *patn)
	{
	  for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
	    if (*p != *name)
	      break;
	  if (*p == '\0' && is_name_suffix (name))
	    return match == name0 || is_valid_name_for_wild_match (name0);

	  if (name[-1] == '_')
	    name -= 1;
	}
      if (!advance_wild_match (&name, name0, *patn))
	return false;
    }
}

/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
   necessary).  OBJFILE is the section containing BLOCK.  */

static void
ada_add_block_symbols (std::vector<struct block_symbol> &result,
		       const struct block *block,
		       const lookup_name_info &lookup_name,
		       domain_search_flags domain, struct objfile *objfile)
{
  /* A matching argument symbol, if any.  */
  struct symbol *arg_sym;
  /* Set true when we find a matching non-argument symbol.  */
  bool found_sym;

  arg_sym = NULL;
  found_sym = false;
  for (struct symbol *sym : block_iterator_range (block, &lookup_name))
    {
      if (sym->matches (domain))
	{
	  if (sym->aclass () != LOC_UNRESOLVED)
	    {
	      if (sym->is_argument ())
		arg_sym = sym;
	      else
		{
		  found_sym = true;
		  add_defn_to_vec (result, sym, block);
		}
	    }
	}
    }

  /* Handle renamings.  */

  if (ada_add_block_renamings (result, block, lookup_name, domain))
    found_sym = true;

  if (!found_sym && arg_sym != NULL)
    {
      add_defn_to_vec (result, arg_sym, block);
    }

  if (!lookup_name.ada ().wild_match_p ())
    {
      arg_sym = NULL;
      found_sym = false;
      const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
      const char *name = ada_lookup_name.c_str ();
      size_t name_len = ada_lookup_name.size ();

      for (struct symbol *sym : block_iterator_range (block))
      {
	if (sym->matches (domain))
	  {
	    int cmp;

	    cmp = (int) '_' - (int) sym->linkage_name ()[0];
	    if (cmp == 0)
	      {
		cmp = !startswith (sym->linkage_name (), "_ada_");
		if (cmp == 0)
		  cmp = strncmp (name, sym->linkage_name () + 5,
				 name_len);
	      }

	    if (cmp == 0
		&& is_name_suffix (sym->linkage_name () + name_len + 5))
	      {
		if (sym->aclass () != LOC_UNRESOLVED)
		  {
		    if (sym->is_argument ())
		      arg_sym = sym;
		    else
		      {
			found_sym = true;
			add_defn_to_vec (result, sym, block);
		      }
		  }
	      }
	  }
      }

      /* NOTE: This really shouldn't be needed for _ada_ symbols.
	 They aren't parameters, right?  */
      if (!found_sym && arg_sym != NULL)
	{
	  add_defn_to_vec (result, arg_sym, block);
	}
    }
}


				/* Symbol Completion */

/* See symtab.h.  */

bool
ada_lookup_name_info::matches
  (const char *sym_name,
   symbol_name_match_type match_type,
   completion_match_result *comp_match_res) const
{
  bool match = false;
  const char *text = m_encoded_name.c_str ();
  size_t text_len = m_encoded_name.size ();

  /* First, test against the fully qualified name of the symbol.  */

  if (strncmp (sym_name, text, text_len) == 0)
    match = true;

  std::string decoded_name = ada_decode (sym_name);
  if (match && !m_encoded_p)
    {
      /* One needed check before declaring a positive match is to verify
	 that iff we are doing a verbatim match, the decoded version
	 of the symbol name starts with '<'.  Otherwise, this symbol name
	 is not a suitable completion.  */

      bool has_angle_bracket = (decoded_name[0] == '<');
      match = (has_angle_bracket == m_verbatim_p);
    }

  if (match && !m_verbatim_p)
    {
      /* When doing non-verbatim match, another check that needs to
	 be done is to verify that the potentially matching symbol name
	 does not include capital letters, because the ada-mode would
	 not be able to understand these symbol names without the
	 angle bracket notation.  */
      const char *tmp;

      for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
      if (*tmp != '\0')
	match = false;
    }

  /* Second: Try wild matching...  */

  if (!match && m_wild_match_p)
    {
      /* Since we are doing wild matching, this means that TEXT
	 may represent an unqualified symbol name.  We therefore must
	 also compare TEXT against the unqualified name of the symbol.  */
      sym_name = ada_unqualified_name (decoded_name.c_str ());

      if (strncmp (sym_name, text, text_len) == 0)
	match = true;
    }

  /* Finally: If we found a match, prepare the result to return.  */

  if (!match)
    return false;

  if (comp_match_res != NULL)
    {
      std::string &match_str = comp_match_res->match.storage ();

      if (!m_encoded_p)
	match_str = ada_decode (sym_name);
      else
	{
	  if (m_verbatim_p)
	    match_str = add_angle_brackets (sym_name);
	  else
	    match_str = sym_name;

	}

      comp_match_res->set_match (match_str.c_str ());
    }

  return true;
}

				/* Field Access */

/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
   for tagged types.  */

static int
ada_is_dispatch_table_ptr_type (struct type *type)
{
  const char *name;

  if (type->code () != TYPE_CODE_PTR)
    return 0;

  name = type->target_type ()->name ();
  if (name == NULL)
    return 0;

  return (strcmp (name, "ada__tags__dispatch_table") == 0);
}

/* Return non-zero if TYPE is an interface tag.  */

static int
ada_is_interface_tag (struct type *type)
{
  const char *name = type->name ();

  if (name == NULL)
    return 0;

  return (strcmp (name, "ada__tags__interface_tag") == 0);
}

/* True if field number FIELD_NUM in struct or union type TYPE is supposed
   to be invisible to users.  */

int
ada_is_ignored_field (struct type *type, int field_num)
{
  if (field_num < 0 || field_num > type->num_fields ())
    return 1;

  /* Check the name of that field.  */
  {
    const char *name = type->field (field_num).name ();

    /* Anonymous field names should not be printed.
       brobecker/2007-02-20: I don't think this can actually happen
       but we don't want to print the value of anonymous fields anyway.  */
    if (name == NULL)
      return 1;

    /* Normally, fields whose name start with an underscore ("_")
       are fields that have been internally generated by the compiler,
       and thus should not be printed.  The "_parent" field is special,
       however: This is a field internally generated by the compiler
       for tagged types, and it contains the components inherited from
       the parent type.  This field should not be printed as is, but
       should not be ignored either.  */
    if (name[0] == '_' && !startswith (name, "_parent"))
      return 1;

    /* The compiler doesn't document this, but sometimes it emits
       a field whose name starts with a capital letter, like 'V148s'.
       These aren't marked as artificial in any way, but we know they
       should be ignored.  However, wrapper fields should not be
       ignored.  */
    if (name[0] == 'S' || name[0] == 'R' || name[0] == 'O')
      {
	/* Wrapper field.  */
      }
    else if (isupper (name[0]))
      return 1;
  }

  /* If this is the dispatch table of a tagged type or an interface tag,
     then ignore.  */
  if (ada_is_tagged_type (type, 1)
      && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
	  || ada_is_interface_tag (type->field (field_num).type ())))
    return 1;

  /* Not a special field, so it should not be ignored.  */
  return 0;
}

/* True iff TYPE has a tag field.  If REFOK, then TYPE may also be a
   pointer or reference type whose ultimate target has a tag field.  */

int
ada_is_tagged_type (struct type *type, int refok)
{
  return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
}

/* True iff TYPE represents the type of X'Tag */

int
ada_is_tag_type (struct type *type)
{
  type = ada_check_typedef (type);

  if (type == NULL || type->code () != TYPE_CODE_PTR)
    return 0;
  else
    {
      const char *name = ada_type_name (type->target_type ());

      return (name != NULL
	      && strcmp (name, "ada__tags__dispatch_table") == 0);
    }
}

/* The type of the tag on VAL.  */

static struct type *
ada_tag_type (struct value *val)
{
  return ada_lookup_struct_elt_type (val->type (), "_tag", 1, 0);
}

/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
   retired at Ada 05).  */

static int
is_ada95_tag (struct value *tag)
{
  return ada_value_struct_elt (tag, "tsd", 1) != NULL;
}

/* The value of the tag on VAL.  */

static struct value *
ada_value_tag (struct value *val)
{
  return ada_value_struct_elt (val, "_tag", 0);
}

/* The value of the tag on the object of type TYPE whose contents are
   saved at VALADDR, if it is non-null, or is at memory address
   ADDRESS.  */

static struct value *
value_tag_from_contents_and_address (struct type *type,
				     const gdb_byte *valaddr,
				     CORE_ADDR address)
{
  int tag_byte_offset;
  struct type *tag_type;

  gdb::array_view<const gdb_byte> contents;
  if (valaddr != nullptr)
    contents = gdb::make_array_view (valaddr, type->length ());
  struct type *resolved_type = resolve_dynamic_type (type, contents, address);
  if (find_struct_field ("_tag", resolved_type, 0, &tag_type, &tag_byte_offset,
			 NULL, NULL, NULL))
    {
      const gdb_byte *valaddr1 = ((valaddr == NULL)
				  ? NULL
				  : valaddr + tag_byte_offset);
      CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;

      return value_from_contents_and_address (tag_type, valaddr1, address1);
    }
  return NULL;
}

static struct type *
type_from_tag (struct value *tag)
{
  gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);

  if (type_name != NULL)
    return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
  return NULL;
}

/* Given a value OBJ of a tagged type, return a value of this
   type at the base address of the object.  The base address, as
   defined in Ada.Tags, it is the address of the primary tag of
   the object, and therefore where the field values of its full
   view can be fetched.  */

struct value *
ada_tag_value_at_base_address (struct value *obj)
{
  struct value *val;
  LONGEST offset_to_top = 0;
  struct type *ptr_type, *obj_type;
  struct value *tag;
  CORE_ADDR base_address;

  obj_type = obj->type ();

  /* It is the responsibility of the caller to deref pointers.  */

  if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
    return obj;

  tag = ada_value_tag (obj);
  if (!tag)
    return obj;

  /* Base addresses only appeared with Ada 05 and multiple inheritance.  */

  if (is_ada95_tag (tag))
    return obj;

  struct type *offset_type
    = language_lookup_primitive_type (language_def (language_ada),
				      current_inferior ()->arch (),
				      "storage_offset");
  ptr_type = lookup_pointer_type (offset_type);
  val = value_cast (ptr_type, tag);
  if (!val)
    return obj;

  /* It is perfectly possible that an exception be raised while
     trying to determine the base address, just like for the tag;
     see ada_tag_name for more details.  We do not print the error
     message for the same reason.  */

  try
    {
      offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
    }

  catch (const gdb_exception_error &e)
    {
      return obj;
    }

  /* If offset is null, nothing to do.  */

  if (offset_to_top == 0)
    return obj;

  /* -1 is a special case in Ada.Tags; however, what should be done
     is not quite clear from the documentation.  So do nothing for
     now.  */

  if (offset_to_top == -1)
    return obj;

  /* Storage_Offset'Last is used to indicate that a dynamic offset to
     top is used.  In this situation the offset is stored just after
     the tag, in the object itself.  */
  ULONGEST last = (((ULONGEST) 1) << (8 * offset_type->length () - 1)) - 1;
  if (offset_to_top == last)
    {
      struct value *tem = value_addr (tag);
      tem = value_ptradd (tem, 1);
      tem = value_cast (ptr_type, tem);
      offset_to_top = value_as_long (value_ind (tem));
    }

  if (offset_to_top > 0)
    {
      /* OFFSET_TO_TOP used to be a positive value to be subtracted
	 from the base address.  This was however incompatible with
	 C++ dispatch table: C++ uses a *negative* value to *add*
	 to the base address.  Ada's convention has therefore been
	 changed in GNAT 19.0w 20171023: since then, C++ and Ada
	 use the same convention.  Here, we support both cases by
	 checking the sign of OFFSET_TO_TOP.  */
      offset_to_top = -offset_to_top;
    }

  base_address = obj->address () + offset_to_top;
  tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);

  /* Make sure that we have a proper tag at the new address.
     Otherwise, offset_to_top is bogus (which can happen when
     the object is not initialized yet).  */

  if (!tag)
    return obj;

  obj_type = type_from_tag (tag);

  if (!obj_type)
    return obj;

  return value_from_contents_and_address (obj_type, NULL, base_address);
}

/* Return the "ada__tags__type_specific_data" type.  */

static struct type *
ada_get_tsd_type (struct inferior *inf)
{
  struct ada_inferior_data *data = get_ada_inferior_data (inf);

  if (data->tsd_type == 0)
    data->tsd_type
      = lookup_transparent_type ("<ada__tags__type_specific_data>",
				 SEARCH_TYPE_DOMAIN);
  return data->tsd_type;
}

/* Return the TSD (type-specific data) associated to the given TAG.
   TAG is assumed to be the tag of a tagged-type entity.

   May return NULL if we are unable to get the TSD.  */

static struct value *
ada_get_tsd_from_tag (struct value *tag)
{
  struct value *val;
  struct type *type;

  /* First option: The TSD is simply stored as a field of our TAG.
     Only older versions of GNAT would use this format, but we have
     to test it first, because there are no visible markers for
     the current approach except the absence of that field.  */

  val = ada_value_struct_elt (tag, "tsd", 1);
  if (val)
    return val;

  /* Try the second representation for the dispatch table (in which
     there is no explicit 'tsd' field in the referent of the tag pointer,
     and instead the tsd pointer is stored just before the dispatch
     table.  */

  type = ada_get_tsd_type (current_inferior());
  if (type == NULL)
    return NULL;
  type = lookup_pointer_type (lookup_pointer_type (type));
  val = value_cast (type, tag);
  if (val == NULL)
    return NULL;
  return value_ind (value_ptradd (val, -1));
}

/* Given the TSD of a tag (type-specific data), return a string
   containing the name of the associated type.

   May return NULL if we are unable to determine the tag name.  */

static gdb::unique_xmalloc_ptr<char>
ada_tag_name_from_tsd (struct value *tsd)
{
  struct value *val;

  val = ada_value_struct_elt (tsd, "expanded_name", 1);
  if (val == NULL)
    return NULL;
  gdb::unique_xmalloc_ptr<char> buffer
    = target_read_string (value_as_address (val), INT_MAX);
  if (buffer == nullptr)
    return nullptr;

  try
    {
      /* Let this throw an exception on error.  If the data is
	 uninitialized, we'd rather not have the user see a
	 warning.  */
      const char *folded = ada_fold_name (buffer.get (), true);
      return make_unique_xstrdup (folded);
    }
  catch (const gdb_exception &)
    {
      return nullptr;
    }
}

/* The type name of the dynamic type denoted by the 'tag value TAG, as
   a C string.

   Return NULL if the TAG is not an Ada tag, or if we were unable to
   determine the name of that tag.  */

gdb::unique_xmalloc_ptr<char>
ada_tag_name (struct value *tag)
{
  gdb::unique_xmalloc_ptr<char> name;

  if (!ada_is_tag_type (tag->type ()))
    return NULL;

  /* It is perfectly possible that an exception be raised while trying
     to determine the TAG's name, even under normal circumstances:
     The associated variable may be uninitialized or corrupted, for
     instance. We do not let any exception propagate past this point.
     instead we return NULL.

     We also do not print the error message either (which often is very
     low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
     the caller print a more meaningful message if necessary.  */
  try
    {
      struct value *tsd = ada_get_tsd_from_tag (tag);

      if (tsd != NULL)
	name = ada_tag_name_from_tsd (tsd);
    }
  catch (const gdb_exception_error &e)
    {
    }

  return name;
}

/* The parent type of TYPE, or NULL if none.  */

struct type *
ada_parent_type (struct type *type)
{
  int i;

  type = ada_check_typedef (type);

  if (type == NULL || type->code () != TYPE_CODE_STRUCT)
    return NULL;

  for (i = 0; i < type->num_fields (); i += 1)
    if (ada_is_parent_field (type, i))
      {
	struct type *parent_type = type->field (i).type ();

	/* If the _parent field is a pointer, then dereference it.  */
	if (parent_type->code () == TYPE_CODE_PTR)
	  parent_type = parent_type->target_type ();
	/* If there is a parallel XVS type, get the actual base type.  */
	parent_type = ada_get_base_type (parent_type);

	return ada_check_typedef (parent_type);
      }

  return NULL;
}

/* True iff field number FIELD_NUM of structure type TYPE contains the
   parent-type (inherited) fields of a derived type.  Assumes TYPE is
   a structure type with at least FIELD_NUM+1 fields.  */

int
ada_is_parent_field (struct type *type, int field_num)
{
  const char *name = ada_check_typedef (type)->field (field_num).name ();

  return (name != NULL
	  && (startswith (name, "PARENT")
	      || startswith (name, "_parent")));
}

/* True iff field number FIELD_NUM of structure type TYPE is a
   transparent wrapper field (which should be silently traversed when doing
   field selection and flattened when printing).  Assumes TYPE is a
   structure type with at least FIELD_NUM+1 fields.  Such fields are always
   structures.  */

int
ada_is_wrapper_field (struct type *type, int field_num)
{
  const char *name = type->field (field_num).name ();

  if (name != NULL && strcmp (name, "RETVAL") == 0)
    {
      /* This happens in functions with "out" or "in out" parameters
	 which are passed by copy.  For such functions, GNAT describes
	 the function's return type as being a struct where the return
	 value is in a field called RETVAL, and where the other "out"
	 or "in out" parameters are fields of that struct.  This is not
	 a wrapper.  */
      return 0;
    }

  return (name != NULL
	  && (startswith (name, "PARENT")
	      || strcmp (name, "REP") == 0
	      || startswith (name, "_parent")
	      || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
}

/* True iff field number FIELD_NUM of structure or union type TYPE
   is a variant wrapper.  Assumes TYPE is a structure type with at least
   FIELD_NUM+1 fields.  */

int
ada_is_variant_part (struct type *type, int field_num)
{
  /* Only Ada types are eligible.  */
  if (!ADA_TYPE_P (type))
    return 0;

  struct type *field_type = type->field (field_num).type ();

  return (field_type->code () == TYPE_CODE_UNION
	  || (is_dynamic_field (type, field_num)
	      && (field_type->target_type ()->code ()
		  == TYPE_CODE_UNION)));
}

/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
   whose discriminants are contained in the record type OUTER_TYPE,
   returns the type of the controlling discriminant for the variant.
   May return NULL if the type could not be found.  */

struct type *
ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
{
  const char *name = ada_variant_discrim_name (var_type);

  return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
}

/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
   valid field number within it, returns 1 iff field FIELD_NUM of TYPE
   represents a 'when others' clause; otherwise 0.  */

static int
ada_is_others_clause (struct type *type, int field_num)
{
  const char *name = type->field (field_num).name ();

  return (name != NULL && name[0] == 'O');
}

/* Assuming that TYPE0 is the type of the variant part of a record,
   returns the name of the discriminant controlling the variant.
   The value is valid until the next call to ada_variant_discrim_name.  */

const char *
ada_variant_discrim_name (struct type *type0)
{
  static std::string result;
  struct type *type;
  const char *name;
  const char *discrim_end;
  const char *discrim_start;

  if (type0->code () == TYPE_CODE_PTR)
    type = type0->target_type ();
  else
    type = type0;

  name = ada_type_name (type);

  if (name == NULL || name[0] == '\000')
    return "";

  for (discrim_end = name + strlen (name) - 6; discrim_end != name;
       discrim_end -= 1)
    {
      if (startswith (discrim_end, "___XVN"))
	break;
    }
  if (discrim_end == name)
    return "";

  for (discrim_start = discrim_end; discrim_start != name + 3;
       discrim_start -= 1)
    {
      if (discrim_start == name + 1)
	return "";
      if ((discrim_start > name + 3
	   && startswith (discrim_start - 3, "___"))
	  || discrim_start[-1] == '.')
	break;
    }

  result = std::string (discrim_start, discrim_end - discrim_start);
  return result.c_str ();
}

/* Scan STR for a subtype-encoded number, beginning at position K.
   Put the position of the character just past the number scanned in
   *NEW_K, if NEW_K!=NULL.  Put the scanned number in *R, if R!=NULL.
   Return 1 if there was a valid number at the given position, and 0
   otherwise.  A "subtype-encoded" number consists of the absolute value
   in decimal, followed by the letter 'm' to indicate a negative number.
   Assumes 0m does not occur.  */

int
ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
{
  ULONGEST RU;

  if (!isdigit (str[k]))
    return 0;

  /* Do it the hard way so as not to make any assumption about
     the relationship of unsigned long (%lu scan format code) and
     LONGEST.  */
  RU = 0;
  while (isdigit (str[k]))
    {
      RU = RU * 10 + (str[k] - '0');
      k += 1;
    }

  if (str[k] == 'm')
    {
      if (R != NULL)
	*R = (-(LONGEST) (RU - 1)) - 1;
      k += 1;
    }
  else if (R != NULL)
    *R = (LONGEST) RU;

  /* NOTE on the above: Technically, C does not say what the results of
     - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
     number representable as a LONGEST (although either would probably work
     in most implementations).  When RU>0, the locution in the then branch
     above is always equivalent to the negative of RU.  */

  if (new_k != NULL)
    *new_k = k;
  return 1;
}

/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
   and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
   in the range encoded by field FIELD_NUM of TYPE; otherwise 0.  */

static int
ada_in_variant (LONGEST val, struct type *type, int field_num)
{
  const char *name = type->field (field_num).name ();
  int p;

  p = 0;
  while (1)
    {
      switch (name[p])
	{
	case '\0':
	  return 0;
	case 'S':
	  {
	    LONGEST W;

	    if (!ada_scan_number (name, p + 1, &W, &p))
	      return 0;
	    if (val == W)
	      return 1;
	    break;
	  }
	case 'R':
	  {
	    LONGEST L, U;

	    if (!ada_scan_number (name, p + 1, &L, &p)
		|| name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
	      return 0;
	    if (val >= L && val <= U)
	      return 1;
	    break;
	  }
	case 'O':
	  return 1;
	default:
	  return 0;
	}
    }
}

/* FIXME: Lots of redundancy below.  Try to consolidate.  */

/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
   ARG_TYPE, extract and return the value of one of its (non-static)
   fields.  FIELDNO says which field.   Differs from value_primitive_field
   only in that it can handle packed values of arbitrary type.  */

struct value *
ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
			   struct type *arg_type)
{
  struct type *type;

  arg_type = ada_check_typedef (arg_type);
  type = arg_type->field (fieldno).type ();

  /* Handle packed fields.  It might be that the field is not packed
     relative to its containing structure, but the structure itself is
     packed; in this case we must take the bit-field path.  */
  if (arg_type->field (fieldno).bitsize () != 0 || arg1->bitpos () != 0)
    {
      int bit_pos = arg_type->field (fieldno).loc_bitpos ();
      int bit_size = arg_type->field (fieldno).bitsize ();

      return ada_value_primitive_packed_val (arg1,
					     arg1->contents ().data (),
					     offset + bit_pos / 8,
					     bit_pos % 8, bit_size, type);
    }
  else
    return arg1->primitive_field (offset, fieldno, arg_type);
}

/* Find field with name NAME in object of type TYPE.  If found, 
   set the following for each argument that is non-null:
    - *FIELD_TYPE_P to the field's type; 
    - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within 
      an object of that type;
    - *BIT_OFFSET_P to the bit offset modulo byte size of the field; 
    - *BIT_SIZE_P to its size in bits if the field is packed, and 
      0 otherwise;
   If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
   fields up to but not including the desired field, or by the total
   number of fields if not found.   A NULL value of NAME never
   matches; the function just counts visible fields in this case.
   
   Notice that we need to handle when a tagged record hierarchy
   has some components with the same name, like in this scenario:

      type Top_T is tagged record
	 N : Integer := 1;
	 U : Integer := 974;
	 A : Integer := 48;
      end record;

      type Middle_T is new Top.Top_T with record
	 N : Character := 'a';
	 C : Integer := 3;
      end record;

     type Bottom_T is new Middle.Middle_T with record
	N : Float := 4.0;
	C : Character := '5';
	X : Integer := 6;
	A : Character := 'J';
     end record;

   Let's say we now have a variable declared and initialized as follow:

     TC : Top_A := new Bottom_T;

   And then we use this variable to call this function

     procedure Assign (Obj: in out Top_T; TV : Integer);

   as follow:

      Assign (Top_T (B), 12);

   Now, we're in the debugger, and we're inside that procedure
   then and we want to print the value of obj.c:

   Usually, the tagged record or one of the parent type owns the
   component to print and there's no issue but in this particular
   case, what does it mean to ask for Obj.C? Since the actual
   type for object is type Bottom_T, it could mean two things: type
   component C from the Middle_T view, but also component C from
   Bottom_T.  So in that "undefined" case, when the component is
   not found in the non-resolved type (which includes all the
   components of the parent type), then resolve it and see if we
   get better luck once expanded.

   In the case of homonyms in the derived tagged type, we don't
   guaranty anything, and pick the one that's easiest for us
   to program.

   Returns 1 if found, 0 otherwise.  */

static int
find_struct_field (const char *name, struct type *type, int offset,
		   struct type **field_type_p,
		   int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
		   int *index_p)
{
  int i;
  int parent_offset = -1;

  type = ada_check_typedef (type);

  if (field_type_p != NULL)
    *field_type_p = NULL;
  if (byte_offset_p != NULL)
    *byte_offset_p = 0;
  if (bit_offset_p != NULL)
    *bit_offset_p = 0;
  if (bit_size_p != NULL)
    *bit_size_p = 0;

  for (i = 0; i < type->num_fields (); i += 1)
    {
      /* These can't be computed using TYPE_FIELD_BITPOS for a dynamic
	 type.  However, we only need the values to be correct when
	 the caller asks for them.  */
      int bit_pos = 0, fld_offset = 0;
      if (byte_offset_p != nullptr || bit_offset_p != nullptr)
	{
	  bit_pos = type->field (i).loc_bitpos ();
	  fld_offset = offset + bit_pos / 8;
	}

      const char *t_field_name = type->field (i).name ();

      if (t_field_name == NULL)
	continue;

      else if (ada_is_parent_field (type, i))
	{
	  /* This is a field pointing us to the parent type of a tagged
	     type.  As hinted in this function's documentation, we give
	     preference to fields in the current record first, so what
	     we do here is just record the index of this field before
	     we skip it.  If it turns out we couldn't find our field
	     in the current record, then we'll get back to it and search
	     inside it whether the field might exist in the parent.  */

	  parent_offset = i;
	  continue;
	}

      else if (name != NULL && field_name_match (t_field_name, name))
	{
	  int bit_size = type->field (i).bitsize ();

	  if (field_type_p != NULL)
	    *field_type_p = type->field (i).type ();
	  if (byte_offset_p != NULL)
	    *byte_offset_p = fld_offset;
	  if (bit_offset_p != NULL)
	    *bit_offset_p = bit_pos % 8;
	  if (bit_size_p != NULL)
	    *bit_size_p = bit_size;
	  return 1;
	}
      else if (ada_is_wrapper_field (type, i))
	{
	  if (find_struct_field (name, type->field (i).type (), fld_offset,
				 field_type_p, byte_offset_p, bit_offset_p,
				 bit_size_p, index_p))
	    return 1;
	}
      else if (ada_is_variant_part (type, i))
	{
	  /* PNH: Wait.  Do we ever execute this section, or is ARG always of 
	     fixed type?? */
	  int j;
	  struct type *field_type
	    = ada_check_typedef (type->field (i).type ());

	  for (j = 0; j < field_type->num_fields (); j += 1)
	    {
	      if (find_struct_field (name, field_type->field (j).type (),
				     fld_offset
				     + field_type->field (j).loc_bitpos () / 8,
				     field_type_p, byte_offset_p,
				     bit_offset_p, bit_size_p, index_p))
		return 1;
	    }
	}
      else if (index_p != NULL)
	*index_p += 1;
    }

  /* Field not found so far.  If this is a tagged type which
     has a parent, try finding that field in the parent now.  */

  if (parent_offset != -1)
    {
      /* As above, only compute the offset when truly needed.  */
      int fld_offset = offset;
      if (byte_offset_p != nullptr || bit_offset_p != nullptr)
	{
	  int bit_pos = type->field (parent_offset).loc_bitpos ();
	  fld_offset += bit_pos / 8;
	}

      if (find_struct_field (name, type->field (parent_offset).type (),
			     fld_offset, field_type_p, byte_offset_p,
			     bit_offset_p, bit_size_p, index_p))
	return 1;
    }

  return 0;
}

/* Number of user-visible fields in record type TYPE.  */

static int
num_visible_fields (struct type *type)
{
  int n;

  n = 0;
  find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
  return n;
}

/* Look for a field NAME in ARG.  Adjust the address of ARG by OFFSET bytes,
   and search in it assuming it has (class) type TYPE.
   If found, return value, else return NULL.

   Searches recursively through wrapper fields (e.g., '_parent').

   In the case of homonyms in the tagged types, please refer to the
   long explanation in find_struct_field's function documentation.  */

static struct value *
ada_search_struct_field (const char *name, struct value *arg, int offset,
			 struct type *type)
{
  int i;
  int parent_offset = -1;

  type = ada_check_typedef (type);
  for (i = 0; i < type->num_fields (); i += 1)
    {
      const char *t_field_name = type->field (i).name ();

      if (t_field_name == NULL)
	continue;

      else if (ada_is_parent_field (type, i))
	{
	  /* This is a field pointing us to the parent type of a tagged
	     type.  As hinted in this function's documentation, we give
	     preference to fields in the current record first, so what
	     we do here is just record the index of this field before
	     we skip it.  If it turns out we couldn't find our field
	     in the current record, then we'll get back to it and search
	     inside it whether the field might exist in the parent.  */

	  parent_offset = i;
	  continue;
	}

      else if (field_name_match (t_field_name, name))
	return ada_value_primitive_field (arg, offset, i, type);

      else if (ada_is_wrapper_field (type, i))
	{
	  struct value *v =     /* Do not let indent join lines here.  */
	    ada_search_struct_field (name, arg,
				     offset + type->field (i).loc_bitpos () / 8,
				     type->field (i).type ());

	  if (v != NULL)
	    return v;
	}

      else if (ada_is_variant_part (type, i))
	{
	  /* PNH: Do we ever get here?  See find_struct_field.  */
	  int j;
	  struct type *field_type = ada_check_typedef (type->field (i).type ());
	  int var_offset = offset + type->field (i).loc_bitpos () / 8;

	  for (j = 0; j < field_type->num_fields (); j += 1)
	    {
	      struct value *v = ada_search_struct_field /* Force line
							   break.  */
		(name, arg,
		 var_offset + field_type->field (j).loc_bitpos () / 8,
		 field_type->field (j).type ());

	      if (v != NULL)
		return v;
	    }
	}
    }

  /* Field not found so far.  If this is a tagged type which
     has a parent, try finding that field in the parent now.  */

  if (parent_offset != -1)
    {
      struct value *v = ada_search_struct_field (
	name, arg, offset + type->field (parent_offset).loc_bitpos () / 8,
	type->field (parent_offset).type ());

      if (v != NULL)
	return v;
    }

  return NULL;
}

static struct value *ada_index_struct_field_1 (int *, struct value *,
					       int, struct type *);


/* Return field #INDEX in ARG, where the index is that returned by
 * find_struct_field through its INDEX_P argument.  Adjust the address
 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
 * If found, return value, else return NULL.  */

static struct value *
ada_index_struct_field (int index, struct value *arg, int offset,
			struct type *type)
{
  return ada_index_struct_field_1 (&index, arg, offset, type);
}


/* Auxiliary function for ada_index_struct_field.  Like
 * ada_index_struct_field, but takes index from *INDEX_P and modifies
 * *INDEX_P.  */

static struct value *
ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
			  struct type *type)
{
  int i;
  type = ada_check_typedef (type);

  for (i = 0; i < type->num_fields (); i += 1)
    {
      if (type->field (i).name () == NULL)
	continue;
      else if (ada_is_wrapper_field (type, i))
	{
	  struct value *v =     /* Do not let indent join lines here.  */
	    ada_index_struct_field_1 (index_p, arg,
				      offset + type->field (i).loc_bitpos () / 8,
				      type->field (i).type ());

	  if (v != NULL)
	    return v;
	}

      else if (ada_is_variant_part (type, i))
	{
	  /* PNH: Do we ever get here?  See ada_search_struct_field,
	     find_struct_field.  */
	  error (_("Cannot assign this kind of variant record"));
	}
      else if (*index_p == 0)
	return ada_value_primitive_field (arg, offset, i, type);
      else
	*index_p -= 1;
    }
  return NULL;
}

/* Return a string representation of type TYPE.  */

static std::string
type_as_string (struct type *type)
{
  string_file tmp_stream;

  type_print (type, "", &tmp_stream, -1);

  return tmp_stream.release ();
}

/* Given a type TYPE, look up the type of the component of type named NAME.

   Matches any field whose name has NAME as a prefix, possibly
   followed by "___".

   TYPE can be either a struct or union.  If REFOK, TYPE may also 
   be a (pointer or reference)+ to a struct or union, and the
   ultimate target type will be searched.

   Looks recursively into variant clauses and parent types.

   In the case of homonyms in the tagged types, please refer to the
   long explanation in find_struct_field's function documentation.

   If NOERR is nonzero, return NULL if NAME is not suitably defined or
   TYPE is not a type of the right kind.  */

static struct type *
ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
			    int noerr)
{
  if (name == NULL)
    goto BadName;

  if (refok && type != NULL)
    while (1)
      {
	type = ada_check_typedef (type);
	if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
	  break;
	type = type->target_type ();
      }

  if (type == NULL
      || (type->code () != TYPE_CODE_STRUCT
	  && type->code () != TYPE_CODE_UNION))
    {
      if (noerr)
	return NULL;

      error (_("Type %s is not a structure or union type"),
	     type != NULL ? type_as_string (type).c_str () : _("(null)"));
    }

  type = to_static_fixed_type (type);

  struct type *result;
  find_struct_field (name, type, 0, &result, nullptr, nullptr, nullptr,
		     nullptr);
  if (result != nullptr)
    return result;

BadName:
  if (!noerr)
    {
      const char *name_str = name != NULL ? name : _("<null>");

      error (_("Type %s has no component named %s"),
	     type_as_string (type).c_str (), name_str);
    }

  return NULL;
}

/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
   within a value of type OUTER_TYPE, return true iff VAR_TYPE
   represents an unchecked union (that is, the variant part of a
   record that is named in an Unchecked_Union pragma).  */

static int
is_unchecked_variant (struct type *var_type, struct type *outer_type)
{
  const char *discrim_name = ada_variant_discrim_name (var_type);

  return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
}


/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
   within OUTER, determine which variant clause (field number in VAR_TYPE,
   numbering from 0) is applicable.  Returns -1 if none are.  */

int
ada_which_variant_applies (struct type *var_type, struct value *outer)
{
  int others_clause;
  int i;
  const char *discrim_name = ada_variant_discrim_name (var_type);
  struct value *discrim;
  LONGEST discrim_val;

  /* Using plain value_from_contents_and_address here causes problems
     because we will end up trying to resolve a type that is currently
     being constructed.  */
  discrim = ada_value_struct_elt (outer, discrim_name, 1);
  if (discrim == NULL)
    return -1;
  discrim_val = value_as_long (discrim);

  others_clause = -1;
  for (i = 0; i < var_type->num_fields (); i += 1)
    {
      if (ada_is_others_clause (var_type, i))
	others_clause = i;
      else if (ada_in_variant (discrim_val, var_type, i))
	return i;
    }

  return others_clause;
}



				/* Dynamic-Sized Records */

/* Strategy: The type ostensibly attached to a value with dynamic size
   (i.e., a size that is not statically recorded in the debugging
   data) does not accurately reflect the size or layout of the value.
   Our strategy is to convert these values to values with accurate,
   conventional types that are constructed on the fly.  */

/* There is a subtle and tricky problem here.  In general, we cannot
   determine the size of dynamic records without its data.  However,
   the 'struct value' data structure, which GDB uses to represent
   quantities in the inferior process (the target), requires the size
   of the type at the time of its allocation in order to reserve space
   for GDB's internal copy of the data.  That's why the
   'to_fixed_xxx_type' routines take (target) addresses as parameters,
   rather than struct value*s.

   However, GDB's internal history variables ($1, $2, etc.) are
   struct value*s containing internal copies of the data that are not, in
   general, the same as the data at their corresponding addresses in
   the target.  Fortunately, the types we give to these values are all
   conventional, fixed-size types (as per the strategy described
   above), so that we don't usually have to perform the
   'to_fixed_xxx_type' conversions to look at their values.
   Unfortunately, there is one exception: if one of the internal
   history variables is an array whose elements are unconstrained
   records, then we will need to create distinct fixed types for each
   element selected.  */

/* The upshot of all of this is that many routines take a (type, host
   address, target address) triple as arguments to represent a value.
   The host address, if non-null, is supposed to contain an internal
   copy of the relevant data; otherwise, the program is to consult the
   target at the target address.  */

/* Assuming that VAL0 represents a pointer value, the result of
   dereferencing it.  Differs from value_ind in its treatment of
   dynamic-sized types.  */

struct value *
ada_value_ind (struct value *val0)
{
  struct value *val = value_ind (val0);

  if (ada_is_tagged_type (val->type (), 0))
    val = ada_tag_value_at_base_address (val);

  return ada_to_fixed_value (val);
}

/* The value resulting from dereferencing any "reference to"
   qualifiers on VAL0.  */

static struct value *
ada_coerce_ref (struct value *val0)
{
  if (val0->type ()->code () == TYPE_CODE_REF)
    {
      struct value *val = val0;

      val = coerce_ref (val);

      if (ada_is_tagged_type (val->type (), 0))
	val = ada_tag_value_at_base_address (val);

      return ada_to_fixed_value (val);
    }
  else
    return val0;
}

/* Return the bit alignment required for field #F of template type TYPE.  */

static unsigned int
field_alignment (struct type *type, int f)
{
  const char *name = type->field (f).name ();
  int len;
  int align_offset;

  /* The field name should never be null, unless the debugging information
     is somehow malformed.  In this case, we assume the field does not
     require any alignment.  */
  if (name == NULL)
    return 1;

  len = strlen (name);

  if (!isdigit (name[len - 1]))
    return 1;

  if (isdigit (name[len - 2]))
    align_offset = len - 2;
  else
    align_offset = len - 1;

  if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
    return TARGET_CHAR_BIT;

  return atoi (name + align_offset) * TARGET_CHAR_BIT;
}

/* Find a typedef or tag symbol named NAME.  Ignores ambiguity.  */

static struct symbol *
ada_find_any_type_symbol (const char *name)
{
  return standard_lookup (name, get_selected_block (nullptr),
			  SEARCH_TYPE_DOMAIN);
}

/* Find a type named NAME.  Ignores ambiguity.  This routine will look
   solely for types defined by debug info, it will not search the GDB
   primitive types.  */

static struct type *
ada_find_any_type (const char *name)
{
  struct symbol *sym = ada_find_any_type_symbol (name);

  if (sym != NULL)
    return sym->type ();

  return NULL;
}

/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
   associated with NAME_SYM's name.  NAME_SYM may itself be a renaming
   symbol, in which case it is returned.  Otherwise, this looks for
   symbols whose name is that of NAME_SYM suffixed with  "___XR".
   Return symbol if found, and NULL otherwise.  */

static bool
ada_is_renaming_symbol (struct symbol *name_sym)
{
  const char *name = name_sym->linkage_name ();
  return strstr (name, "___XR") != NULL;
}

/* Because of GNAT encoding conventions, several GDB symbols may match a
   given type name.  If the type denoted by TYPE0 is to be preferred to
   that of TYPE1 for purposes of type printing, return non-zero;
   otherwise return 0.  */

int
ada_prefer_type (struct type *type0, struct type *type1)
{
  if (type1 == NULL)
    return 1;
  else if (type0 == NULL)
    return 0;
  else if (type1->code () == TYPE_CODE_VOID)
    return 1;
  else if (type0->code () == TYPE_CODE_VOID)
    return 0;
  else if (type1->name () == NULL && type0->name () != NULL)
    return 1;
  else if (ada_is_constrained_packed_array_type (type0))
    return 1;
  else if (ada_is_array_descriptor_type (type0)
	   && !ada_is_array_descriptor_type (type1))
    return 1;
  else
    {
      const char *type0_name = type0->name ();
      const char *type1_name = type1->name ();

      if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
	  && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
	return 1;
    }
  return 0;
}

/* The name of TYPE, which is its TYPE_NAME.  Null if TYPE is
   null.  */

const char *
ada_type_name (struct type *type)
{
  if (type == NULL)
    return NULL;
  return type->name ();
}

/* Search the list of "descriptive" types associated to TYPE for a type
   whose name is NAME.  */

static struct type *
find_parallel_type_by_descriptive_type (struct type *type, const char *name)
{
  struct type *result, *tmp;

  if (ada_ignore_descriptive_types_p)
    return NULL;

  /* If there no descriptive-type info, then there is no parallel type
     to be found.  */
  if (!HAVE_GNAT_AUX_INFO (type))
    return NULL;

  result = TYPE_DESCRIPTIVE_TYPE (type);
  while (result != NULL)
    {
      const char *result_name = ada_type_name (result);

      if (result_name == NULL)
	{
	  warning (_("unexpected null name on descriptive type"));
	  return NULL;
	}

      /* If the names match, stop.  */
      if (strcmp (result_name, name) == 0)
	break;

      /* Otherwise, look at the next item on the list, if any.  */
      if (HAVE_GNAT_AUX_INFO (result))
	tmp = TYPE_DESCRIPTIVE_TYPE (result);
      else
	tmp = NULL;

      /* If not found either, try after having resolved the typedef.  */
      if (tmp != NULL)
	result = tmp;
      else
	{
	  result = check_typedef (result);
	  if (HAVE_GNAT_AUX_INFO (result))
	    result = TYPE_DESCRIPTIVE_TYPE (result);
	  else
	    result = NULL;
	}
    }

  /* If we didn't find a match, see whether this is a packed array.  With
     older compilers, the descriptive type information is either absent or
     irrelevant when it comes to packed arrays so the above lookup fails.
     Fall back to using a parallel lookup by name in this case.  */
  if (result == NULL && ada_is_constrained_packed_array_type (type))
    return ada_find_any_type (name);

  return result;
}

/* Find a parallel type to TYPE with the specified NAME, using the
   descriptive type taken from the debugging information, if available,
   and otherwise using the (slower) name-based method.  */

static struct type *
ada_find_parallel_type_with_name (struct type *type, const char *name)
{
  struct type *result = NULL;

  if (HAVE_GNAT_AUX_INFO (type))
    result = find_parallel_type_by_descriptive_type (type, name);
  else
    result = ada_find_any_type (name);

  return result;
}

/* Same as above, but specify the name of the parallel type by appending
   SUFFIX to the name of TYPE.  */

struct type *
ada_find_parallel_type (struct type *type, const char *suffix)
{
  char *name;
  const char *type_name = ada_type_name (type);
  int len;

  if (type_name == NULL)
    return NULL;

  len = strlen (type_name);

  name = (char *) alloca (len + strlen (suffix) + 1);

  strcpy (name, type_name);
  strcpy (name + len, suffix);

  return ada_find_parallel_type_with_name (type, name);
}

/* If TYPE is a variable-size record type, return the corresponding template
   type describing its fields.  Otherwise, return NULL.  */

static struct type *
dynamic_template_type (struct type *type)
{
  type = ada_check_typedef (type);

  if (type == NULL || type->code () != TYPE_CODE_STRUCT
      || ada_type_name (type) == NULL)
    return NULL;
  else
    {
      int len = strlen (ada_type_name (type));

      if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
	return type;
      else
	return ada_find_parallel_type (type, "___XVE");
    }
}

/* Assuming that TEMPL_TYPE is a union or struct type, returns
   non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size.  */

static int
is_dynamic_field (struct type *templ_type, int field_num)
{
  const char *name = templ_type->field (field_num).name ();

  return name != NULL
    && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
    && strstr (name, "___XVL") != NULL;
}

/* The index of the variant field of TYPE, or -1 if TYPE does not
   represent a variant record type.  */

static int
variant_field_index (struct type *type)
{
  int f;

  if (type == NULL || type->code () != TYPE_CODE_STRUCT)
    return -1;

  for (f = 0; f < type->num_fields (); f += 1)
    {
      if (ada_is_variant_part (type, f))
	return f;
    }
  return -1;
}

/* A record type with no fields.  */

static struct type *
empty_record (struct type *templ)
{
  struct type *type = type_allocator (templ).new_type ();

  type->set_code (TYPE_CODE_STRUCT);
  INIT_NONE_SPECIFIC (type);
  type->set_name ("<empty>");
  type->set_length (0);
  return type;
}

/* An ordinary record type (with fixed-length fields) that describes
   the value of type TYPE at VALADDR or ADDRESS (see comments at
   the beginning of this section) VAL according to GNAT conventions.
   DVAL0 should describe the (portion of a) record that contains any
   necessary discriminants.  It should be NULL if VAL->type () is
   an outer-level type (i.e., as opposed to a branch of a variant.)  A
   variant field (unless unchecked) is replaced by a particular branch
   of the variant.

   If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
   length are not statically known are discarded.  As a consequence,
   VALADDR, ADDRESS and DVAL0 are ignored.

   NOTE: Limitations: For now, we assume that dynamic fields and
   variants occupy whole numbers of bytes.  However, they need not be
   byte-aligned.  */

struct type *
ada_template_to_fixed_record_type_1 (struct type *type,
				     const gdb_byte *valaddr,
				     CORE_ADDR address, struct value *dval0,
				     int keep_dynamic_fields)
{
  struct value *dval;
  struct type *rtype;
  int nfields, bit_len;
  int variant_field;
  long off;
  int fld_bit_len;
  int f;

  scoped_value_mark mark;

  /* Compute the number of fields in this record type that are going
     to be processed: unless keep_dynamic_fields, this includes only
     fields whose position and length are static will be processed.  */
  if (keep_dynamic_fields)
    nfields = type->num_fields ();
  else
    {
      nfields = 0;
      while (nfields < type->num_fields ()
	     && !ada_is_variant_part (type, nfields)
	     && !is_dynamic_field (type, nfields))
	nfields++;
    }

  rtype = type_allocator (type).new_type ();
  rtype->set_code (TYPE_CODE_STRUCT);
  INIT_NONE_SPECIFIC (rtype);
  rtype->alloc_fields (nfields);
  rtype->set_name (ada_type_name (type));
  rtype->set_is_fixed_instance (true);

  off = 0;
  bit_len = 0;
  variant_field = -1;

  for (f = 0; f < nfields; f += 1)
    {
      off = align_up (off, field_alignment (type, f))
	+ type->field (f).loc_bitpos ();
      rtype->field (f).set_loc_bitpos (off);
      rtype->field (f).set_bitsize (0);

      if (ada_is_variant_part (type, f))
	{
	  variant_field = f;
	  fld_bit_len = 0;
	}
      else if (is_dynamic_field (type, f))
	{
	  const gdb_byte *field_valaddr = valaddr;
	  CORE_ADDR field_address = address;
	  struct type *field_type = type->field (f).type ()->target_type ();

	  if (dval0 == NULL)
	    {
	      /* Using plain value_from_contents_and_address here
		 causes problems because we will end up trying to
		 resolve a type that is currently being
		 constructed.  */
	      dval = value_from_contents_and_address_unresolved (rtype,
								 valaddr,
								 address);
	      rtype = dval->type ();
	    }
	  else
	    dval = dval0;

	  /* If the type referenced by this field is an aligner type, we need
	     to unwrap that aligner type, because its size might not be set.
	     Keeping the aligner type would cause us to compute the wrong
	     size for this field, impacting the offset of the all the fields
	     that follow this one.  */
	  if (ada_is_aligner_type (field_type))
	    {
	      long field_offset = type->field (f).loc_bitpos ();

	      field_valaddr = cond_offset_host (field_valaddr, field_offset);
	      field_address = cond_offset_target (field_address, field_offset);
	      field_type = ada_aligned_type (field_type);
	    }

	  field_valaddr = cond_offset_host (field_valaddr,
					    off / TARGET_CHAR_BIT);
	  field_address = cond_offset_target (field_address,
					      off / TARGET_CHAR_BIT);

	  /* Get the fixed type of the field.  Note that, in this case,
	     we do not want to get the real type out of the tag: if
	     the current field is the parent part of a tagged record,
	     we will get the tag of the object.  Clearly wrong: the real
	     type of the parent is not the real type of the child.  We
	     would end up in an infinite loop.	*/
	  field_type = ada_get_base_type (field_type);
	  field_type = ada_to_fixed_type (field_type, field_valaddr,
					  field_address, dval, 0);

	  rtype->field (f).set_type (field_type);
	  rtype->field (f).set_name (type->field (f).name ());
	  /* The multiplication can potentially overflow.  But because
	     the field length has been size-checked just above, and
	     assuming that the maximum size is a reasonable value,
	     an overflow should not happen in practice.  So rather than
	     adding overflow recovery code to this already complex code,
	     we just assume that it's not going to happen.  */
	  fld_bit_len = rtype->field (f).type ()->length () * TARGET_CHAR_BIT;
	}
      else
	{
	  /* Note: If this field's type is a typedef, it is important
	     to preserve the typedef layer.

	     Otherwise, we might be transforming a typedef to a fat
	     pointer (encoding a pointer to an unconstrained array),
	     into a basic fat pointer (encoding an unconstrained
	     array).  As both types are implemented using the same
	     structure, the typedef is the only clue which allows us
	     to distinguish between the two options.  Stripping it
	     would prevent us from printing this field appropriately.  */
	  rtype->field (f).set_type (type->field (f).type ());
	  rtype->field (f).set_name (type->field (f).name ());
	  if (type->field (f).bitsize () > 0)
	    {
	      fld_bit_len = type->field (f).bitsize ();
	      rtype->field (f).set_bitsize (fld_bit_len);
	    }
	  else
	    {
	      struct type *field_type = type->field (f).type ();

	      /* We need to be careful of typedefs when computing
		 the length of our field.  If this is a typedef,
		 get the length of the target type, not the length
		 of the typedef.  */
	      if (field_type->code () == TYPE_CODE_TYPEDEF)
		field_type = ada_typedef_target_type (field_type);

	      fld_bit_len =
		ada_check_typedef (field_type)->length () * TARGET_CHAR_BIT;
	    }
	}
      if (off + fld_bit_len > bit_len)
	bit_len = off + fld_bit_len;
      off += fld_bit_len;
      rtype->set_length (align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT);
    }

  /* We handle the variant part, if any, at the end because of certain
     odd cases in which it is re-ordered so as NOT to be the last field of
     the record.  This can happen in the presence of representation
     clauses.  */
  if (variant_field >= 0)
    {
      struct type *branch_type;

      off = rtype->field (variant_field).loc_bitpos ();

      if (dval0 == NULL)
	{
	  /* Using plain value_from_contents_and_address here causes
	     problems because we will end up trying to resolve a type
	     that is currently being constructed.  */
	  dval = value_from_contents_and_address_unresolved (rtype, valaddr,
							     address);
	  rtype = dval->type ();
	}
      else
	dval = dval0;

      branch_type =
	to_fixed_variant_branch_type
	(type->field (variant_field).type (),
	 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
	 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
      if (branch_type == NULL)
	{
	  for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
	    rtype->field (f - 1) = rtype->field (f);
	  rtype->set_num_fields (rtype->num_fields () - 1);
	}
      else
	{
	  rtype->field (variant_field).set_type (branch_type);
	  rtype->field (variant_field).set_name ("S");
	  fld_bit_len =
	    rtype->field (variant_field).type ()->length () * TARGET_CHAR_BIT;
	  if (off + fld_bit_len > bit_len)
	    bit_len = off + fld_bit_len;

	  rtype->set_length
	    (align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT);
	}
    }

  /* According to exp_dbug.ads, the size of TYPE for variable-size records
     should contain the alignment of that record, which should be a strictly
     positive value.  If null or negative, then something is wrong, most
     probably in the debug info.  In that case, we don't round up the size
     of the resulting type.  If this record is not part of another structure,
     the current RTYPE length might be good enough for our purposes.  */
  if (type->length () <= 0)
    {
      if (rtype->name ())
	warning (_("Invalid type size for `%s' detected: %s."),
		 rtype->name (), pulongest (type->length ()));
      else
	warning (_("Invalid type size for <unnamed> detected: %s."),
		 pulongest (type->length ()));
    }
  else
    rtype->set_length (align_up (rtype->length (), type->length ()));

  return rtype;
}

/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
   of 1.  */

static struct type *
template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
			       CORE_ADDR address, struct value *dval0)
{
  return ada_template_to_fixed_record_type_1 (type, valaddr,
					      address, dval0, 1);
}

/* An ordinary record type in which ___XVL-convention fields and
   ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
   static approximations, containing all possible fields.  Uses
   no runtime values.  Useless for use in values, but that's OK,
   since the results are used only for type determinations.   Works on both
   structs and unions.  Representation note: to save space, we memorize
   the result of this function in the type::target_type of the
   template type.  */

static struct type *
template_to_static_fixed_type (struct type *type0)
{
  struct type *type;
  int nfields;
  int f;

  /* No need no do anything if the input type is already fixed.  */
  if (type0->is_fixed_instance ())
    return type0;

  /* Likewise if we already have computed the static approximation.  */
  if (type0->target_type () != NULL)
    return type0->target_type ();

  /* Don't clone TYPE0 until we are sure we are going to need a copy.  */
  type = type0;
  nfields = type0->num_fields ();

  /* Whether or not we cloned TYPE0, cache the result so that we don't do
     recompute all over next time.  */
  type0->set_target_type (type);

  for (f = 0; f < nfields; f += 1)
    {
      struct type *field_type = type0->field (f).type ();
      struct type *new_type;

      if (is_dynamic_field (type0, f))
	{
	  field_type = ada_check_typedef (field_type);
	  new_type = to_static_fixed_type (field_type->target_type ());
	}
      else
	new_type = static_unwrap_type (field_type);

      if (new_type != field_type)
	{
	  /* Clone TYPE0 only the first time we get a new field type.  */
	  if (type == type0)
	    {
	      type = type_allocator (type0).new_type ();
	      type0->set_target_type (type);
	      type->set_code (type0->code ());
	      INIT_NONE_SPECIFIC (type);

	      type->copy_fields (type0);

	      type->set_name (ada_type_name (type0));
	      type->set_is_fixed_instance (true);
	      type->set_length (0);
	    }
	  type->field (f).set_type (new_type);
	  type->field (f).set_name (type0->field (f).name ());
	}
    }

  return type;
}

/* Given an object of type TYPE whose contents are at VALADDR and
   whose address in memory is ADDRESS, returns a revision of TYPE,
   which should be a non-dynamic-sized record, in which the variant
   part, if any, is replaced with the appropriate branch.  Looks
   for discriminant values in DVAL0, which can be NULL if the record
   contains the necessary discriminant values.  */

static struct type *
to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
				   CORE_ADDR address, struct value *dval0)
{
  struct value *dval;
  struct type *rtype;
  struct type *branch_type;
  int nfields = type->num_fields ();
  int variant_field = variant_field_index (type);

  if (variant_field == -1)
    return type;

  scoped_value_mark mark;
  if (dval0 == NULL)
    {
      dval = value_from_contents_and_address (type, valaddr, address);
      type = dval->type ();
    }
  else
    dval = dval0;

  rtype = type_allocator (type).new_type ();
  rtype->set_code (TYPE_CODE_STRUCT);
  INIT_NONE_SPECIFIC (rtype);
  rtype->copy_fields (type);

  rtype->set_name (ada_type_name (type));
  rtype->set_is_fixed_instance (true);
  rtype->set_length (type->length ());

  branch_type = to_fixed_variant_branch_type
    (type->field (variant_field).type (),
     cond_offset_host (valaddr,
		       type->field (variant_field).loc_bitpos ()
		       / TARGET_CHAR_BIT),
     cond_offset_target (address,
			 type->field (variant_field).loc_bitpos ()
			 / TARGET_CHAR_BIT), dval);
  if (branch_type == NULL)
    {
      int f;

      for (f = variant_field + 1; f < nfields; f += 1)
	rtype->field (f - 1) = rtype->field (f);
      rtype->set_num_fields (rtype->num_fields () - 1);
    }
  else
    {
      rtype->field (variant_field).set_type (branch_type);
      rtype->field (variant_field).set_name ("S");
      rtype->field (variant_field).set_bitsize (0);
      rtype->set_length (rtype->length () + branch_type->length ());
    }

  rtype->set_length (rtype->length ()
		     - type->field (variant_field).type ()->length ());

  return rtype;
}

/* An ordinary record type (with fixed-length fields) that describes
   the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
   beginning of this section].   Any necessary discriminants' values
   should be in DVAL, a record value; it may be NULL if the object
   at ADDR itself contains any necessary discriminant values.
   Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
   values from the record are needed.  Except in the case that DVAL,
   VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
   unchecked) is replaced by a particular branch of the variant.

   NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
   is questionable and may be removed.  It can arise during the
   processing of an unconstrained-array-of-record type where all the
   variant branches have exactly the same size.  This is because in
   such cases, the compiler does not bother to use the XVS convention
   when encoding the record.  I am currently dubious of this
   shortcut and suspect the compiler should be altered.  FIXME.  */

static struct type *
to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
		      CORE_ADDR address, struct value *dval)
{
  struct type *templ_type;

  if (type0->is_fixed_instance ())
    return type0;

  templ_type = dynamic_template_type (type0);

  if (templ_type != NULL)
    return template_to_fixed_record_type (templ_type, valaddr, address, dval);
  else if (variant_field_index (type0) >= 0)
    {
      if (dval == NULL && valaddr == NULL && address == 0)
	return type0;
      return to_record_with_fixed_variant_part (type0, valaddr, address,
						dval);
    }
  else
    {
      type0->set_is_fixed_instance (true);
      return type0;
    }

}

/* An ordinary record type (with fixed-length fields) that describes
   the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
   union type.  Any necessary discriminants' values should be in DVAL,
   a record value.  That is, this routine selects the appropriate
   branch of the union at ADDR according to the discriminant value
   indicated in the union's type name.  Returns VAR_TYPE0 itself if
   it represents a variant subject to a pragma Unchecked_Union.  */

static struct type *
to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
			      CORE_ADDR address, struct value *dval)
{
  int which;
  struct type *templ_type;
  struct type *var_type;

  if (var_type0->code () == TYPE_CODE_PTR)
    var_type = var_type0->target_type ();
  else
    var_type = var_type0;

  templ_type = ada_find_parallel_type (var_type, "___XVU");

  if (templ_type != NULL)
    var_type = templ_type;

  if (is_unchecked_variant (var_type, dval->type ()))
      return var_type0;
  which = ada_which_variant_applies (var_type, dval);

  if (which < 0)
    return empty_record (var_type);
  else if (is_dynamic_field (var_type, which))
    return to_fixed_record_type
      (var_type->field (which).type ()->target_type(), valaddr, address, dval);
  else if (variant_field_index (var_type->field (which).type ()) >= 0)
    return
      to_fixed_record_type
      (var_type->field (which).type (), valaddr, address, dval);
  else
    return var_type->field (which).type ();
}

/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
   ENCODING_TYPE, a type following the GNAT conventions for discrete
   type encodings, only carries redundant information.  */

static int
ada_is_redundant_range_encoding (struct type *range_type,
				 struct type *encoding_type)
{
  const char *bounds_str;
  int n;
  LONGEST lo, hi;

  gdb_assert (range_type->code () == TYPE_CODE_RANGE);

  if (get_base_type (range_type)->code ()
      != get_base_type (encoding_type)->code ())
    {
      /* The compiler probably used a simple base type to describe
	 the range type instead of the range's actual base type,
	 expecting us to get the real base type from the encoding
	 anyway.  In this situation, the encoding cannot be ignored
	 as redundant.  */
      return 0;
    }

  if (is_dynamic_type (range_type))
    return 0;

  if (encoding_type->name () == NULL)
    return 0;

  bounds_str = strstr (encoding_type->name (), "___XDLU_");
  if (bounds_str == NULL)
    return 0;

  n = 8; /* Skip "___XDLU_".  */
  if (!ada_scan_number (bounds_str, n, &lo, &n))
    return 0;
  if (range_type->bounds ()->low.const_val () != lo)
    return 0;

  n += 2; /* Skip the "__" separator between the two bounds.  */
  if (!ada_scan_number (bounds_str, n, &hi, &n))
    return 0;
  if (range_type->bounds ()->high.const_val () != hi)
    return 0;

  return 1;
}

/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
   a type following the GNAT encoding for describing array type
   indices, only carries redundant information.  */

static int
ada_is_redundant_index_type_desc (struct type *array_type,
				  struct type *desc_type)
{
  struct type *this_layer = check_typedef (array_type);
  int i;

  for (i = 0; i < desc_type->num_fields (); i++)
    {
      if (!ada_is_redundant_range_encoding (this_layer->index_type (),
					    desc_type->field (i).type ()))
	return 0;
      this_layer = check_typedef (this_layer->target_type ());
    }

  return 1;
}

/* Assuming that TYPE0 is an array type describing the type of a value
   at ADDR, and that DVAL describes a record containing any
   discriminants used in TYPE0, returns a type for the value that
   contains no dynamic components (that is, no components whose sizes
   are determined by run-time quantities).  Unless IGNORE_TOO_BIG is
   true, gives an error message if the resulting type's size is over
   varsize_limit.  */

static struct type *
to_fixed_array_type (struct type *type0, struct value *dval,
		     int ignore_too_big)
{
  struct type *index_type_desc;
  struct type *result;
  int constrained_packed_array_p;
  static const char *xa_suffix = "___XA";

  type0 = ada_check_typedef (type0);
  if (type0->is_fixed_instance ())
    return type0;

  constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
  if (constrained_packed_array_p)
    {
      type0 = decode_constrained_packed_array_type (type0);
      if (type0 == nullptr)
	error (_("could not decode constrained packed array type"));
    }

  index_type_desc = ada_find_parallel_type (type0, xa_suffix);

  /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
     encoding suffixed with 'P' may still be generated.  If so,
     it should be used to find the XA type.  */

  if (index_type_desc == NULL)
    {
      const char *type_name = ada_type_name (type0);

      if (type_name != NULL)
	{
	  const int len = strlen (type_name);
	  char *name = (char *) alloca (len + strlen (xa_suffix));

	  if (type_name[len - 1] == 'P')
	    {
	      strcpy (name, type_name);
	      strcpy (name + len - 1, xa_suffix);
	      index_type_desc = ada_find_parallel_type_with_name (type0, name);
	    }
	}
    }

  ada_fixup_array_indexes_type (index_type_desc);
  if (index_type_desc != NULL
      && ada_is_redundant_index_type_desc (type0, index_type_desc))
    {
      /* Ignore this ___XA parallel type, as it does not bring any
	 useful information.  This allows us to avoid creating fixed
	 versions of the array's index types, which would be identical
	 to the original ones.  This, in turn, can also help avoid
	 the creation of fixed versions of the array itself.  */
      index_type_desc = NULL;
    }

  if (index_type_desc == NULL)
    {
      struct type *elt_type0 = ada_check_typedef (type0->target_type ());

      /* NOTE: elt_type---the fixed version of elt_type0---should never
	 depend on the contents of the array in properly constructed
	 debugging data.  */
      /* Create a fixed version of the array element type.
	 We're not providing the address of an element here,
	 and thus the actual object value cannot be inspected to do
	 the conversion.  This should not be a problem, since arrays of
	 unconstrained objects are not allowed.  In particular, all
	 the elements of an array of a tagged type should all be of
	 the same type specified in the debugging info.  No need to
	 consult the object tag.  */
      struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);

      /* Make sure we always create a new array type when dealing with
	 packed array types, since we're going to fix-up the array
	 type length and element bitsize a little further down.  */
      if (elt_type0 == elt_type && !constrained_packed_array_p)
	result = type0;
      else
	{
	  type_allocator alloc (type0);
	  result = create_array_type (alloc, elt_type, type0->index_type ());
	}
    }
  else
    {
      int i;
      struct type *elt_type0;

      elt_type0 = type0;
      for (i = index_type_desc->num_fields (); i > 0; i -= 1)
	elt_type0 = elt_type0->target_type ();

      /* NOTE: result---the fixed version of elt_type0---should never
	 depend on the contents of the array in properly constructed
	 debugging data.  */
      /* Create a fixed version of the array element type.
	 We're not providing the address of an element here,
	 and thus the actual object value cannot be inspected to do
	 the conversion.  This should not be a problem, since arrays of
	 unconstrained objects are not allowed.  In particular, all
	 the elements of an array of a tagged type should all be of
	 the same type specified in the debugging info.  No need to
	 consult the object tag.  */
      result =
	ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);

      elt_type0 = type0;
      for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
	{
	  struct type *range_type =
	    to_fixed_range_type (index_type_desc->field (i).type (), dval);

	  type_allocator alloc (elt_type0);
	  result = create_array_type (alloc, result, range_type);
	  elt_type0 = elt_type0->target_type ();
	}
    }

  /* We want to preserve the type name.  This can be useful when
     trying to get the type name of a value that has already been
     printed (for instance, if the user did "print VAR; whatis $".  */
  result->set_name (type0->name ());

  if (constrained_packed_array_p)
    {
      /* So far, the resulting type has been created as if the original
	 type was a regular (non-packed) array type.  As a result, the
	 bitsize of the array elements needs to be set again, and the array
	 length needs to be recomputed based on that bitsize.  */
      int len = result->length () / result->target_type ()->length ();
      int elt_bitsize = type0->field (0).bitsize ();

      result->field (0).set_bitsize (elt_bitsize);
      result->set_length (len * elt_bitsize / HOST_CHAR_BIT);
      if (result->length () * HOST_CHAR_BIT < len * elt_bitsize)
	result->set_length (result->length () + 1);
    }

  result->set_is_fixed_instance (true);
  return result;
}


/* A standard type (containing no dynamically sized components)
   corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
   DVAL describes a record containing any discriminants used in TYPE0,
   and may be NULL if there are none, or if the object of type TYPE at
   ADDRESS or in VALADDR contains these discriminants.
   
   If CHECK_TAG is not null, in the case of tagged types, this function
   attempts to locate the object's tag and use it to compute the actual
   type.  However, when ADDRESS is null, we cannot use it to determine the
   location of the tag, and therefore compute the tagged type's actual type.
   So we return the tagged type without consulting the tag.  */
   
static struct type *
ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
		   CORE_ADDR address, struct value *dval, int check_tag)
{
  type = ada_check_typedef (type);

  /* Only un-fixed types need to be handled here.  */
  if (!HAVE_GNAT_AUX_INFO (type))
    return type;

  switch (type->code ())
    {
    default:
      return type;
    case TYPE_CODE_STRUCT:
      {
	struct type *static_type = to_static_fixed_type (type);
	struct type *fixed_record_type =
	  to_fixed_record_type (type, valaddr, address, NULL);

	/* If STATIC_TYPE is a tagged type and we know the object's address,
	   then we can determine its tag, and compute the object's actual
	   type from there.  Note that we have to use the fixed record
	   type (the parent part of the record may have dynamic fields
	   and the way the location of _tag is expressed may depend on
	   them).  */

	if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
	  {
	    struct value *tag =
	      value_tag_from_contents_and_address
	      (fixed_record_type,
	       valaddr,
	       address);
	    struct type *real_type = type_from_tag (tag);
	    struct value *obj =
	      value_from_contents_and_address (fixed_record_type,
					       valaddr,
					       address);
	    fixed_record_type = obj->type ();
	    if (real_type != NULL)
	      return to_fixed_record_type
		(real_type, NULL,
		 ada_tag_value_at_base_address (obj)->address (), NULL);
	  }

	/* Check to see if there is a parallel ___XVZ variable.
	   If there is, then it provides the actual size of our type.  */
	else if (ada_type_name (fixed_record_type) != NULL)
	  {
	    const char *name = ada_type_name (fixed_record_type);
	    char *xvz_name
	      = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
	    bool xvz_found = false;
	    LONGEST size;

	    xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
	    try
	      {
		xvz_found = get_int_var_value (xvz_name, size);
	      }
	    catch (const gdb_exception_error &except)
	      {
		/* We found the variable, but somehow failed to read
		   its value.  Rethrow the same error, but with a little
		   bit more information, to help the user understand
		   what went wrong (Eg: the variable might have been
		   optimized out).  */
		throw_error (except.error,
			     _("unable to read value of %s (%s)"),
			     xvz_name, except.what ());
	      }

	    if (xvz_found && fixed_record_type->length () != size)
	      {
		fixed_record_type = copy_type (fixed_record_type);
		fixed_record_type->set_length (size);

		/* The FIXED_RECORD_TYPE may have be a stub.  We have
		   observed this when the debugging info is STABS, and
		   apparently it is something that is hard to fix.

		   In practice, we don't need the actual type definition
		   at all, because the presence of the XVZ variable allows us
		   to assume that there must be a XVS type as well, which we
		   should be able to use later, when we need the actual type
		   definition.

		   In the meantime, pretend that the "fixed" type we are
		   returning is NOT a stub, because this can cause trouble
		   when using this type to create new types targeting it.
		   Indeed, the associated creation routines often check
		   whether the target type is a stub and will try to replace
		   it, thus using a type with the wrong size.  This, in turn,
		   might cause the new type to have the wrong size too.
		   Consider the case of an array, for instance, where the size
		   of the array is computed from the number of elements in
		   our array multiplied by the size of its element.  */
		fixed_record_type->set_is_stub (false);
	      }
	  }
	return fixed_record_type;
      }
    case TYPE_CODE_ARRAY:
      return to_fixed_array_type (type, dval, 1);
    case TYPE_CODE_UNION:
      if (dval == NULL)
	return type;
      else
	return to_fixed_variant_branch_type (type, valaddr, address, dval);
    }
}

/* The same as ada_to_fixed_type_1, except that it preserves the type
   if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.

   The typedef layer needs be preserved in order to differentiate between
   arrays and array pointers when both types are implemented using the same
   fat pointer.  In the array pointer case, the pointer is encoded as
   a typedef of the pointer type.  For instance, considering:

	  type String_Access is access String;
	  S1 : String_Access := null;

   To the debugger, S1 is defined as a typedef of type String.  But
   to the user, it is a pointer.  So if the user tries to print S1,
   we should not dereference the array, but print the array address
   instead.

   If we didn't preserve the typedef layer, we would lose the fact that
   the type is to be presented as a pointer (needs de-reference before
   being printed).  And we would also use the source-level type name.  */

struct type *
ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
		   CORE_ADDR address, struct value *dval, int check_tag)

{
  struct type *fixed_type =
    ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);

  /*  If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
      then preserve the typedef layer.

      Implementation note: We can only check the main-type portion of
      the TYPE and FIXED_TYPE, because eliminating the typedef layer
      from TYPE now returns a type that has the same instance flags
      as TYPE.  For instance, if TYPE is a "typedef const", and its
      target type is a "struct", then the typedef elimination will return
      a "const" version of the target type.  See check_typedef for more
      details about how the typedef layer elimination is done.

      brobecker/2010-11-19: It seems to me that the only case where it is
      useful to preserve the typedef layer is when dealing with fat pointers.
      Perhaps, we could add a check for that and preserve the typedef layer
      only in that situation.  But this seems unnecessary so far, probably
      because we call check_typedef/ada_check_typedef pretty much everywhere.
      */
  if (type->code () == TYPE_CODE_TYPEDEF
      && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
	  == TYPE_MAIN_TYPE (fixed_type)))
    return type;

  return fixed_type;
}

/* A standard (static-sized) type corresponding as well as possible to
   TYPE0, but based on no runtime data.  */

static struct type *
to_static_fixed_type (struct type *type0)
{
  struct type *type;

  if (type0 == NULL)
    return NULL;

  if (type0->is_fixed_instance ())
    return type0;

  type0 = ada_check_typedef (type0);

  switch (type0->code ())
    {
    default:
      return type0;
    case TYPE_CODE_STRUCT:
      type = dynamic_template_type (type0);
      if (type != NULL)
	return template_to_static_fixed_type (type);
      else
	return template_to_static_fixed_type (type0);
    case TYPE_CODE_UNION:
      type = ada_find_parallel_type (type0, "___XVU");
      if (type != NULL)
	return template_to_static_fixed_type (type);
      else
	return template_to_static_fixed_type (type0);
    }
}

/* A static approximation of TYPE with all type wrappers removed.  */

static struct type *
static_unwrap_type (struct type *type)
{
  if (ada_is_aligner_type (type))
    {
      struct type *type1 = ada_check_typedef (type)->field (0).type ();
      if (ada_type_name (type1) == NULL)
	type1->set_name (ada_type_name (type));

      return static_unwrap_type (type1);
    }
  else
    {
      struct type *raw_real_type = ada_get_base_type (type);

      if (raw_real_type == type)
	return type;
      else
	return to_static_fixed_type (raw_real_type);
    }
}

/* In some cases, incomplete and private types require
   cross-references that are not resolved as records (for example,
      type Foo;
      type FooP is access Foo;
      V: FooP;
      type Foo is array ...;
   ).  In these cases, since there is no mechanism for producing
   cross-references to such types, we instead substitute for FooP a
   stub enumeration type that is nowhere resolved, and whose tag is
   the name of the actual type.  Call these types "non-record stubs".  */

/* A type equivalent to TYPE that is not a non-record stub, if one
   exists, otherwise TYPE.  */

struct type *
ada_check_typedef (struct type *type)
{
  if (type == NULL)
    return NULL;

  /* If our type is an access to an unconstrained array, which is encoded
     as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
     We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
     what allows us to distinguish between fat pointers that represent
     array types, and fat pointers that represent array access types
     (in both cases, the compiler implements them as fat pointers).  */
  if (ada_is_access_to_unconstrained_array (type))
    return type;

  type = check_typedef (type);
  if (type == NULL || type->code () != TYPE_CODE_ENUM
      || !type->is_stub ()
      || type->name () == NULL)
    return type;
  else
    {
      const char *name = type->name ();
      struct type *type1 = ada_find_any_type (name);

      if (type1 == NULL)
	return type;

      /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
	 stubs pointing to arrays, as we don't create symbols for array
	 types, only for the typedef-to-array types).  If that's the case,
	 strip the typedef layer.  */
      if (type1->code () == TYPE_CODE_TYPEDEF)
	type1 = ada_check_typedef (type1);

      return type1;
    }
}

/* A value representing the data at VALADDR/ADDRESS as described by
   type TYPE0, but with a standard (static-sized) type that correctly
   describes it.  If VAL0 is not NULL and TYPE0 already is a standard
   type, then return VAL0 [this feature is simply to avoid redundant
   creation of struct values].  */

static struct value *
ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
			   struct value *val0)
{
  struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);

  if (type == type0 && val0 != NULL)
    return val0;

  if (val0->lval () != lval_memory)
    {
      /* Our value does not live in memory; it could be a convenience
	 variable, for instance.  Create a not_lval value using val0's
	 contents.  */
      return value_from_contents (type, val0->contents ().data ());
    }

  return value_from_contents_and_address (type, 0, address);
}

/* A value representing VAL, but with a standard (static-sized) type
   that correctly describes it.  Does not necessarily create a new
   value.  */

struct value *
ada_to_fixed_value (struct value *val)
{
  val = unwrap_value (val);
  val = ada_to_fixed_value_create (val->type (), val->address (), val);
  return val;
}


/* Attributes */

/* Evaluate the 'POS attribute applied to ARG.  */

static LONGEST
pos_atr (struct value *arg)
{
  struct value *val = coerce_ref (arg);
  struct type *type = val->type ();

  if (!discrete_type_p (type))
    error (_("'POS only defined on discrete types"));

  std::optional<LONGEST> result = discrete_position (type, value_as_long (val));
  if (!result.has_value ())
    error (_("enumeration value is invalid: can't find 'POS"));

  return *result;
}

struct value *
ada_pos_atr (struct type *expect_type,
	     struct expression *exp,
	     enum noside noside, enum exp_opcode op,
	     struct value *arg)
{
  struct type *type = builtin_type (exp->gdbarch)->builtin_int;
  if (noside == EVAL_AVOID_SIDE_EFFECTS)
    return value::zero (type, not_lval);
  return value_from_longest (type, pos_atr (arg));
}

/* Evaluate the TYPE'VAL attribute applied to ARG.  */

static struct value *
val_atr (struct type *type, LONGEST val)
{
  gdb_assert (discrete_type_p (type));
  if (type->code () == TYPE_CODE_RANGE)
    type = type->target_type ();
  if (type->code () == TYPE_CODE_ENUM)
    {
      if (val < 0 || val >= type->num_fields ())
	error (_("argument to 'VAL out of range"));
      val = type->field (val).loc_enumval ();
    }
  return value_from_longest (type, val);
}

struct value *
ada_val_atr (struct expression *exp, enum noside noside, struct type *type,
	     struct value *arg)
{
  if (noside == EVAL_AVOID_SIDE_EFFECTS)
    return value::zero (type, not_lval);

  if (!discrete_type_p (type))
    error (_("'VAL only defined on discrete types"));
  if (!integer_type_p (arg->type ()))
    error (_("'VAL requires integral argument"));

  return val_atr (type, value_as_long (arg));
}

/* Implementation of the enum_rep attribute.  */
struct value *
ada_atr_enum_rep (struct expression *exp, enum noside noside, struct type *type,
		  struct value *arg)
{
  struct type *inttype = builtin_type (exp->gdbarch)->builtin_int;
  if (noside == EVAL_AVOID_SIDE_EFFECTS)
    return value::zero (inttype, not_lval);

  if (type->code () == TYPE_CODE_RANGE)
    type = type->target_type ();
  if (type->code () != TYPE_CODE_ENUM)
    error (_("'Enum_Rep only defined on enum types"));
  if (!types_equal (type, arg->type ()))
    error (_("'Enum_Rep requires argument to have same type as enum"));

  return value_cast (inttype, arg);
}

/* Implementation of the enum_val attribute.  */
struct value *
ada_atr_enum_val (struct expression *exp, enum noside noside, struct type *type,
		  struct value *arg)
{
  struct type *original_type = type;
  if (noside == EVAL_AVOID_SIDE_EFFECTS)
    return value::zero (original_type, not_lval);

  if (type->code () == TYPE_CODE_RANGE)
    type = type->target_type ();
  if (type->code () != TYPE_CODE_ENUM)
    error (_("'Enum_Val only defined on enum types"));
  if (!integer_type_p (arg->type ()))
    error (_("'Enum_Val requires integral argument"));

  LONGEST value = value_as_long (arg);
  for (int i = 0; i < type->num_fields (); ++i)
    {
      if (type->field (i).loc_enumval () == value)
	return value_from_longest (original_type, value);
    }

  error (_("value %s not found in enum"), plongest (value));
}



				/* Evaluation */

/* True if TYPE appears to be an Ada character type.
   [At the moment, this is true only for Character and Wide_Character;
   It is a heuristic test that could stand improvement].  */

bool
ada_is_character_type (struct type *type)
{
  const char *name;

  /* If the type code says it's a character, then assume it really is,
     and don't check any further.  */
  if (type->code () == TYPE_CODE_CHAR)
    return true;
  
  /* Otherwise, assume it's a character type iff it is a discrete type
     with a known character type name.  */
  name = ada_type_name (type);
  return (name != NULL
	  && (type->code () == TYPE_CODE_INT
	      || type->code () == TYPE_CODE_RANGE)
	  && (strcmp (name, "character") == 0
	      || strcmp (name, "wide_character") == 0
	      || strcmp (name, "wide_wide_character") == 0
	      || strcmp (name, "unsigned char") == 0));
}

/* True if TYPE appears to be an Ada string type.  */

bool
ada_is_string_type (struct type *type)
{
  type = ada_check_typedef (type);
  if (type != NULL
      && type->code () != TYPE_CODE_PTR
      && (ada_is_simple_array_type (type)
	  || ada_is_array_descriptor_type (type))
      && ada_array_arity (type) == 1)
    {
      struct type *elttype = ada_array_element_type (type, 1);

      return ada_is_character_type (elttype);
    }
  else
    return false;
}

/* The compiler sometimes provides a parallel XVS type for a given
   PAD type.  Normally, it is safe to follow the PAD type directly,
   but older versions of the compiler have a bug that causes the offset
   of its "F" field to be wrong.  Following that field in that case
   would lead to incorrect results, but this can be worked around
   by ignoring the PAD type and using the associated XVS type instead.

   Set to True if the debugger should trust the contents of PAD types.
   Otherwise, ignore the PAD type if there is a parallel XVS type.  */
static bool trust_pad_over_xvs = true;

/* True if TYPE is a struct type introduced by the compiler to force the
   alignment of a value.  Such types have a single field with a
   distinctive name.  */

int
ada_is_aligner_type (struct type *type)
{
  type = ada_check_typedef (type);

  if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
    return 0;

  return (type->code () == TYPE_CODE_STRUCT
	  && type->num_fields () == 1
	  && strcmp (type->field (0).name (), "F") == 0);
}

/* If there is an ___XVS-convention type parallel to SUBTYPE, return
   the parallel type.  */

struct type *
ada_get_base_type (struct type *raw_type)
{
  struct type *real_type_namer;
  struct type *raw_real_type;

  if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
    return raw_type;

  if (ada_is_aligner_type (raw_type))
    /* The encoding specifies that we should always use the aligner type.
       So, even if this aligner type has an associated XVS type, we should
       simply ignore it.

       According to the compiler gurus, an XVS type parallel to an aligner
       type may exist because of a stabs limitation.  In stabs, aligner
       types are empty because the field has a variable-sized type, and
       thus cannot actually be used as an aligner type.  As a result,
       we need the associated parallel XVS type to decode the type.
       Since the policy in the compiler is to not change the internal
       representation based on the debugging info format, we sometimes
       end up having a redundant XVS type parallel to the aligner type.  */
    return raw_type;

  real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
  if (real_type_namer == NULL
      || real_type_namer->code () != TYPE_CODE_STRUCT
      || real_type_namer->num_fields () != 1)
    return raw_type;

  if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
    {
      /* This is an older encoding form where the base type needs to be
	 looked up by name.  We prefer the newer encoding because it is
	 more efficient.  */
      raw_real_type = ada_find_any_type (real_type_namer->field (0).name ());
      if (raw_real_type == NULL)
	return raw_type;
      else
	return raw_real_type;
    }

  /* The field in our XVS type is a reference to the base type.  */
  return real_type_namer->field (0).type ()->target_type ();
}

/* The type of value designated by TYPE, with all aligners removed.  */

struct type *
ada_aligned_type (struct type *type)
{
  if (ada_is_aligner_type (type))
    return ada_aligned_type (type->field (0).type ());
  else
    return ada_get_base_type (type);
}


/* The address of the aligned value in an object at address VALADDR
   having type TYPE.  Assumes ada_is_aligner_type (TYPE).  */

const gdb_byte *
ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
{
  if (ada_is_aligner_type (type))
    return ada_aligned_value_addr
      (type->field (0).type (),
       valaddr + type->field (0).loc_bitpos () / TARGET_CHAR_BIT);
  else
    return valaddr;
}



/* The printed representation of an enumeration literal with encoded
   name NAME.  The value is good to the next call of ada_enum_name.  */
const char *
ada_enum_name (const char *name)
{
  static std::string storage;
  const char *tmp;

  /* First, unqualify the enumeration name:
     1. Search for the last '.' character.  If we find one, then skip
     all the preceding characters, the unqualified name starts
     right after that dot.
     2. Otherwise, we may be debugging on a target where the compiler
     translates dots into "__".  Search forward for double underscores,
     but stop searching when we hit an overloading suffix, which is
     of the form "__" followed by digits.  */

  tmp = strrchr (name, '.');
  if (tmp != NULL)
    name = tmp + 1;
  else
    {
      while ((tmp = strstr (name, "__")) != NULL)
	{
	  if (isdigit (tmp[2]))
	    break;
	  else
	    name = tmp + 2;
	}
    }

  if (name[0] == 'Q')
    {
      int v;

      if (name[1] == 'U' || name[1] == 'W')
	{
	  int offset = 2;
	  if (name[1] == 'W' && name[2] == 'W')
	    {
	      /* Also handle the QWW case.  */
	      ++offset;
	    }
	  if (sscanf (name + offset, "%x", &v) != 1)
	    return name;
	}
      else if (((name[1] >= '0' && name[1] <= '9')
		|| (name[1] >= 'a' && name[1] <= 'z'))
	       && name[2] == '\0')
	{
	  storage = string_printf ("'%c'", name[1]);
	  return storage.c_str ();
	}
      else
	return name;

      if (isascii (v) && isprint (v))
	storage = string_printf ("'%c'", v);
      else if (name[1] == 'U')
	storage = string_printf ("'[\"%02x\"]'", v);
      else if (name[2] != 'W')
	storage = string_printf ("'[\"%04x\"]'", v);
      else
	storage = string_printf ("'[\"%06x\"]'", v);

      return storage.c_str ();
    }
  else
    {
      tmp = strstr (name, "__");
      if (tmp == NULL)
	tmp = strstr (name, "$");
      if (tmp != NULL)
	{
	  storage = std::string (name, tmp - name);
	  return storage.c_str ();
	}

      return name;
    }
}

/* If TYPE is a dynamic type, return the base type.  Otherwise, if
   there is no parallel type, return nullptr.  */

static struct type *
find_base_type (struct type *type)
{
  struct type *raw_real_type
    = ada_check_typedef (ada_get_base_type (type));

  /* No parallel XVS or XVE type.  */
  if (type == raw_real_type
      && ada_find_parallel_type (type, "___XVE") == nullptr)
    return nullptr;

  return raw_real_type;
}

/* If VAL is wrapped in an aligner or subtype wrapper, return the
   value it wraps.  */

static struct value *
unwrap_value (struct value *val)
{
  struct type *type = ada_check_typedef (val->type ());

  if (ada_is_aligner_type (type))
    {
      struct value *v = ada_value_struct_elt (val, "F", 0);
      struct type *val_type = ada_check_typedef (v->type ());

      if (ada_type_name (val_type) == NULL)
	val_type->set_name (ada_type_name (type));

      return unwrap_value (v);
    }
  else
    {
      struct type *raw_real_type = find_base_type (type);
      if (raw_real_type == nullptr)
	return val;

      return
	coerce_unspec_val_to_type
	(val, ada_to_fixed_type (raw_real_type, 0,
				 val->address (),
				 NULL, 1));
    }
}

/* Given two array types T1 and T2, return nonzero iff both arrays
   contain the same number of elements.  */

static int
ada_same_array_size_p (struct type *t1, struct type *t2)
{
  LONGEST lo1, hi1, lo2, hi2;

  /* Get the array bounds in order to verify that the size of
     the two arrays match.  */
  if (!get_array_bounds (t1, &lo1, &hi1)
      || !get_array_bounds (t2, &lo2, &hi2))
    error (_("unable to determine array bounds"));

  /* To make things easier for size comparison, normalize a bit
     the case of empty arrays by making sure that the difference
     between upper bound and lower bound is always -1.  */
  if (lo1 > hi1)
    hi1 = lo1 - 1;
  if (lo2 > hi2)
    hi2 = lo2 - 1;

  return (hi1 - lo1 == hi2 - lo2);
}

/* Assuming that VAL is an array of integrals, and TYPE represents
   an array with the same number of elements, but with wider integral
   elements, return an array "casted" to TYPE.  In practice, this
   means that the returned array is built by casting each element
   of the original array into TYPE's (wider) element type.  */

static struct value *
ada_promote_array_of_integrals (struct type *type, struct value *val)
{
  struct type *elt_type = type->target_type ();
  LONGEST lo, hi;
  LONGEST i;

  /* Verify that both val and type are arrays of scalars, and
     that the size of val's elements is smaller than the size
     of type's element.  */
  gdb_assert (type->code () == TYPE_CODE_ARRAY);
  gdb_assert (is_integral_type (type->target_type ()));
  gdb_assert (val->type ()->code () == TYPE_CODE_ARRAY);
  gdb_assert (is_integral_type (val->type ()->target_type ()));
  gdb_assert (type->target_type ()->length ()
	      > val->type ()->target_type ()->length ());

  if (!get_array_bounds (type, &lo, &hi))
    error (_("unable to determine array bounds"));

  value *res = value::allocate (type);
  gdb::array_view<gdb_byte> res_contents = res->contents_writeable ();

  /* Promote each array element.  */
  for (i = 0; i < hi - lo + 1; i++)
    {
      struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
      int elt_len = elt_type->length ();

      copy (elt->contents_all (), res_contents.slice (elt_len * i, elt_len));
    }

  return res;
}

/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
   return the converted value.  */

static struct value *
coerce_for_assign (struct type *type, struct value *val)
{
  struct type *type2 = val->type ();

  if (type == type2)
    return val;

  type2 = ada_check_typedef (type2);
  type = ada_check_typedef (type);

  if (type2->code () == TYPE_CODE_PTR
      && type->code () == TYPE_CODE_ARRAY)
    {
      val = ada_value_ind (val);
      type2 = val->type ();
    }

  if (type2->code () == TYPE_CODE_ARRAY
      && type->code () == TYPE_CODE_ARRAY)
    {
      if (!ada_same_array_size_p (type, type2))
	error (_("cannot assign arrays of different length"));

      if (is_integral_type (type->target_type ())
	  && is_integral_type (type2->target_type ())
	  && type2->target_type ()->length () < type->target_type ()->length ())
	{
	  /* Allow implicit promotion of the array elements to
	     a wider type.  */
	  return ada_promote_array_of_integrals (type, val);
	}

      if (type2->target_type ()->length () != type->target_type ()->length ())
	error (_("Incompatible types in assignment"));
      val->deprecated_set_type (type);
    }
  return val;
}

static struct value *
ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
{
  struct type *type1, *type2;

  arg1 = coerce_ref (arg1);
  arg2 = coerce_ref (arg2);
  type1 = get_base_type (ada_check_typedef (arg1->type ()));
  type2 = get_base_type (ada_check_typedef (arg2->type ()));

  if (type1->code () != TYPE_CODE_INT
      || type2->code () != TYPE_CODE_INT)
    return value_binop (arg1, arg2, op);

  switch (op)
    {
    case BINOP_MOD:
    case BINOP_DIV:
    case BINOP_REM:
      break;
    default:
      return value_binop (arg1, arg2, op);
    }

  gdb_mpz v2 = value_as_mpz (arg2);
  if (v2.sgn () == 0)
    {
      const char *name;
      if (op == BINOP_MOD)
	name = "mod";
      else if (op == BINOP_DIV)
	name = "/";
      else
	{
	  gdb_assert (op == BINOP_REM);
	  name = "rem";
	}

      error (_("second operand of %s must not be zero."), name);
    }

  if (type1->is_unsigned () || op == BINOP_MOD)
    return value_binop (arg1, arg2, op);

  gdb_mpz v1 = value_as_mpz (arg1);
  gdb_mpz v;
  switch (op)
    {
    case BINOP_DIV:
      v = v1 / v2;
      break;
    case BINOP_REM:
      v = v1 % v2;
      if (v * v1 < 0)
	v -= v2;
      break;
    default:
      /* Should not reach this point.  */
      gdb_assert_not_reached ("invalid operator");
    }

  return value_from_mpz (type1, v);
}

static int
ada_value_equal (struct value *arg1, struct value *arg2)
{
  if (ada_is_direct_array_type (arg1->type ())
      || ada_is_direct_array_type (arg2->type ()))
    {
      struct type *arg1_type, *arg2_type;

      /* Automatically dereference any array reference before
	 we attempt to perform the comparison.  */
      arg1 = ada_coerce_ref (arg1);
      arg2 = ada_coerce_ref (arg2);

      arg1 = ada_coerce_to_simple_array (arg1);
      arg2 = ada_coerce_to_simple_array (arg2);

      arg1_type = ada_check_typedef (arg1->type ());
      arg2_type = ada_check_typedef (arg2->type ());

      if (arg1_type->code () != TYPE_CODE_ARRAY
	  || arg2_type->code () != TYPE_CODE_ARRAY)
	error (_("Attempt to compare array with non-array"));
      /* FIXME: The following works only for types whose
	 representations use all bits (no padding or undefined bits)
	 and do not have user-defined equality.  */
      return (arg1_type->length () == arg2_type->length ()
	      && memcmp (arg1->contents ().data (),
			 arg2->contents ().data (),
			 arg1_type->length ()) == 0);
    }
  return value_equal (arg1, arg2);
}

namespace expr
{

bool
check_objfile (const std::unique_ptr<ada_component> &comp,
	       struct objfile *objfile)
{
  return comp->uses_objfile (objfile);
}

/* See ada-exp.h.  */

void
aggregate_assigner::assign (LONGEST index, operation_up &arg)
{
  scoped_value_mark mark;

  struct value *elt;
  struct type *lhs_type = check_typedef (lhs->type ());

  if (lhs_type->code () == TYPE_CODE_ARRAY)
    {
      struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
      struct value *index_val = value_from_longest (index_type, index);

      elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
    }
  else
    {
      elt = ada_index_struct_field (index, lhs, 0, lhs->type ());
      elt = ada_to_fixed_value (elt);
    }

  scoped_restore save_index = make_scoped_restore (&m_current_index, index);

  ada_aggregate_operation *ag_op
    = dynamic_cast<ada_aggregate_operation *> (arg.get ());
  if (ag_op != nullptr)
    ag_op->assign_aggregate (container, elt, exp);
  else
    value_assign_to_component (container, elt,
			       arg->evaluate (nullptr, exp,
					      EVAL_NORMAL));
}

/* See ada-exp.h.  */

value *
aggregate_assigner::current_value () const
{
  /* Note that using an integer type here is incorrect -- the type
     should be the array's index type.  Unfortunately, though, this
     isn't currently available during parsing and type resolution.  */
  struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
  return value_from_longest (index_type, m_current_index);
}

bool
ada_aggregate_component::uses_objfile (struct objfile *objfile)
{
  if (m_base != nullptr && m_base->uses_objfile (objfile))
    return true;
  for (const auto &item : m_components)
    if (item->uses_objfile (objfile))
      return true;
  return false;
}

void
ada_aggregate_component::dump (ui_file *stream, int depth)
{
  gdb_printf (stream, _("%*sAggregate\n"), depth, "");
  if (m_base != nullptr)
    {
      gdb_printf (stream, _("%*swith delta\n"), depth + 1, "");
      m_base->dump (stream, depth + 2);
    }
  for (const auto &item : m_components)
    item->dump (stream, depth + 1);
}

void
ada_aggregate_component::assign (aggregate_assigner &assigner)
{
  if (m_base != nullptr)
    {
      value *base = m_base->evaluate (nullptr, assigner.exp, EVAL_NORMAL);
      if (ada_is_direct_array_type (base->type ()))
	base = ada_coerce_to_simple_array (base);
      if (!types_deeply_equal (assigner.container->type (), base->type ()))
	error (_("Type mismatch in delta aggregate"));
      value_assign_to_component (assigner.container, assigner.container,
				 base);
    }

  for (auto &item : m_components)
    item->assign (assigner);
}

/* See ada-exp.h.  */

ada_aggregate_component::ada_aggregate_component
     (operation_up &&base, std::vector<ada_component_up> &&components)
       : m_base (std::move (base)),
	 m_components (std::move (components))
{
  for (const auto &component : m_components)
    if (dynamic_cast<const ada_others_component *> (component.get ())
	!= nullptr)
      {
	/* It's invalid and nonsensical to have 'others => ...' with a
	   delta aggregate.  It was simpler to enforce this
	   restriction here as opposed to in the parser.  */
	error (_("'others' invalid in delta aggregate"));
      }
}

/* See ada-exp.h.  */

value *
ada_aggregate_operation::assign_aggregate (struct value *container,
					   struct value *lhs,
					   struct expression *exp)
{
  struct type *lhs_type;
  aggregate_assigner assigner;

  container = ada_coerce_ref (container);
  if (ada_is_direct_array_type (container->type ()))
    container = ada_coerce_to_simple_array (container);
  lhs = ada_coerce_ref (lhs);
  if (!lhs->deprecated_modifiable ())
    error (_("Left operand of assignment is not a modifiable lvalue."));

  lhs_type = check_typedef (lhs->type ());
  if (ada_is_direct_array_type (lhs_type))
    {
      lhs = ada_coerce_to_simple_array (lhs);
      lhs_type = check_typedef (lhs->type ());
      assigner.low = lhs_type->bounds ()->low.const_val ();
      assigner.high = lhs_type->bounds ()->high.const_val ();
    }
  else if (lhs_type->code () == TYPE_CODE_STRUCT)
    {
      assigner.low = 0;
      assigner.high = num_visible_fields (lhs_type) - 1;
    }
  else
    error (_("Left-hand side must be array or record."));

  assigner.indices.push_back (assigner.low - 1);
  assigner.indices.push_back (assigner.low - 1);
  assigner.indices.push_back (assigner.high + 1);
  assigner.indices.push_back (assigner.high + 1);

  assigner.container = container;
  assigner.lhs = lhs;
  assigner.exp = exp;

  std::get<0> (m_storage)->assign (assigner);

  return container;
}

bool
ada_positional_component::uses_objfile (struct objfile *objfile)
{
  return m_op->uses_objfile (objfile);
}

void
ada_positional_component::dump (ui_file *stream, int depth)
{
  gdb_printf (stream, _("%*sPositional, index = %d\n"),
	      depth, "", m_index);
  m_op->dump (stream, depth + 1);
}

/* Assign into the component of LHS indexed by the OP_POSITIONAL
   construct, given that the positions are relative to lower bound
   LOW, where HIGH is the upper bound.  Record the position in
   INDICES.  CONTAINER is as for assign_aggregate.  */
void
ada_positional_component::assign (aggregate_assigner &assigner)
{
  LONGEST ind = m_index + assigner.low;

  if (ind - 1 == assigner.high)
    warning (_("Extra components in aggregate ignored."));
  if (ind <= assigner.high)
    {
      assigner.add_interval (ind, ind);
      assigner.assign (ind, m_op);
    }
}

bool
ada_discrete_range_association::uses_objfile (struct objfile *objfile)
{
  return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
}

void
ada_discrete_range_association::dump (ui_file *stream, int depth)
{
  gdb_printf (stream, _("%*sDiscrete range:\n"), depth, "");
  m_low->dump (stream, depth + 1);
  m_high->dump (stream, depth + 1);
}

void
ada_discrete_range_association::assign (aggregate_assigner &assigner,
					operation_up &op)
{
  LONGEST lower = value_as_long (m_low->evaluate (nullptr, assigner.exp,
						  EVAL_NORMAL));
  LONGEST upper = value_as_long (m_high->evaluate (nullptr, assigner.exp,
						   EVAL_NORMAL));

  if (lower <= upper && (lower < assigner.low || upper > assigner.high))
    error (_("Index in component association out of bounds."));

  assigner.add_interval (lower, upper);
  while (lower <= upper)
    {
      assigner.assign (lower, op);
      lower += 1;
    }
}

bool
ada_name_association::uses_objfile (struct objfile *objfile)
{
  return m_val->uses_objfile (objfile);
}

void
ada_name_association::dump (ui_file *stream, int depth)
{
  gdb_printf (stream, _("%*sName:\n"), depth, "");
  m_val->dump (stream, depth + 1);
}

void
ada_name_association::assign (aggregate_assigner &assigner,
			      operation_up &op)
{
  int index;

  if (ada_is_direct_array_type (assigner.lhs->type ()))
    {
      value *tem = m_val->evaluate (nullptr, assigner.exp, EVAL_NORMAL);
      index = longest_to_int (value_as_long (tem));
    }
  else
    {
      ada_string_operation *strop
	= dynamic_cast<ada_string_operation *> (m_val.get ());

      const char *name;
      if (strop != nullptr)
	name = strop->get_name ();
      else
	{
	  ada_var_value_operation *vvo
	    = dynamic_cast<ada_var_value_operation *> (m_val.get ());
	  if (vvo == nullptr)
	    error (_("Invalid record component association."));
	  name = vvo->get_symbol ()->natural_name ();
	  /* In this scenario, the user wrote (name => expr), but
	     write_name_assoc found some fully-qualified name and
	     substituted it.  This happens because, at parse time, the
	     meaning of the expression isn't known; but here we know
	     that just the base name was supplied and it refers to the
	     name of a field.  */
	  name = ada_unqualified_name (name);
	}

      index = 0;
      if (! find_struct_field (name, assigner.lhs->type (), 0,
			       NULL, NULL, NULL, NULL, &index))
	error (_("Unknown component name: %s."), name);
    }

  assigner.add_interval (index, index);
  assigner.assign (index, op);
}

bool
ada_choices_component::uses_objfile (struct objfile *objfile)
{
  if (m_op->uses_objfile (objfile))
    return true;
  for (const auto &item : m_assocs)
    if (item->uses_objfile (objfile))
      return true;
  return false;
}

void
ada_choices_component::dump (ui_file *stream, int depth)
{
  if (m_name.empty ())
    gdb_printf (stream, _("%*sChoices:\n"), depth, "");
  else
    {
      gdb_printf (stream, _("%*sIterated choices:\n"), depth, "");
      gdb_printf (stream, _("%*sName: %s\n"), depth + 1, "", m_name.c_str ());
    }
  m_op->dump (stream, depth + 1);

  for (const auto &item : m_assocs)
    item->dump (stream, depth + 1);
}

/* Assign into the components of LHS indexed by the OP_CHOICES
   construct at *POS, updating *POS past the construct, given that
   the allowable indices are LOW..HIGH.  Record the indices assigned
   to in INDICES.  CONTAINER is as for assign_aggregate.  */
void
ada_choices_component::assign (aggregate_assigner &assigner)
{
  scoped_restore save_index = make_scoped_restore (&m_assigner, &assigner);
  for (auto &item : m_assocs)
    item->assign (assigner, m_op);
}

void
ada_index_var_operation::dump (struct ui_file *stream, int depth) const
{
  gdb_printf (stream, _("%*sIndex variable: %s\n"), depth, "",
	      m_var->name ().c_str ());
}

value *
ada_index_var_operation::evaluate (struct type *expect_type,
				   struct expression *exp,
				   enum noside noside)
{
  if (noside == EVAL_AVOID_SIDE_EFFECTS)
    {
      /* Note that using an integer type here is incorrect -- the type
	 should be the array's index type.  Unfortunately, though,
	 this isn't currently available during parsing and type
	 resolution.  */
      struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
      return value::zero (index_type, not_lval);
    }

  return m_var->current_value ();
}

bool
ada_others_component::uses_objfile (struct objfile *objfile)
{
  return m_op->uses_objfile (objfile);
}

void
ada_others_component::dump (ui_file *stream, int depth)
{
  gdb_printf (stream, _("%*sOthers:\n"), depth, "");
  m_op->dump (stream, depth + 1);
}

/* Assign the value of the expression in the OP_OTHERS construct in
   EXP at *POS into the components of LHS indexed from LOW .. HIGH that
   have not been previously assigned.  The index intervals already assigned
   are in INDICES.  CONTAINER is as for assign_aggregate.  */
void
ada_others_component::assign (aggregate_assigner &assigner)
{
  int num_indices = assigner.indices.size ();
  for (int i = 0; i < num_indices - 2; i += 2)
    {
      for (LONGEST ind = assigner.indices[i + 1] + 1;
	   ind < assigner.indices[i + 2];
	   ind += 1)
	assigner.assign (ind, m_op);
    }
}

struct value *
ada_assign_operation::evaluate (struct type *expect_type,
				struct expression *exp,
				enum noside noside)
{
  value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
  scoped_restore save_lhs = make_scoped_restore (&m_current, arg1);

  ada_aggregate_operation *ag_op
    = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
  if (ag_op != nullptr)
    {
      if (noside != EVAL_NORMAL)
	return arg1;

      arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
      return ada_value_assign (arg1, arg1);
    }
  /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
     except if the lhs of our assignment is a convenience variable.
     In the case of assigning to a convenience variable, the lhs
     should be exactly the result of the evaluation of the rhs.  */
  struct type *type = arg1->type ();
  if (arg1->lval () == lval_internalvar)
    type = NULL;
  value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
  if (noside == EVAL_AVOID_SIDE_EFFECTS)
    return arg1;
  if (arg1->lval () == lval_internalvar)
    {
      /* Nothing.  */
    }
  else
    arg2 = coerce_for_assign (arg1->type (), arg2);
  return ada_value_assign (arg1, arg2);
}

/* See ada-exp.h.  */

void
aggregate_assigner::add_interval (LONGEST from, LONGEST to)
{
  int i, j;

  int size = indices.size ();
  for (i = 0; i < size; i += 2) {
    if (to >= indices[i] && from <= indices[i + 1])
      {
	int kh;

	for (kh = i + 2; kh < size; kh += 2)
	  if (to < indices[kh])
	    break;
	if (from < indices[i])
	  indices[i] = from;
	indices[i + 1] = indices[kh - 1];
	if (to > indices[i + 1])
	  indices[i + 1] = to;
	memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
	indices.resize (kh - i - 2);
	return;
      }
    else if (to < indices[i])
      break;
  }
	
  indices.resize (indices.size () + 2);
  for (j = indices.size () - 1; j >= i + 2; j -= 1)
    indices[j] = indices[j - 2];
  indices[i] = from;
  indices[i + 1] = to;
}

} /* namespace expr */

/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
   is different.  */

static struct value *
ada_value_cast (struct type *type, struct value *arg2)
{
  if (type == ada_check_typedef (arg2->type ()))
    return arg2;

  return value_cast (type, arg2);
}

/*  Evaluating Ada expressions, and printing their result.
    ------------------------------------------------------

    1. Introduction:
    ----------------

    We usually evaluate an Ada expression in order to print its value.
    We also evaluate an expression in order to print its type, which
    happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
    but we'll focus mostly on the EVAL_NORMAL phase.  In practice, the
    EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
    the evaluation compared to the EVAL_NORMAL, but is otherwise very
    similar.

    Evaluating expressions is a little more complicated for Ada entities
    than it is for entities in languages such as C.  The main reason for
    this is that Ada provides types whose definition might be dynamic.
    One example of such types is variant records.  Or another example
    would be an array whose bounds can only be known at run time.

    The following description is a general guide as to what should be
    done (and what should NOT be done) in order to evaluate an expression
    involving such types, and when.  This does not cover how the semantic
    information is encoded by GNAT as this is covered separatly.  For the
    document used as the reference for the GNAT encoding, see exp_dbug.ads
    in the GNAT sources.

    Ideally, we should embed each part of this description next to its
    associated code.  Unfortunately, the amount of code is so vast right
    now that it's hard to see whether the code handling a particular
    situation might be duplicated or not.  One day, when the code is
    cleaned up, this guide might become redundant with the comments
    inserted in the code, and we might want to remove it.

    2. ``Fixing'' an Entity, the Simple Case:
    -----------------------------------------

    When evaluating Ada expressions, the tricky issue is that they may
    reference entities whose type contents and size are not statically
    known.  Consider for instance a variant record:

       type Rec (Empty : Boolean := True) is record
	  case Empty is
	     when True => null;
	     when False => Value : Integer;
	  end case;
       end record;
       Yes : Rec := (Empty => False, Value => 1);
       No  : Rec := (empty => True);

    The size and contents of that record depends on the value of the
    discriminant (Rec.Empty).  At this point, neither the debugging
    information nor the associated type structure in GDB are able to
    express such dynamic types.  So what the debugger does is to create
    "fixed" versions of the type that applies to the specific object.
    We also informally refer to this operation as "fixing" an object,
    which means creating its associated fixed type.

    Example: when printing the value of variable "Yes" above, its fixed
    type would look like this:

       type Rec is record
	  Empty : Boolean;
	  Value : Integer;
       end record;

    On the other hand, if we printed the value of "No", its fixed type
    would become:

       type Rec is record
	  Empty : Boolean;
       end record;

    Things become a little more complicated when trying to fix an entity
    with a dynamic type that directly contains another dynamic type,
    such as an array of variant records, for instance.  There are
    two possible cases: Arrays, and records.

    3. ``Fixing'' Arrays:
    ---------------------

    The type structure in GDB describes an array in terms of its bounds,
    and the type of its elements.  By design, all elements in the array
    have the same type and we cannot represent an array of variant elements
    using the current type structure in GDB.  When fixing an array,
    we cannot fix the array element, as we would potentially need one
    fixed type per element of the array.  As a result, the best we can do
    when fixing an array is to produce an array whose bounds and size
    are correct (allowing us to read it from memory), but without having
    touched its element type.  Fixing each element will be done later,
    when (if) necessary.

    Arrays are a little simpler to handle than records, because the same
    amount of memory is allocated for each element of the array, even if
    the amount of space actually used by each element differs from element
    to element.  Consider for instance the following array of type Rec:

       type Rec_Array is array (1 .. 2) of Rec;

    The actual amount of memory occupied by each element might be different
    from element to element, depending on the value of their discriminant.
    But the amount of space reserved for each element in the array remains
    fixed regardless.  So we simply need to compute that size using
    the debugging information available, from which we can then determine
    the array size (we multiply the number of elements of the array by
    the size of each element).

    The simplest case is when we have an array of a constrained element
    type. For instance, consider the following type declarations:

	type Bounded_String (Max_Size : Integer) is
	   Length : Integer;
	   Buffer : String (1 .. Max_Size);
	end record;
	type Bounded_String_Array is array (1 ..2) of Bounded_String (80);

    In this case, the compiler describes the array as an array of
    variable-size elements (identified by its XVS suffix) for which
    the size can be read in the parallel XVZ variable.

    In the case of an array of an unconstrained element type, the compiler
    wraps the array element inside a private PAD type.  This type should not
    be shown to the user, and must be "unwrap"'ed before printing.  Note
    that we also use the adjective "aligner" in our code to designate
    these wrapper types.

    In some cases, the size allocated for each element is statically
    known.  In that case, the PAD type already has the correct size,
    and the array element should remain unfixed.

    But there are cases when this size is not statically known.
    For instance, assuming that "Five" is an integer variable:

	type Dynamic is array (1 .. Five) of Integer;
	type Wrapper (Has_Length : Boolean := False) is record
	   Data : Dynamic;
	   case Has_Length is
	      when True => Length : Integer;
	      when False => null;
	   end case;
	end record;
	type Wrapper_Array is array (1 .. 2) of Wrapper;

	Hello : Wrapper_Array := (others => (Has_Length => True,
					     Data => (others => 17),
					     Length => 1));


    The debugging info would describe variable Hello as being an
    array of a PAD type.  The size of that PAD type is not statically
    known, but can be determined using a parallel XVZ variable.
    In that case, a copy of the PAD type with the correct size should
    be used for the fixed array.

    3. ``Fixing'' record type objects:
    ----------------------------------

    Things are slightly different from arrays in the case of dynamic
    record types.  In this case, in order to compute the associated
    fixed type, we need to determine the size and offset of each of
    its components.  This, in turn, requires us to compute the fixed
    type of each of these components.

    Consider for instance the example:

	type Bounded_String (Max_Size : Natural) is record
	   Str : String (1 .. Max_Size);
	   Length : Natural;
	end record;
	My_String : Bounded_String (Max_Size => 10);

    In that case, the position of field "Length" depends on the size
    of field Str, which itself depends on the value of the Max_Size
    discriminant.  In order to fix the type of variable My_String,
    we need to fix the type of field Str.  Therefore, fixing a variant
    record requires us to fix each of its components.

    However, if a component does not have a dynamic size, the component
    should not be fixed.  In particular, fields that use a PAD type
    should not fixed.  Here is an example where this might happen
    (assuming type Rec above):

       type Container (Big : Boolean) is record
	  First : Rec;
	  After : Integer;
	  case Big is
	     when True => Another : Integer;
	     when False => null;
	  end case;
       end record;
       My_Container : Container := (Big => False,
				    First => (Empty => True),
				    After => 42);

    In that example, the compiler creates a PAD type for component First,
    whose size is constant, and then positions the component After just
    right after it.  The offset of component After is therefore constant
    in this case.

    The debugger computes the position of each field based on an algorithm
    that uses, among other things, the actual position and size of the field
    preceding it.  Let's now imagine that the user is trying to print
    the value of My_Container.  If the type fixing was recursive, we would
    end up computing the offset of field After based on the size of the
    fixed version of field First.  And since in our example First has
    only one actual field, the size of the fixed type is actually smaller
    than the amount of space allocated to that field, and thus we would
    compute the wrong offset of field After.

    To make things more complicated, we need to watch out for dynamic
    components of variant records (identified by the ___XVL suffix in
    the component name).  Even if the target type is a PAD type, the size
    of that type might not be statically known.  So the PAD type needs
    to be unwrapped and the resulting type needs to be fixed.  Otherwise,
    we might end up with the wrong size for our component.  This can be
    observed with the following type declarations:

	type Octal is new Integer range 0 .. 7;
	type Octal_Array is array (Positive range <>) of Octal;
	pragma Pack (Octal_Array);

	type Octal_Buffer (Size : Positive) is record
	   Buffer : Octal_Array (1 .. Size);
	   Length : Integer;
	end record;

    In that case, Buffer is a PAD type whose size is unset and needs
    to be computed by fixing the unwrapped type.

    4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
    ----------------------------------------------------------

    Lastly, when should the sub-elements of an entity that remained unfixed
    thus far, be actually fixed?

    The answer is: Only when referencing that element.  For instance
    when selecting one component of a record, this specific component
    should be fixed at that point in time.  Or when printing the value
    of a record, each component should be fixed before its value gets
    printed.  Similarly for arrays, the element of the array should be
    fixed when printing each element of the array, or when extracting
    one element out of that array.  On the other hand, fixing should
    not be performed on the elements when taking a slice of an array!

    Note that one of the side effects of miscomputing the offset and
    size of each field is that we end up also miscomputing the size
    of the containing type.  This can have adverse results when computing
    the value of an entity.  GDB fetches the value of an entity based
    on the size of its type, and thus a wrong size causes GDB to fetch
    the wrong amount of memory.  In the case where the computed size is
    too small, GDB fetches too little data to print the value of our
    entity.  Results in this case are unpredictable, as we usually read
    past the buffer containing the data =:-o.  */

/* A helper function for TERNOP_IN_RANGE.  */

static value *
eval_ternop_in_range (struct type *expect_type, struct expression *exp,
		      enum noside noside,
		      value *arg1, value *arg2, value *arg3)
{
  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
  struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
  return
    value_from_longest (type,
			(value_less (arg1, arg3)
			 || value_equal (arg1, arg3))
			&& (value_less (arg2, arg1)
			    || value_equal (arg2, arg1)));
}

/* A helper function for UNOP_NEG.  */

value *
ada_unop_neg (struct type *expect_type,
	      struct expression *exp,
	      enum noside noside, enum exp_opcode op,
	      struct value *arg1)
{
  unop_promote (exp->language_defn, exp->gdbarch, &arg1);
  return value_neg (arg1);
}

/* A helper function for UNOP_IN_RANGE.  */

value *
ada_unop_in_range (struct type *expect_type,
		   struct expression *exp,
		   enum noside noside, enum exp_opcode op,
		   struct value *arg1, struct type *type)
{
  struct value *arg2, *arg3;
  switch (type->code ())
    {
    default:
      lim_warning (_("Membership test incompletely implemented; "
		     "always returns true"));
      type = language_bool_type (exp->language_defn, exp->gdbarch);
      return value_from_longest (type, 1);

    case TYPE_CODE_RANGE:
      arg2 = value_from_longest (type,
				 type->bounds ()->low.const_val ());
      arg3 = value_from_longest (type,
				 type->bounds ()->high.const_val ());
      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
      type = language_bool_type (exp->language_defn, exp->gdbarch);
      return
	value_from_longest (type,
			    (value_less (arg1, arg3)
			     || value_equal (arg1, arg3))
			    && (value_less (arg2, arg1)
				|| value_equal (arg2, arg1)));
    }
}

/* A helper function for OP_ATR_TAG.  */

value *
ada_atr_tag (struct type *expect_type,
	     struct expression *exp,
	     enum noside noside, enum exp_opcode op,
	     struct value *arg1)
{
  if (noside == EVAL_AVOID_SIDE_EFFECTS)
    return value::zero (ada_tag_type (arg1), not_lval);

  return ada_value_tag (arg1);
}

/* A helper function for OP_ATR_SIZE.  */

value *
ada_atr_size (struct type *expect_type,
	      struct expression *exp,
	      enum noside noside, enum exp_opcode op,
	      struct value *arg1)
{
  struct type *type = arg1->type ();

  /* If the argument is a reference, then dereference its type, since
     the user is really asking for the size of the actual object,
     not the size of the pointer.  */
  if (type->code () == TYPE_CODE_REF)
    type = type->target_type ();

  if (noside == EVAL_AVOID_SIDE_EFFECTS)
    return value::zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
  else
    return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
			       TARGET_CHAR_BIT * type->length ());
}

/* A helper function for UNOP_ABS.  */

value *
ada_abs (struct type *expect_type,
	 struct expression *exp,
	 enum noside noside, enum exp_opcode op,
	 struct value *arg1)
{
  unop_promote (exp->language_defn, exp->gdbarch, &arg1);
  if (value_less (arg1, value::zero (arg1->type (), not_lval)))
    return value_neg (arg1);
  else
    return arg1;
}

/* A helper function for BINOP_MUL.  */

value *
ada_mult_binop (struct type *expect_type,
		struct expression *exp,
		enum noside noside, enum exp_opcode op,
		struct value *arg1, struct value *arg2)
{
  if (noside == EVAL_AVOID_SIDE_EFFECTS)
    {
      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
      return value::zero (arg1->type (), not_lval);
    }
  else
    {
      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
      return ada_value_binop (arg1, arg2, op);
    }
}

/* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL.  */

value *
ada_equal_binop (struct type *expect_type,
		 struct expression *exp,
		 enum noside noside, enum exp_opcode op,
		 struct value *arg1, struct value *arg2)
{
  int tem;
  if (noside == EVAL_AVOID_SIDE_EFFECTS)
    tem = 0;
  else
    {
      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
      tem = ada_value_equal (arg1, arg2);
    }
  if (op == BINOP_NOTEQUAL)
    tem = !tem;
  struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
  return value_from_longest (type, tem);
}

/* A helper function for TERNOP_SLICE.  */

value *
ada_ternop_slice (struct expression *exp,
		  enum noside noside,
		  struct value *array, struct value *low_bound_val,
		  struct value *high_bound_val)
{
  LONGEST low_bound;
  LONGEST high_bound;

  low_bound_val = coerce_ref (low_bound_val);
  high_bound_val = coerce_ref (high_bound_val);
  low_bound = value_as_long (low_bound_val);
  high_bound = value_as_long (high_bound_val);

  /* If this is a reference to an aligner type, then remove all
     the aligners.  */
  if (array->type ()->code () == TYPE_CODE_REF
      && ada_is_aligner_type (array->type ()->target_type ()))
    array->type ()->set_target_type
      (ada_aligned_type (array->type ()->target_type ()));

  if (ada_is_any_packed_array_type (array->type ()))
    error (_("cannot slice a packed array"));

  /* If this is a reference to an array or an array lvalue,
     convert to a pointer.  */
  if (array->type ()->code () == TYPE_CODE_REF
      || (array->type ()->code () == TYPE_CODE_ARRAY
	  && array->lval () == lval_memory))
    array = value_addr (array);

  if (noside == EVAL_AVOID_SIDE_EFFECTS
      && ada_is_array_descriptor_type (ada_check_typedef
				       (array->type ())))
    return empty_array (ada_type_of_array (array, 0), low_bound,
			high_bound);

  array = ada_coerce_to_simple_array_ptr (array);

  /* If we have more than one level of pointer indirection,
     dereference the value until we get only one level.  */
  while (array->type ()->code () == TYPE_CODE_PTR
	 && (array->type ()->target_type ()->code ()
	     == TYPE_CODE_PTR))
    array = value_ind (array);

  /* Make sure we really do have an array type before going further,
     to avoid a SEGV when trying to get the index type or the target
     type later down the road if the debug info generated by
     the compiler is incorrect or incomplete.  */
  if (!ada_is_simple_array_type (array->type ()))
    error (_("cannot take slice of non-array"));

  if (ada_check_typedef (array->type ())->code ()
      == TYPE_CODE_PTR)
    {
      struct type *type0 = ada_check_typedef (array->type ());

      if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
	return empty_array (type0->target_type (), low_bound, high_bound);
      else
	{
	  struct type *arr_type0 =
	    to_fixed_array_type (type0->target_type (), NULL, 1);

	  return ada_value_slice_from_ptr (array, arr_type0,
					   longest_to_int (low_bound),
					   longest_to_int (high_bound));
	}
    }
  else if (noside == EVAL_AVOID_SIDE_EFFECTS)
    return array;
  else if (high_bound < low_bound)
    return empty_array (array->type (), low_bound, high_bound);
  else
    return ada_value_slice (array, longest_to_int (low_bound),
			    longest_to_int (high_bound));
}

/* A helper function for BINOP_IN_BOUNDS.  */

value *
ada_binop_in_bounds (struct expression *exp, enum noside noside,
		     struct value *arg1, struct value *arg2, int n)
{
  if (noside == EVAL_AVOID_SIDE_EFFECTS)
    {
      struct type *type = language_bool_type (exp->language_defn,
					      exp->gdbarch);
      return value::zero (type, not_lval);
    }

  struct type *type = ada_index_type (arg2->type (), n, "range");
  if (!type)
    type = arg1->type ();

  value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
  arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));

  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
  type = language_bool_type (exp->language_defn, exp->gdbarch);
  return value_from_longest (type,
			     (value_less (arg1, arg3)
			      || value_equal (arg1, arg3))
			     && (value_less (arg2, arg1)
				 || value_equal (arg2, arg1)));
}

/* A helper function for some attribute operations.  */

static value *
ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
	      struct value *arg1, struct type *type_arg, int tem)
{
  const char *attr_name = nullptr;
  if (op == OP_ATR_FIRST)
    attr_name = "first";
  else if (op == OP_ATR_LAST)
    attr_name = "last";

  if (noside == EVAL_AVOID_SIDE_EFFECTS)
    {
      if (type_arg == NULL)
	type_arg = arg1->type ();

      if (ada_is_constrained_packed_array_type (type_arg))
	type_arg = decode_constrained_packed_array_type (type_arg);

      if (!discrete_type_p (type_arg))
	{
	  switch (op)
	    {
	    default:          /* Should never happen.  */
	      error (_("unexpected attribute encountered"));
	    case OP_ATR_FIRST:
	    case OP_ATR_LAST:
	      type_arg = ada_index_type (type_arg, tem,
					 attr_name);
	      break;
	    case OP_ATR_LENGTH:
	      type_arg = builtin_type (exp->gdbarch)->builtin_int;
	      break;
	    }
	}

      return value::zero (type_arg, not_lval);
    }
  else if (type_arg == NULL)
    {
      arg1 = ada_coerce_ref (arg1);

      if (ada_is_constrained_packed_array_type (arg1->type ()))
	arg1 = ada_coerce_to_simple_array (arg1);

      struct type *type;
      if (op == OP_ATR_LENGTH)
	type = builtin_type (exp->gdbarch)->builtin_int;
      else
	{
	  type = ada_index_type (arg1->type (), tem,
				 attr_name);
	  if (type == NULL)
	    type = builtin_type (exp->gdbarch)->builtin_int;
	}

      switch (op)
	{
	default:          /* Should never happen.  */
	  error (_("unexpected attribute encountered"));
	case OP_ATR_FIRST:
	  return value_from_longest
	    (type, ada_array_bound (arg1, tem, 0));
	case OP_ATR_LAST:
	  return value_from_longest
	    (type, ada_array_bound (arg1, tem, 1));
	case OP_ATR_LENGTH:
	  return value_from_longest
	    (type, ada_array_length (arg1, tem));
	}
    }
  else if (discrete_type_p (type_arg))
    {
      struct type *range_type;
      const char *name = ada_type_name (type_arg);

      range_type = NULL;
      if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
	range_type = to_fixed_range_type (type_arg, NULL);
      if (range_type == NULL)
	range_type = type_arg;
      switch (op)
	{
	default:
	  error (_("unexpected attribute encountered"));
	case OP_ATR_FIRST:
	  return value_from_longest 
	    (range_type, ada_discrete_type_low_bound (range_type));
	case OP_ATR_LAST:
	  return value_from_longest
	    (range_type, ada_discrete_type_high_bound (range_type));
	case OP_ATR_LENGTH:
	  error (_("the 'length attribute applies only to array types"));
	}
    }
  else if (type_arg->code () == TYPE_CODE_FLT)
    error (_("unimplemented type attribute"));
  else
    {
      LONGEST low, high;

      if (ada_is_constrained_packed_array_type (type_arg))
	type_arg = decode_constrained_packed_array_type (type_arg);

      struct type *type;
      if (op == OP_ATR_LENGTH)
	type = builtin_type (exp->gdbarch)->builtin_int;
      else
	{
	  type = ada_index_type (type_arg, tem, attr_name);
	  if (type == NULL)
	    type = builtin_type (exp->gdbarch)->builtin_int;
	}

      switch (op)
	{
	default:
	  error (_("unexpected attribute encountered"));
	case OP_ATR_FIRST:
	  low = ada_array_bound_from_type (type_arg, tem, 0);
	  return value_from_longest (type, low);
	case OP_ATR_LAST:
	  high = ada_array_bound_from_type (type_arg, tem, 1);
	  return value_from_longest (type, high);
	case OP_ATR_LENGTH:
	  low = ada_array_bound_from_type (type_arg, tem, 0);
	  high = ada_array_bound_from_type (type_arg, tem, 1);
	  return value_from_longest (type, high - low + 1);
	}
    }
}

/* A helper function for OP_ATR_MIN and OP_ATR_MAX.  */

struct value *
ada_binop_minmax (struct type *expect_type,
		  struct expression *exp,
		  enum noside noside, enum exp_opcode op,
		  struct value *arg1, struct value *arg2)
{
  if (noside == EVAL_AVOID_SIDE_EFFECTS)
    return value::zero (arg1->type (), not_lval);
  else
    {
      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
      return value_binop (arg1, arg2, op);
    }
}

/* A helper function for BINOP_EXP.  */

struct value *
ada_binop_exp (struct type *expect_type,
	       struct expression *exp,
	       enum noside noside, enum exp_opcode op,
	       struct value *arg1, struct value *arg2)
{
  if (noside == EVAL_AVOID_SIDE_EFFECTS)
    return value::zero (arg1->type (), not_lval);
  else
    {
      /* For integer exponentiation operations,
	 only promote the first argument.  */
      if (is_integral_type (arg2->type ()))
	unop_promote (exp->language_defn, exp->gdbarch, &arg1);
      else
	binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);

      return value_binop (arg1, arg2, op);
    }
}

namespace expr
{

/* See ada-exp.h.  */

operation_up
ada_resolvable::replace (operation_up &&owner,
			 struct expression *exp,
			 bool deprocedure_p,
			 bool parse_completion,
			 innermost_block_tracker *tracker,
			 struct type *context_type)
{
  if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type))
    return (make_operation<ada_funcall_operation>
	    (std::move (owner),
	     std::vector<operation_up> ()));
  return std::move (owner);
}

/* Convert the character literal whose value would be VAL to the
   appropriate value of type TYPE, if there is a translation.
   Otherwise return VAL.  Hence, in an enumeration type ('A', 'B'),
   the literal 'A' (VAL == 65), returns 0.  */

static LONGEST
convert_char_literal (struct type *type, LONGEST val)
{
  char name[12];
  int f;

  if (type == NULL)
    return val;
  type = check_typedef (type);
  if (type->code () != TYPE_CODE_ENUM)
    return val;

  if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
    xsnprintf (name, sizeof (name), "Q%c", (int) val);
  else if (val >= 0 && val < 256)
    xsnprintf (name, sizeof (name), "QU%02x", (unsigned) val);
  else if (val >= 0 && val < 0x10000)
    xsnprintf (name, sizeof (name), "QW%04x", (unsigned) val);
  else
    xsnprintf (name, sizeof (name), "QWW%08lx", (unsigned long) val);
  size_t len = strlen (name);
  for (f = 0; f < type->num_fields (); f += 1)
    {
      /* Check the suffix because an enum constant in a package will
	 have a name like "pkg__QUxx".  This is safe enough because we
	 already have the correct type, and because mangling means
	 there can't be clashes.  */
      const char *ename = type->field (f).name ();
      size_t elen = strlen (ename);

      if (elen >= len && strcmp (name, ename + elen - len) == 0)
	return type->field (f).loc_enumval ();
    }
  return val;
}

value *
ada_char_operation::evaluate (struct type *expect_type,
			      struct expression *exp,
			      enum noside noside)
{
  value *result = long_const_operation::evaluate (expect_type, exp, noside);
  if (expect_type != nullptr)
    result = ada_value_cast (expect_type, result);
  return result;
}

/* See ada-exp.h.  */

operation_up
ada_char_operation::replace (operation_up &&owner,
			     struct expression *exp,
			     bool deprocedure_p,
			     bool parse_completion,
			     innermost_block_tracker *tracker,
			     struct type *context_type)
{
  operation_up result = std::move (owner);

  if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM)
    {
      LONGEST val = as_longest ();
      gdb_assert (result.get () == this);
      std::get<0> (m_storage) = context_type;
      std::get<1> (m_storage) = convert_char_literal (context_type, val);
    }

  return result;
}

value *
ada_wrapped_operation::evaluate (struct type *expect_type,
				 struct expression *exp,
				 enum noside noside)
{
  value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
  if (noside == EVAL_NORMAL)
    result = unwrap_value (result);

  /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
     then we need to perform the conversion manually, because
     evaluate_subexp_standard doesn't do it.  This conversion is
     necessary in Ada because the different kinds of float/fixed
     types in Ada have different representations.

     Similarly, we need to perform the conversion from OP_LONG
     ourselves.  */
  if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
    result = ada_value_cast (expect_type, result);

  return result;
}

void
ada_wrapped_operation::do_generate_ax (struct expression *exp,
				       struct agent_expr *ax,
				       struct axs_value *value,
				       struct type *cast_type)
{
  std::get<0> (m_storage)->generate_ax (exp, ax, value, cast_type);

  struct type *type = value->type;
  if (ada_is_aligner_type (type))
    error (_("Aligner types cannot be handled in agent expressions"));
  else if (find_base_type (type) != nullptr)
    error (_("Dynamic types cannot be handled in agent expressions"));
}

value *
ada_string_operation::evaluate (struct type *expect_type,
				struct expression *exp,
				enum noside noside)
{
  struct type *char_type;
  if (expect_type != nullptr && ada_is_string_type (expect_type))
    char_type = ada_array_element_type (expect_type, 1);
  else
    char_type = language_string_char_type (exp->language_defn, exp->gdbarch);

  const std::string &str = std::get<0> (m_storage);
  const char *encoding;
  switch (char_type->length ())
    {
    case 1:
      {
	/* Simply copy over the data -- this isn't perhaps strictly
	   correct according to the encodings, but it is gdb's
	   historical behavior.  */
	struct type *stringtype
	  = lookup_array_range_type (char_type, 1, str.length ());
	struct value *val = value::allocate (stringtype);
	memcpy (val->contents_raw ().data (), str.c_str (),
		str.length ());
	return val;
      }

    case 2:
      if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
	encoding = "UTF-16BE";
      else
	encoding = "UTF-16LE";
      break;

    case 4:
      if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
	encoding = "UTF-32BE";
      else
	encoding = "UTF-32LE";
      break;

    default:
      error (_("unexpected character type size %s"),
	     pulongest (char_type->length ()));
    }

  auto_obstack converted;
  convert_between_encodings (host_charset (), encoding,
			     (const gdb_byte *) str.c_str (),
			     str.length (), 1,
			     &converted, translit_none);

  struct type *stringtype
    = lookup_array_range_type (char_type, 1,
			       obstack_object_size (&converted)
			       / char_type->length ());
  struct value *val = value::allocate (stringtype);
  memcpy (val->contents_raw ().data (),
	  obstack_base (&converted),
	  obstack_object_size (&converted));
  return val;
}

value *
ada_concat_operation::evaluate (struct type *expect_type,
				struct expression *exp,
				enum noside noside)
{
  /* If one side is a literal, evaluate the other side first so that
     the expected type can be set properly.  */
  const operation_up &lhs_expr = std::get<0> (m_storage);
  const operation_up &rhs_expr = std::get<1> (m_storage);

  value *lhs, *rhs;
  if (dynamic_cast<ada_string_operation *> (lhs_expr.get ()) != nullptr)
    {
      rhs = rhs_expr->evaluate (nullptr, exp, noside);
      lhs = lhs_expr->evaluate (rhs->type (), exp, noside);
    }
  else if (dynamic_cast<ada_char_operation *> (lhs_expr.get ()) != nullptr)
    {
      rhs = rhs_expr->evaluate (nullptr, exp, noside);
      struct type *rhs_type = check_typedef (rhs->type ());
      struct type *elt_type = nullptr;
      if (rhs_type->code () == TYPE_CODE_ARRAY)
	elt_type = rhs_type->target_type ();
      lhs = lhs_expr->evaluate (elt_type, exp, noside);
    }
  else if (dynamic_cast<ada_string_operation *> (rhs_expr.get ()) != nullptr)
    {
      lhs = lhs_expr->evaluate (nullptr, exp, noside);
      rhs = rhs_expr->evaluate (lhs->type (), exp, noside);
    }
  else if (dynamic_cast<ada_char_operation *> (rhs_expr.get ()) != nullptr)
    {
      lhs = lhs_expr->evaluate (nullptr, exp, noside);
      struct type *lhs_type = check_typedef (lhs->type ());
      struct type *elt_type = nullptr;
      if (lhs_type->code () == TYPE_CODE_ARRAY)
	elt_type = lhs_type->target_type ();
      rhs = rhs_expr->evaluate (elt_type, exp, noside);
    }
  else
    return concat_operation::evaluate (expect_type, exp, noside);

  return value_concat (lhs, rhs);
}

value *
ada_qual_operation::evaluate (struct type *expect_type,
			      struct expression *exp,
			      enum noside noside)
{
  struct type *type = std::get<1> (m_storage);
  return std::get<0> (m_storage)->evaluate (type, exp, noside);
}

value *
ada_ternop_range_operation::evaluate (struct type *expect_type,
				      struct expression *exp,
				      enum noside noside)
{
  value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
  value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
  value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
  return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
}

value *
ada_binop_addsub_operation::evaluate (struct type *expect_type,
				      struct expression *exp,
				      enum noside noside)
{
  value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
  value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);

  auto do_op = [this] (LONGEST x, LONGEST y)
    {
      if (std::get<0> (m_storage) == BINOP_ADD)
	return x + y;
      return x - y;
    };

  if (arg1->type ()->code () == TYPE_CODE_PTR)
    return (value_from_longest
	    (arg1->type (),
	     do_op (value_as_long (arg1), value_as_long (arg2))));
  if (arg2->type ()->code () == TYPE_CODE_PTR)
    return (value_from_longest
	    (arg2->type (),
	     do_op (value_as_long (arg1), value_as_long (arg2))));
  /* Preserve the original type for use by the range case below.
     We cannot cast the result to a reference type, so if ARG1 is
     a reference type, find its underlying type.  */
  struct type *type = arg1->type ();
  while (type->code () == TYPE_CODE_REF)
    type = type->target_type ();
  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
  arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
  /* We need to special-case the result with a range.
     This is done for the benefit of "ptype".  gdb's Ada support
     historically used the LHS to set the result type here, so
     preserve this behavior.  */
  if (type->code () == TYPE_CODE_RANGE)
    arg1 = value_cast (type, arg1);
  return arg1;
}

value *
ada_unop_atr_operation::evaluate (struct type *expect_type,
				  struct expression *exp,
				  enum noside noside)
{
  struct type *type_arg = nullptr;
  value *val = nullptr;

  if (std::get<0> (m_storage)->opcode () == OP_TYPE)
    {
      value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
						      EVAL_AVOID_SIDE_EFFECTS);
      type_arg = tem->type ();
    }
  else
    val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);

  return ada_unop_atr (exp, noside, std::get<1> (m_storage),
		       val, type_arg, std::get<2> (m_storage));
}

value *
ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
						 struct expression *exp,
						 enum noside noside)
{
  if (noside == EVAL_AVOID_SIDE_EFFECTS)
    return value::zero (expect_type, not_lval);

  const bound_minimal_symbol &b = std::get<0> (m_storage);
  value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);

  val = ada_value_cast (expect_type, val);

  /* Follow the Ada language semantics that do not allow taking
     an address of the result of a cast (view conversion in Ada).  */
  if (val->lval () == lval_memory)
    {
      if (val->lazy ())
	val->fetch_lazy ();
      val->set_lval (not_lval);
    }
  return val;
}

value *
ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
					    struct expression *exp,
					    enum noside noside)
{
  value *val = evaluate_var_value (noside,
				   std::get<0> (m_storage).block,
				   std::get<0> (m_storage).symbol);

  val = ada_value_cast (expect_type, val);

  /* Follow the Ada language semantics that do not allow taking
     an address of the result of a cast (view conversion in Ada).  */
  if (val->lval () == lval_memory)
    {
      if (val->lazy ())
	val->fetch_lazy ();
      val->set_lval (not_lval);
    }
  return val;
}

value *
ada_var_value_operation::evaluate (struct type *expect_type,
				   struct expression *exp,
				   enum noside noside)
{
  symbol *sym = std::get<0> (m_storage).symbol;

  if (sym->domain () == UNDEF_DOMAIN)
    /* Only encountered when an unresolved symbol occurs in a
       context other than a function call, in which case, it is
       invalid.  */
    error (_("Unexpected unresolved symbol, %s, during evaluation"),
	   sym->print_name ());

  if (noside == EVAL_AVOID_SIDE_EFFECTS)
    {
      struct type *type = static_unwrap_type (sym->type ());
      /* Check to see if this is a tagged type.  We also need to handle
	 the case where the type is a reference to a tagged type, but
	 we have to be careful to exclude pointers to tagged types.
	 The latter should be shown as usual (as a pointer), whereas
	 a reference should mostly be transparent to the user.  */
      if (ada_is_tagged_type (type, 0)
	  || (type->code () == TYPE_CODE_REF
	      && ada_is_tagged_type (type->target_type (), 0)))
	{
	  /* Tagged types are a little special in the fact that the real
	     type is dynamic and can only be determined by inspecting the
	     object's tag.  This means that we need to get the object's
	     value first (EVAL_NORMAL) and then extract the actual object
	     type from its tag.

	     Note that we cannot skip the final step where we extract
	     the object type from its tag, because the EVAL_NORMAL phase
	     results in dynamic components being resolved into fixed ones.
	     This can cause problems when trying to print the type
	     description of tagged types whose parent has a dynamic size:
	     We use the type name of the "_parent" component in order
	     to print the name of the ancestor type in the type description.
	     If that component had a dynamic size, the resolution into
	     a fixed type would result in the loss of that type name,
	     thus preventing us from printing the name of the ancestor
	     type in the type description.  */
	  value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);

	  if (type->code () != TYPE_CODE_REF)
	    {
	      struct type *actual_type;

	      actual_type = type_from_tag (ada_value_tag (arg1));
	      if (actual_type == NULL)
		/* If, for some reason, we were unable to determine
		   the actual type from the tag, then use the static
		   approximation that we just computed as a fallback.
		   This can happen if the debugging information is
		   incomplete, for instance.  */
		actual_type = type;
	      return value::zero (actual_type, not_lval);
	    }
	  else
	    {
	      /* In the case of a ref, ada_coerce_ref takes care
		 of determining the actual type.  But the evaluation
		 should return a ref as it should be valid to ask
		 for its address; so rebuild a ref after coerce.  */
	      arg1 = ada_coerce_ref (arg1);
	      return value_ref (arg1, TYPE_CODE_REF);
	    }
	}

      /* Records and unions for which GNAT encodings have been
	 generated need to be statically fixed as well.
	 Otherwise, non-static fixing produces a type where
	 all dynamic properties are removed, which prevents "ptype"
	 from being able to completely describe the type.
	 For instance, a case statement in a variant record would be
	 replaced by the relevant components based on the actual
	 value of the discriminants.  */
      if ((type->code () == TYPE_CODE_STRUCT
	   && dynamic_template_type (type) != NULL)
	  || (type->code () == TYPE_CODE_UNION
	      && ada_find_parallel_type (type, "___XVU") != NULL))
	return value::zero (to_static_fixed_type (type), not_lval);
    }

  value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
  return ada_to_fixed_value (arg1);
}

bool
ada_var_value_operation::resolve (struct expression *exp,
				  bool deprocedure_p,
				  bool parse_completion,
				  innermost_block_tracker *tracker,
				  struct type *context_type)
{
  symbol *sym = std::get<0> (m_storage).symbol;
  if (sym->domain () == UNDEF_DOMAIN)
    {
      block_symbol resolved
	= ada_resolve_variable (sym, std::get<0> (m_storage).block,
				context_type, parse_completion,
				deprocedure_p, tracker);
      std::get<0> (m_storage) = resolved;
    }

  if (deprocedure_p
      && (std::get<0> (m_storage).symbol->type ()->code ()
	  == TYPE_CODE_FUNC))
    return true;

  return false;
}

void
ada_var_value_operation::do_generate_ax (struct expression *exp,
					 struct agent_expr *ax,
					 struct axs_value *value,
					 struct type *cast_type)
{
  symbol *sym = std::get<0> (m_storage).symbol;

  if (sym->domain () == UNDEF_DOMAIN)
    error (_("Unexpected unresolved symbol, %s, during evaluation"),
	   sym->print_name ());

  struct type *type = static_unwrap_type (sym->type ());
  if (ada_is_tagged_type (type, 0)
      || (type->code () == TYPE_CODE_REF
	  && ada_is_tagged_type (type->target_type (), 0)))
    error (_("Tagged types cannot be handled in agent expressions"));

  if ((type->code () == TYPE_CODE_STRUCT
       && dynamic_template_type (type) != NULL)
      || (type->code () == TYPE_CODE_UNION
	  && ada_find_parallel_type (type, "___XVU") != NULL))
    error (_("Dynamic types cannot be handled in agent expressions"));

  var_value_operation::do_generate_ax (exp, ax, value, cast_type);
}

value *
ada_unop_ind_operation::evaluate (struct type *expect_type,
				  struct expression *exp,
				  enum noside noside)
{
  value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);

  struct type *type = ada_check_typedef (arg1->type ());
  if (noside == EVAL_AVOID_SIDE_EFFECTS)
    {
      if (ada_is_array_descriptor_type (type))
	{
	  /* GDB allows dereferencing GNAT array descriptors.
	     However, for 'ptype' we don't want to try to
	     "dereference" a thick pointer here -- that will end up
	     giving us an array with (1 .. 0) for bounds, which is
	     less clear than (<>).  */
	  struct type *arrType = ada_type_of_array (arg1, 0);

	  if (arrType == NULL)
	    error (_("Attempt to dereference null array pointer."));
	  if (is_thick_pntr (type))
	    return arg1;
	  return value_at_lazy (arrType, 0);
	}
      else if (type->code () == TYPE_CODE_PTR
	       || type->code () == TYPE_CODE_REF
	       /* In C you can dereference an array to get the 1st elt.  */
	       || type->code () == TYPE_CODE_ARRAY)
	{
	  /* As mentioned in the OP_VAR_VALUE case, tagged types can
	     only be determined by inspecting the object's tag.
	     This means that we need to evaluate completely the
	     expression in order to get its type.  */

	  if ((type->code () == TYPE_CODE_REF
	       || type->code () == TYPE_CODE_PTR)
	      && ada_is_tagged_type (type->target_type (), 0))
	    {
	      arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
							EVAL_NORMAL);
	      type = ada_value_ind (arg1)->type ();
	    }
	  else
	    {
	      type = to_static_fixed_type
		(ada_aligned_type
		 (ada_check_typedef (type->target_type ())));
	    }
	  return value::zero (type, lval_memory);
	}
      else if (type->code () == TYPE_CODE_INT)
	{
	  /* GDB allows dereferencing an int.  */
	  if (expect_type == NULL)
	    return value::zero (builtin_type (exp->gdbarch)->builtin_int,
			       lval_memory);
	  else
	    {
	      expect_type =
		to_static_fixed_type (ada_aligned_type (expect_type));
	      return value::zero (expect_type, lval_memory);
	    }
	}
      else
	error (_("Attempt to take contents of a non-pointer value."));
    }
  arg1 = ada_coerce_ref (arg1);     /* FIXME: What is this for??  */
  type = ada_check_typedef (arg1->type ());

  if (type->code () == TYPE_CODE_INT)
    /* GDB allows dereferencing an int.  If we were given
       the expect_type, then use that as the target type.
       Otherwise, assume that the target type is an int.  */
    {
      if (expect_type != NULL)
	return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
					  arg1));
      else
	return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
			      value_as_address (arg1));
    }

  if (ada_is_array_descriptor_type (type))
    /* GDB allows dereferencing GNAT array descriptors.  */
    return ada_coerce_to_simple_array (arg1);
  else
    return ada_value_ind (arg1);
}

value *
ada_structop_operation::evaluate (struct type *expect_type,
				  struct expression *exp,
				  enum noside noside)
{
  value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
  const char *str = std::get<1> (m_storage).c_str ();
  if (noside == EVAL_AVOID_SIDE_EFFECTS)
    {
      struct type *type;
      struct type *type1 = arg1->type ();

      if (ada_is_tagged_type (type1, 1))
	{
	  type = ada_lookup_struct_elt_type (type1, str, 1, 1);

	  /* If the field is not found, check if it exists in the
	     extension of this object's type. This means that we
	     need to evaluate completely the expression.  */

	  if (type == NULL)
	    {
	      arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
							EVAL_NORMAL);
	      arg1 = ada_value_struct_elt (arg1, str, 0);
	      arg1 = unwrap_value (arg1);
	      type = ada_to_fixed_value (arg1)->type ();
	    }
	}
      else
	type = ada_lookup_struct_elt_type (type1, str, 1, 0);

      return value::zero (ada_aligned_type (type), lval_memory);
    }
  else
    {
      arg1 = ada_value_struct_elt (arg1, str, 0);
      arg1 = unwrap_value (arg1);
      return ada_to_fixed_value (arg1);
    }
}

value *
ada_funcall_operation::evaluate (struct type *expect_type,
				 struct expression *exp,
				 enum noside noside)
{
  const std::vector<operation_up> &args_up = std::get<1> (m_storage);
  int nargs = args_up.size ();
  std::vector<value *> argvec (nargs);
  operation_up &callee_op = std::get<0> (m_storage);

  ada_var_value_operation *avv
    = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
  if (avv != nullptr
      && avv->get_symbol ()->domain () == UNDEF_DOMAIN)
    error (_("Unexpected unresolved symbol, %s, during evaluation"),
	   avv->get_symbol ()->print_name ());

  value *callee = callee_op->evaluate (nullptr, exp, noside);
  for (int i = 0; i < args_up.size (); ++i)
    argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);

  if (ada_is_constrained_packed_array_type
      (desc_base_type (callee->type ())))
    callee = ada_coerce_to_simple_array (callee);
  else if (callee->type ()->code () == TYPE_CODE_ARRAY
	   && callee->type ()->field (0).bitsize () != 0)
    /* This is a packed array that has already been fixed, and
       therefore already coerced to a simple array.  Nothing further
       to do.  */
    ;
  else if (callee->type ()->code () == TYPE_CODE_REF)
    {
      /* Make sure we dereference references so that all the code below
	 feels like it's really handling the referenced value.  Wrapping
	 types (for alignment) may be there, so make sure we strip them as
	 well.  */
      callee = ada_to_fixed_value (coerce_ref (callee));
    }
  else if (callee->type ()->code () == TYPE_CODE_ARRAY
	   && callee->lval () == lval_memory)
    callee = value_addr (callee);

  struct type *type = ada_check_typedef (callee->type ());

  /* Ada allows us to implicitly dereference arrays when subscripting
     them.  So, if this is an array typedef (encoding use for array
     access types encoded as fat pointers), strip it now.  */
  if (type->code () == TYPE_CODE_TYPEDEF)
    type = ada_typedef_target_type (type);

  if (type->code () == TYPE_CODE_PTR)
    {
      switch (ada_check_typedef (type->target_type ())->code ())
	{
	case TYPE_CODE_FUNC:
	  type = ada_check_typedef (type->target_type ());
	  break;
	case TYPE_CODE_ARRAY:
	  break;
	case TYPE_CODE_STRUCT:
	  if (noside != EVAL_AVOID_SIDE_EFFECTS)
	    callee = ada_value_ind (callee);
	  type = ada_check_typedef (type->target_type ());
	  break;
	default:
	  error (_("cannot subscript or call something of type `%s'"),
		 ada_type_name (callee->type ()));
	  break;
	}
    }

  switch (type->code ())
    {
    case TYPE_CODE_FUNC:
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
	{
	  if (type->target_type () == NULL)
	    error_call_unknown_return_type (NULL);
	  return value::allocate (type->target_type ());
	}
      return call_function_by_hand (callee, expect_type, argvec);
    case TYPE_CODE_INTERNAL_FUNCTION:
	return call_internal_function (exp->gdbarch, exp->language_defn,
				       callee, nargs,
				       argvec.data (), noside);

    case TYPE_CODE_STRUCT:
      {
	int arity;

	arity = ada_array_arity (type);
	type = ada_array_element_type (type, nargs);
	if (type == NULL)
	  error (_("cannot subscript or call a record"));
	if (arity != nargs)
	  error (_("wrong number of subscripts; expecting %d"), arity);
	if (noside == EVAL_AVOID_SIDE_EFFECTS)
	  return value::zero (ada_aligned_type (type), lval_memory);
	return
	  unwrap_value (ada_value_subscript
			(callee, nargs, argvec.data ()));
      }
    case TYPE_CODE_ARRAY:
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
	{
	  type = ada_array_element_type (type, nargs);
	  if (type == NULL)
	    error (_("element type of array unknown"));
	  else
	    return value::zero (ada_aligned_type (type), lval_memory);
	}
      return
	unwrap_value (ada_value_subscript
		      (ada_coerce_to_simple_array (callee),
		       nargs, argvec.data ()));
    case TYPE_CODE_PTR:     /* Pointer to array */
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
	{
	  type = to_fixed_array_type (type->target_type (), NULL, 1);
	  type = ada_array_element_type (type, nargs);
	  if (type == NULL)
	    error (_("element type of array unknown"));
	  else
	    return value::zero (ada_aligned_type (type), lval_memory);
	}
      return
	unwrap_value (ada_value_ptr_subscript (callee, nargs,
					       argvec.data ()));

    default:
      error (_("Attempt to index or call something other than an "
	       "array or function"));
    }
}

bool
ada_funcall_operation::resolve (struct expression *exp,
				bool deprocedure_p,
				bool parse_completion,
				innermost_block_tracker *tracker,
				struct type *context_type)
{
  operation_up &callee_op = std::get<0> (m_storage);

  ada_var_value_operation *avv
    = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
  if (avv == nullptr)
    return false;

  symbol *sym = avv->get_symbol ();
  if (sym->domain () != UNDEF_DOMAIN)
    return false;

  const std::vector<operation_up> &args_up = std::get<1> (m_storage);
  int nargs = args_up.size ();
  std::vector<value *> argvec (nargs);

  for (int i = 0; i < args_up.size (); ++i)
    argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);

  const block *block = avv->get_block ();
  block_symbol resolved
    = ada_resolve_funcall (sym, block,
			   context_type, parse_completion,
			   nargs, argvec.data (),
			   tracker);

  std::get<0> (m_storage)
    = make_operation<ada_var_value_operation> (resolved);
  return false;
}

bool
ada_ternop_slice_operation::resolve (struct expression *exp,
				     bool deprocedure_p,
				     bool parse_completion,
				     innermost_block_tracker *tracker,
				     struct type *context_type)
{
  /* Historically this check was done during resolution, so we
     continue that here.  */
  value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
						EVAL_AVOID_SIDE_EFFECTS);
  if (ada_is_any_packed_array_type (v->type ()))
    error (_("cannot slice a packed array"));
  return false;
}

}



/* Return non-zero iff TYPE represents a System.Address type.  */

int
ada_is_system_address_type (struct type *type)
{
  return (type->name () && strcmp (type->name (), "system__address") == 0);
}



				/* Range types */

/* Scan STR beginning at position K for a discriminant name, and
   return the value of that discriminant field of DVAL in *PX.  If
   PNEW_K is not null, put the position of the character beyond the
   name scanned in *PNEW_K.  Return 1 if successful; return 0 and do
   not alter *PX and *PNEW_K if unsuccessful.  */

static int
scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
		    int *pnew_k)
{
  static std::string storage;
  const char *pstart, *pend, *bound;
  struct value *bound_val;

  if (dval == NULL || str == NULL || str[k] == '\0')
    return 0;

  pstart = str + k;
  pend = strstr (pstart, "__");
  if (pend == NULL)
    {
      bound = pstart;
      k += strlen (bound);
    }
  else
    {
      int len = pend - pstart;

      /* Strip __ and beyond.  */
      storage = std::string (pstart, len);
      bound = storage.c_str ();
      k = pend - str;
    }

  bound_val = ada_search_struct_field (bound, dval, 0, dval->type ());
  if (bound_val == NULL)
    return 0;

  *px = value_as_long (bound_val);
  if (pnew_k != NULL)
    *pnew_k = k;
  return 1;
}

/* Value of variable named NAME.  Only exact matches are considered.
   If no such variable found, then if ERR_MSG is null, returns 0, and
   otherwise causes an error with message ERR_MSG.  */

static struct value *
get_var_value (const char *name, const char *err_msg)
{
  std::string quoted_name = add_angle_brackets (name);

  lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);

  std::vector<struct block_symbol> syms
    = ada_lookup_symbol_list_worker (lookup_name,
				     get_selected_block (0),
				     SEARCH_VFT, 1);

  if (syms.size () != 1)
    {
      if (err_msg == NULL)
	return 0;
      else
	error (("%s"), err_msg);
    }

  return value_of_variable (syms[0].symbol, syms[0].block);
}

/* Value of integer variable named NAME in the current environment.
   If no such variable is found, returns false.  Otherwise, sets VALUE
   to the variable's value and returns true.  */

bool
get_int_var_value (const char *name, LONGEST &value)
{
  struct value *var_val = get_var_value (name, 0);

  if (var_val == 0)
    return false;

  value = value_as_long (var_val);
  return true;
}


/* Return a range type whose base type is that of the range type named
   NAME in the current environment, and whose bounds are calculated
   from NAME according to the GNAT range encoding conventions.
   Extract discriminant values, if needed, from DVAL.  ORIG_TYPE is the
   corresponding range type from debug information; fall back to using it
   if symbol lookup fails.  If a new type must be created, allocate it
   like ORIG_TYPE was.  The bounds information, in general, is encoded
   in NAME, the base type given in the named range type.  */

static struct type *
to_fixed_range_type (struct type *raw_type, struct value *dval)
{
  const char *name;
  struct type *base_type;
  const char *subtype_info;

  gdb_assert (raw_type != NULL);
  gdb_assert (raw_type->name () != NULL);

  if (raw_type->code () == TYPE_CODE_RANGE)
    base_type = raw_type->target_type ();
  else
    base_type = raw_type;

  name = raw_type->name ();
  subtype_info = strstr (name, "___XD");
  if (subtype_info == NULL)
    {
      LONGEST L = ada_discrete_type_low_bound (raw_type);
      LONGEST U = ada_discrete_type_high_bound (raw_type);

      if (L < INT_MIN || U > INT_MAX)
	return raw_type;
      else
	{
	  type_allocator alloc (raw_type);
	  return create_static_range_type (alloc, raw_type, L, U);
	}
    }
  else
    {
      int prefix_len = subtype_info - name;
      LONGEST L, U;
      struct type *type;
      const char *bounds_str;
      int n;

      subtype_info += 5;
      bounds_str = strchr (subtype_info, '_');
      n = 1;

      if (*subtype_info == 'L')
	{
	  if (!ada_scan_number (bounds_str, n, &L, &n)
	      && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
	    return raw_type;
	  if (bounds_str[n] == '_')
	    n += 2;
	  else if (bounds_str[n] == '.')     /* FIXME? SGI Workshop kludge.  */
	    n += 1;
	  subtype_info += 1;
	}
      else
	{
	  std::string name_buf = std::string (name, prefix_len) + "___L";
	  if (!get_int_var_value (name_buf.c_str (), L))
	    {
	      lim_warning (_("Unknown lower bound, using 1."));
	      L = 1;
	    }
	}

      if (*subtype_info == 'U')
	{
	  if (!ada_scan_number (bounds_str, n, &U, &n)
	      && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
	    return raw_type;
	}
      else
	{
	  std::string name_buf = std::string (name, prefix_len) + "___U";
	  if (!get_int_var_value (name_buf.c_str (), U))
	    {
	      lim_warning (_("Unknown upper bound, using %ld."), (long) L);
	      U = L;
	    }
	}

      type_allocator alloc (raw_type);
      type = create_static_range_type (alloc, base_type, L, U);
      /* create_static_range_type alters the resulting type's length
	 to match the size of the base_type, which is not what we want.
	 Set it back to the original range type's length.  */
      type->set_length (raw_type->length ());
      type->set_name (name);
      return type;
    }
}

/* True iff NAME is the name of a range type.  */

int
ada_is_range_type_name (const char *name)
{
  return (name != NULL && strstr (name, "___XD"));
}


				/* Modular types */

/* True iff TYPE is an Ada modular type.  */

int
ada_is_modular_type (struct type *type)
{
  struct type *subranged_type = get_base_type (type);

  return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
	  && subranged_type->code () == TYPE_CODE_INT
	  && subranged_type->is_unsigned ());
}

/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE.  */

ULONGEST
ada_modulus (struct type *type)
{
  const dynamic_prop &high = type->bounds ()->high;

  if (high.is_constant ())
    return (ULONGEST) high.const_val () + 1;

  /* If TYPE is unresolved, the high bound might be a location list.  Return
     0, for lack of a better value to return.  */
  return 0;
}


/* Ada exception catchpoint support:
   ---------------------------------

   We support 3 kinds of exception catchpoints:
     . catchpoints on Ada exceptions
     . catchpoints on unhandled Ada exceptions
     . catchpoints on failed assertions

   Exceptions raised during failed assertions, or unhandled exceptions
   could perfectly be caught with the general catchpoint on Ada exceptions.
   However, we can easily differentiate these two special cases, and having
   the option to distinguish these two cases from the rest can be useful
   to zero-in on certain situations.

   Exception catchpoints are a specialized form of breakpoint,
   since they rely on inserting breakpoints inside known routines
   of the GNAT runtime.  The implementation therefore uses a standard
   breakpoint structure of the BP_BREAKPOINT type, but with its own set
   of breakpoint_ops.

   Support in the runtime for exception catchpoints have been changed
   a few times already, and these changes affect the implementation
   of these catchpoints.  In order to be able to support several
   variants of the runtime, we use a sniffer that will determine
   the runtime variant used by the program being debugged.  */

/* Ada's standard exceptions.

   The Ada 83 standard also defined Numeric_Error.  But there so many
   situations where it was unclear from the Ada 83 Reference Manual
   (RM) whether Constraint_Error or Numeric_Error should be raised,
   that the ARG (Ada Rapporteur Group) eventually issued a Binding
   Interpretation saying that anytime the RM says that Numeric_Error
   should be raised, the implementation may raise Constraint_Error.
   Ada 95 went one step further and pretty much removed Numeric_Error
   from the list of standard exceptions (it made it a renaming of
   Constraint_Error, to help preserve compatibility when compiling
   an Ada83 compiler). As such, we do not include Numeric_Error from
   this list of standard exceptions.  */

static const char * const standard_exc[] = {
  "constraint_error",
  "program_error",
  "storage_error",
  "tasking_error"
};

typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);

/* A structure that describes how to support exception catchpoints
   for a given executable.  */

struct exception_support_info
{
   /* The name of the symbol to break on in order to insert
      a catchpoint on exceptions.  */
   const char *catch_exception_sym;

   /* The name of the symbol to break on in order to insert
      a catchpoint on unhandled exceptions.  */
   const char *catch_exception_unhandled_sym;

   /* The name of the symbol to break on in order to insert
      a catchpoint on failed assertions.  */
   const char *catch_assert_sym;

   /* The name of the symbol to break on in order to insert
      a catchpoint on exception handling.  */
   const char *catch_handlers_sym;

   /* Assuming that the inferior just triggered an unhandled exception
      catchpoint, this function is responsible for returning the address
      in inferior memory where the name of that exception is stored.
      Return zero if the address could not be computed.  */
   ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
};

static CORE_ADDR ada_unhandled_exception_name_addr (void);
static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);

/* The following exception support info structure describes how to
   implement exception catchpoints with the latest version of the
   Ada runtime (as of 2019-08-??).  */

static const struct exception_support_info default_exception_support_info =
{
  "__gnat_debug_raise_exception", /* catch_exception_sym */
  "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
  "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
  "__gnat_begin_handler_v1", /* catch_handlers_sym */
  ada_unhandled_exception_name_addr
};

/* The following exception support info structure describes how to
   implement exception catchpoints with an earlier version of the
   Ada runtime (as of 2007-03-06) using v0 of the EH ABI.  */

static const struct exception_support_info exception_support_info_v0 =
{
  "__gnat_debug_raise_exception", /* catch_exception_sym */
  "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
  "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
  "__gnat_begin_handler", /* catch_handlers_sym */
  ada_unhandled_exception_name_addr
};

/* The following exception support info structure describes how to
   implement exception catchpoints with a slightly older version
   of the Ada runtime.  */

static const struct exception_support_info exception_support_info_fallback =
{
  "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
  "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
  "system__assertions__raise_assert_failure",  /* catch_assert_sym */
  "__gnat_begin_handler", /* catch_handlers_sym */
  ada_unhandled_exception_name_addr_from_raise
};

/* Return nonzero if we can detect the exception support routines
   described in EINFO.

   This function errors out if an abnormal situation is detected
   (for instance, if we find the exception support routines, but
   that support is found to be incomplete).  */

static int
ada_has_this_exception_support (const struct exception_support_info *einfo)
{
  struct symbol *sym;

  /* The symbol we're looking up is provided by a unit in the GNAT runtime
     that should be compiled with debugging information.  As a result, we
     expect to find that symbol in the symtabs.  */

  sym = standard_lookup (einfo->catch_exception_sym, NULL,
			 SEARCH_FUNCTION_DOMAIN);
  if (sym == NULL)
    {
      /* Perhaps we did not find our symbol because the Ada runtime was
	 compiled without debugging info, or simply stripped of it.
	 It happens on some GNU/Linux distributions for instance, where
	 users have to install a separate debug package in order to get
	 the runtime's debugging info.  In that situation, let the user
	 know why we cannot insert an Ada exception catchpoint.

	 Note: Just for the purpose of inserting our Ada exception
	 catchpoint, we could rely purely on the associated minimal symbol.
	 But we would be operating in degraded mode anyway, since we are
	 still lacking the debugging info needed later on to extract
	 the name of the exception being raised (this name is printed in
	 the catchpoint message, and is also used when trying to catch
	 a specific exception).  We do not handle this case for now.  */
      bound_minimal_symbol msym
	= lookup_minimal_symbol (current_program_space,
				 einfo->catch_exception_sym);

      if (msym.minsym && msym.minsym->type () != mst_solib_trampoline)
	error (_("Your Ada runtime appears to be missing some debugging "
		 "information.\nCannot insert Ada exception catchpoint "
		 "in this configuration."));

      return 0;
    }

  /* Make sure that the symbol we found corresponds to a function.  */

  if (sym->aclass () != LOC_BLOCK)
    error (_("Symbol \"%s\" is not a function (class = %d)"),
	   sym->linkage_name (), sym->aclass ());

  sym = standard_lookup (einfo->catch_handlers_sym, NULL,
			 SEARCH_FUNCTION_DOMAIN);
  if (sym == NULL)
    {
      bound_minimal_symbol msym
	= lookup_minimal_symbol (current_program_space,
				 einfo->catch_handlers_sym);

      if (msym.minsym && msym.minsym->type () != mst_solib_trampoline)
	error (_("Your Ada runtime appears to be missing some debugging "
		 "information.\nCannot insert Ada exception catchpoint "
		 "in this configuration."));

      return 0;
    }

  /* Make sure that the symbol we found corresponds to a function.  */

  if (sym->aclass () != LOC_BLOCK)
    error (_("Symbol \"%s\" is not a function (class = %d)"),
	   sym->linkage_name (), sym->aclass ());

  return 1;
}

/* Inspect the Ada runtime and determine which exception info structure
   should be used to provide support for exception catchpoints.

   This function will always set the per-inferior exception_info,
   or raise an error.  */

static void
ada_exception_support_info_sniffer (void)
{
  struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());

  /* If the exception info is already known, then no need to recompute it.  */
  if (data->exception_info != NULL)
    return;

  /* Check the latest (default) exception support info.  */
  if (ada_has_this_exception_support (&default_exception_support_info))
    {
      data->exception_info = &default_exception_support_info;
      return;
    }

  /* Try the v0 exception suport info.  */
  if (ada_has_this_exception_support (&exception_support_info_v0))
    {
      data->exception_info = &exception_support_info_v0;
      return;
    }

  /* Try our fallback exception suport info.  */
  if (ada_has_this_exception_support (&exception_support_info_fallback))
    {
      data->exception_info = &exception_support_info_fallback;
      return;
    }

  throw_error (NOT_FOUND_ERROR,
	       _("Could not find Ada runtime exception support"));
}

/* True iff FRAME is very likely to be that of a function that is
   part of the runtime system.  This is all very heuristic, but is
   intended to be used as advice as to what frames are uninteresting
   to most users.  */

static int
is_known_support_routine (const frame_info_ptr &frame)
{
  enum language func_lang;
  int i;
  const char *fullname;

  /* If this code does not have any debugging information (no symtab),
     This cannot be any user code.  */

  symtab_and_line sal = find_frame_sal (frame);
  if (sal.symtab == NULL)
    return 1;

  /* If there is a symtab, but the associated source file cannot be
     located, then assume this is not user code:  Selecting a frame
     for which we cannot display the code would not be very helpful
     for the user.  This should also take care of case such as VxWorks
     where the kernel has some debugging info provided for a few units.  */

  fullname = symtab_to_fullname (sal.symtab);
  if (access (fullname, R_OK) != 0)
    return 1;

  /* Check the unit filename against the Ada runtime file naming.
     We also check the name of the objfile against the name of some
     known system libraries that sometimes come with debugging info
     too.  */

  for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
    {
      re_comp (known_runtime_file_name_patterns[i]);
      if (re_exec (lbasename (sal.symtab->filename)))
	return 1;
      if (sal.symtab->compunit ()->objfile () != NULL
	  && re_exec (objfile_name (sal.symtab->compunit ()->objfile ())))
	return 1;
    }

  /* Check whether the function is a GNAT-generated entity.  */

  gdb::unique_xmalloc_ptr<char> func_name
    = find_frame_funname (frame, &func_lang, NULL);
  if (func_name == NULL)
    return 1;

  for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
    {
      re_comp (known_auxiliary_function_name_patterns[i]);
      if (re_exec (func_name.get ()))
	return 1;
    }

  return 0;
}

/* Find the first frame that contains debugging information and that is not
   part of the Ada run-time, starting from FI and moving upward.  */

void
ada_find_printable_frame (const frame_info_ptr &initial_fi)
{
  for (frame_info_ptr fi = initial_fi; fi != nullptr; fi = get_prev_frame (fi))
    {
      if (!is_known_support_routine (fi))
	{
	  select_frame (fi);
	  break;
	}
    }

}

/* Assuming that the inferior just triggered an unhandled exception
   catchpoint, return the address in inferior memory where the name
   of the exception is stored.
   
   Return zero if the address could not be computed.  */

static CORE_ADDR
ada_unhandled_exception_name_addr (void)
{
  return parse_and_eval_address ("e.full_name");
}

/* Same as ada_unhandled_exception_name_addr, except that this function
   should be used when the inferior uses an older version of the runtime,
   where the exception name needs to be extracted from a specific frame
   several frames up in the callstack.  */

static CORE_ADDR
ada_unhandled_exception_name_addr_from_raise (void)
{
  int frame_level;
  frame_info_ptr fi;
  struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());

  /* To determine the name of this exception, we need to select
     the frame corresponding to RAISE_SYM_NAME.  This frame is
     at least 3 levels up, so we simply skip the first 3 frames
     without checking the name of their associated function.  */
  fi = get_current_frame ();
  for (frame_level = 0; frame_level < 3; frame_level += 1)
    if (fi != NULL)
      fi = get_prev_frame (fi); 

  while (fi != NULL)
    {
      enum language func_lang;

      gdb::unique_xmalloc_ptr<char> func_name
	= find_frame_funname (fi, &func_lang, NULL);
      if (func_name != NULL)
	{
	  if (strcmp (func_name.get (),
		      data->exception_info->catch_exception_sym) == 0)
	    break; /* We found the frame we were looking for...  */
	}
      fi = get_prev_frame (fi);
    }

  if (fi == NULL)
    return 0;

  select_frame (fi);
  return parse_and_eval_address ("id.full_name");
}

/* Assuming the inferior just triggered an Ada exception catchpoint
   (of any type), return the address in inferior memory where the name
   of the exception is stored, if applicable.

   Assumes the selected frame is the current frame.

   Return zero if the address could not be computed, or if not relevant.  */

static CORE_ADDR
ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex)
{
  struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());

  switch (ex)
    {
      case ada_catch_exception:
	return (parse_and_eval_address ("e.full_name"));
	break;

      case ada_catch_exception_unhandled:
	return data->exception_info->unhandled_exception_name_addr ();
	break;

      case ada_catch_handlers:
	return 0;  /* The runtimes does not provide access to the exception
		      name.  */
	break;

      case ada_catch_assert:
	return 0;  /* Exception name is not relevant in this case.  */
	break;

      default:
	internal_error (_("unexpected catchpoint type"));
	break;
    }

  return 0; /* Should never be reached.  */
}

/* Assuming the inferior is stopped at an exception catchpoint,
   return the message which was associated to the exception, if
   available.  Return NULL if the message could not be retrieved.

   Note: The exception message can be associated to an exception
   either through the use of the Raise_Exception function, or
   more simply (Ada 2005 and later), via:

       raise Exception_Name with "exception message";

   */

static gdb::unique_xmalloc_ptr<char>
ada_exception_message_1 (void)
{
  struct value *e_msg_val;
  int e_msg_len;

  /* For runtimes that support this feature, the exception message
     is passed as an unbounded string argument called "message".  */
  e_msg_val = parse_and_eval ("message");
  if (e_msg_val == NULL)
    return NULL; /* Exception message not supported.  */

  e_msg_val = ada_coerce_to_simple_array (e_msg_val);
  gdb_assert (e_msg_val != NULL);
  e_msg_len = e_msg_val->type ()->length ();

  /* If the message string is empty, then treat it as if there was
     no exception message.  */
  if (e_msg_len <= 0)
    return NULL;

  gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
  read_memory (e_msg_val->address (), (gdb_byte *) e_msg.get (),
	       e_msg_len);
  e_msg.get ()[e_msg_len] = '\0';

  return e_msg;
}

/* Same as ada_exception_message_1, except that all exceptions are
   contained here (returning NULL instead).  */

static gdb::unique_xmalloc_ptr<char>
ada_exception_message (void)
{
  gdb::unique_xmalloc_ptr<char> e_msg;

  try
    {
      e_msg = ada_exception_message_1 ();
    }
  catch (const gdb_exception_error &e)
    {
      e_msg.reset (nullptr);
    }

  return e_msg;
}

/* Same as ada_exception_name_addr_1, except that it intercepts and contains
   any error that ada_exception_name_addr_1 might cause to be thrown.
   When an error is intercepted, a warning with the error message is printed,
   and zero is returned.  */

static CORE_ADDR
ada_exception_name_addr (enum ada_exception_catchpoint_kind ex)
{
  CORE_ADDR result = 0;

  try
    {
      result = ada_exception_name_addr_1 (ex);
    }

  catch (const gdb_exception_error &e)
    {
      warning (_("failed to get exception name: %s"), e.what ());
      return 0;
    }

  return result;
}

static std::string ada_exception_catchpoint_cond_string
  (const char *excep_string,
   enum ada_exception_catchpoint_kind ex);

/* Ada catchpoints.

   In the case of catchpoints on Ada exceptions, the catchpoint will
   stop the target on every exception the program throws.  When a user
   specifies the name of a specific exception, we translate this
   request into a condition expression (in text form), and then parse
   it into an expression stored in each of the catchpoint's locations.
   We then use this condition to check whether the exception that was
   raised is the one the user is interested in.  If not, then the
   target is resumed again.  We store the name of the requested
   exception, in order to be able to re-set the condition expression
   when symbols change.  */

/* An instance of this type is used to represent an Ada catchpoint.  */

struct ada_catchpoint : public code_breakpoint
{
  ada_catchpoint (struct gdbarch *gdbarch_,
		  enum ada_exception_catchpoint_kind kind,
		  const char *cond_string,
		  bool tempflag,
		  bool enabled,
		  bool from_tty,
		  std::string &&excep_string_)
    : code_breakpoint (gdbarch_, bp_catchpoint, tempflag, cond_string),
      m_excep_string (std::move (excep_string_)),
      m_kind (kind)
  {
    /* Unlike most code_breakpoint types, Ada catchpoints are
       pspace-specific.  */
    pspace = current_program_space;
    enable_state = enabled ? bp_enabled : bp_disabled;
    language = language_ada;

    re_set ();
  }

  struct bp_location *allocate_location () override;
  void re_set () override;
  void check_status (struct bpstat *bs) override;
  enum print_stop_action print_it (const bpstat *bs) const override;
  bool print_one (const bp_location **) const override;
  void print_mention () const override;
  void print_recreate (struct ui_file *fp) const override;

private:

  /* A helper function for check_status.  Returns true if we should
     stop for this breakpoint hit.  If the user specified a specific
     exception, we only want to cause a stop if the program thrown
     that exception.  */
  bool should_stop_exception (const struct bp_location *bl) const;

  /* The name of the specific exception the user specified.  */
  std::string m_excep_string;

  /* What kind of catchpoint this is.  */
  enum ada_exception_catchpoint_kind m_kind;
};

/* An instance of this type is used to represent an Ada catchpoint
   breakpoint location.  */

class ada_catchpoint_location : public bp_location
{
public:
  explicit ada_catchpoint_location (ada_catchpoint *owner)
    : bp_location (owner, bp_loc_software_breakpoint)
  {}

  /* The condition that checks whether the exception that was raised
     is the specific exception the user specified on catchpoint
     creation.  */
  expression_up excep_cond_expr;
};

static struct symtab_and_line ada_exception_sal
     (enum ada_exception_catchpoint_kind ex);

/* Implement the RE_SET method in the structure for all exception
   catchpoint kinds.  */

void
ada_catchpoint::re_set ()
{
  std::vector<symtab_and_line> sals;
  try
    {
      struct symtab_and_line sal = ada_exception_sal (m_kind);
      sals.push_back (sal);
    }
  catch (const gdb_exception_error &ex)
    {
      /* For NOT_FOUND_ERROR, the breakpoint will be pending.  */
      if (ex.error != NOT_FOUND_ERROR)
	throw;
    }

  update_breakpoint_locations (this, pspace, sals, {});

  /* Reparse the exception conditional expressions.  One for each
     location.  */

  /* Nothing to do if there's no specific exception to catch.  */
  if (m_excep_string.empty ())
    return;

  /* Same if there are no locations... */
  if (!has_locations ())
    return;

  /* Compute the condition expression in text form, from the specific
     exception we want to catch.  */
  std::string cond_string
    = ada_exception_catchpoint_cond_string (m_excep_string.c_str (), m_kind);

  /* Iterate over all the catchpoint's locations, and parse an
     expression for each.  */
  for (bp_location &bl : locations ())
    {
      ada_catchpoint_location &ada_loc
	= static_cast<ada_catchpoint_location &> (bl);
      expression_up exp;

      if (!bl.shlib_disabled)
	{
	  const char *s;

	  s = cond_string.c_str ();
	  try
	    {
	      exp = parse_exp_1 (&s, bl.address, block_for_pc (bl.address), 0);
	    }
	  catch (const gdb_exception_error &e)
	    {
	      warning (_("failed to reevaluate internal exception condition "
			 "for catchpoint %d: %s"),
		       number, e.what ());
	    }
	}

      ada_loc.excep_cond_expr = std::move (exp);
    }
}

/* Implement the ALLOCATE_LOCATION method in the structure for all
   exception catchpoint kinds.  */

struct bp_location *
ada_catchpoint::allocate_location ()
{
  return new ada_catchpoint_location (this);
}

/* See declaration.  */

bool
ada_catchpoint::should_stop_exception (const struct bp_location *bl) const
{
  ada_catchpoint *c = gdb::checked_static_cast<ada_catchpoint *> (bl->owner);
  const struct ada_catchpoint_location *ada_loc
    = (const struct ada_catchpoint_location *) bl;
  bool stop;

  struct internalvar *var = lookup_internalvar ("_ada_exception");
  if (c->m_kind == ada_catch_assert)
    clear_internalvar (var);
  else
    {
      try
	{
	  const char *expr;

	  if (c->m_kind == ada_catch_handlers)
	    expr = ("GNAT_GCC_exception_Access(gcc_exception)"
		    ".all.occurrence.id");
	  else
	    expr = "e";

	  struct value *exc = parse_and_eval (expr);
	  set_internalvar (var, exc);
	}
      catch (const gdb_exception_error &ex)
	{
	  clear_internalvar (var);
	}
    }

  /* With no specific exception, should always stop.  */
  if (c->m_excep_string.empty ())
    return true;

  if (ada_loc->excep_cond_expr == NULL)
    {
      /* We will have a NULL expression if back when we were creating
	 the expressions, this location's had failed to parse.  */
      return true;
    }

  stop = true;
  try
    {
      scoped_value_mark mark;
      stop = value_true (ada_loc->excep_cond_expr->evaluate ());
    }
  catch (const gdb_exception_error &ex)
    {
      exception_fprintf (gdb_stderr, ex,
			 _("Error in testing exception condition:\n"));
    }

  return stop;
}

/* Implement the CHECK_STATUS method in the structure for all
   exception catchpoint kinds.  */

void
ada_catchpoint::check_status (bpstat *bs)
{
  bs->stop = should_stop_exception (bs->bp_location_at.get ());
}

/* Implement the PRINT_IT method in the structure for all exception
   catchpoint kinds.  */

enum print_stop_action
ada_catchpoint::print_it (const bpstat *bs) const
{
  struct ui_out *uiout = current_uiout;

  annotate_catchpoint (number);

  if (uiout->is_mi_like_p ())
    {
      uiout->field_string ("reason",
			   async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
      uiout->field_string ("disp", bpdisp_text (disposition));
    }

  uiout->text (disposition == disp_del
	       ? "\nTemporary catchpoint " : "\nCatchpoint ");
  print_num_locno (bs, uiout);
  uiout->text (", ");

  /* ada_exception_name_addr relies on the selected frame being the
     current frame.  Need to do this here because this function may be
     called more than once when printing a stop, and below, we'll
     select the first frame past the Ada run-time (see
     ada_find_printable_frame).  */
  select_frame (get_current_frame ());

  switch (m_kind)
    {
      case ada_catch_exception:
      case ada_catch_exception_unhandled:
      case ada_catch_handlers:
	{
	  const CORE_ADDR addr = ada_exception_name_addr (m_kind);
	  char exception_name[256];

	  if (addr != 0)
	    {
	      read_memory (addr, (gdb_byte *) exception_name,
			   sizeof (exception_name) - 1);
	      exception_name [sizeof (exception_name) - 1] = '\0';
	    }
	  else
	    {
	      /* For some reason, we were unable to read the exception
		 name.  This could happen if the Runtime was compiled
		 without debugging info, for instance.  In that case,
		 just replace the exception name by the generic string
		 "exception" - it will read as "an exception" in the
		 notification we are about to print.  */
	      memcpy (exception_name, "exception", sizeof ("exception"));
	    }
	  /* In the case of unhandled exception breakpoints, we print
	     the exception name as "unhandled EXCEPTION_NAME", to make
	     it clearer to the user which kind of catchpoint just got
	     hit.  We used ui_out_text to make sure that this extra
	     info does not pollute the exception name in the MI case.  */
	  if (m_kind == ada_catch_exception_unhandled)
	    uiout->text ("unhandled ");
	  uiout->field_string ("exception-name", exception_name);
	}
	break;
      case ada_catch_assert:
	/* In this case, the name of the exception is not really
	   important.  Just print "failed assertion" to make it clearer
	   that his program just hit an assertion-failure catchpoint.
	   We used ui_out_text because this info does not belong in
	   the MI output.  */
	uiout->text ("failed assertion");
	break;
    }

  gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
  if (exception_message != NULL)
    {
      uiout->text (" (");
      uiout->field_string ("exception-message", exception_message.get ());
      uiout->text (")");
    }

  uiout->text (" at ");
  ada_find_printable_frame (get_current_frame ());

  return PRINT_SRC_AND_LOC;
}

/* Implement the PRINT_ONE method in the structure for all exception
   catchpoint kinds.  */

bool
ada_catchpoint::print_one (const bp_location **last_loc) const
{ 
  struct ui_out *uiout = current_uiout;
  struct value_print_options opts;

  get_user_print_options (&opts);

  if (opts.addressprint)
    uiout->field_skip ("addr");

  annotate_field (5);
  switch (m_kind)
    {
      case ada_catch_exception:
	if (!m_excep_string.empty ())
	  {
	    std::string msg = string_printf (_("`%s' Ada exception"),
					     m_excep_string.c_str ());

	    uiout->field_string ("what", msg);
	  }
	else
	  uiout->field_string ("what", "all Ada exceptions");
	
	break;

      case ada_catch_exception_unhandled:
	uiout->field_string ("what", "unhandled Ada exceptions");
	break;
      
      case ada_catch_handlers:
	if (!m_excep_string.empty ())
	  {
	    uiout->field_fmt ("what",
			      _("`%s' Ada exception handlers"),
			      m_excep_string.c_str ());
	  }
	else
	  uiout->field_string ("what", "all Ada exceptions handlers");
	break;

      case ada_catch_assert:
	uiout->field_string ("what", "failed Ada assertions");
	break;

      default:
	internal_error (_("unexpected catchpoint type"));
	break;
    }

  return true;
}

/* Implement the PRINT_MENTION method in the breakpoint_ops structure
   for all exception catchpoint kinds.  */

void
ada_catchpoint::print_mention () const
{
  struct ui_out *uiout = current_uiout;

  uiout->text (disposition == disp_del ? _("Temporary catchpoint ")
						 : _("Catchpoint "));
  uiout->field_signed ("bkptno", number);
  uiout->text (": ");

  switch (m_kind)
    {
      case ada_catch_exception:
	if (!m_excep_string.empty ())
	  {
	    std::string info = string_printf (_("`%s' Ada exception"),
					      m_excep_string.c_str ());
	    uiout->text (info);
	  }
	else
	  uiout->text (_("all Ada exceptions"));
	break;

      case ada_catch_exception_unhandled:
	uiout->text (_("unhandled Ada exceptions"));
	break;

      case ada_catch_handlers:
	if (!m_excep_string.empty ())
	  {
	    std::string info
	      = string_printf (_("`%s' Ada exception handlers"),
			       m_excep_string.c_str ());
	    uiout->text (info);
	  }
	else
	  uiout->text (_("all Ada exceptions handlers"));
	break;

      case ada_catch_assert:
	uiout->text (_("failed Ada assertions"));
	break;

      default:
	internal_error (_("unexpected catchpoint type"));
	break;
    }
}

/* Implement the PRINT_RECREATE method in the structure for all
   exception catchpoint kinds.  */

void
ada_catchpoint::print_recreate (struct ui_file *fp) const
{
  switch (m_kind)
    {
      case ada_catch_exception:
	gdb_printf (fp, "catch exception");
	if (!m_excep_string.empty ())
	  gdb_printf (fp, " %s", m_excep_string.c_str ());
	break;

      case ada_catch_exception_unhandled:
	gdb_printf (fp, "catch exception unhandled");
	break;

      case ada_catch_handlers:
	gdb_printf (fp, "catch handlers");
	break;

      case ada_catch_assert:
	gdb_printf (fp, "catch assert");
	break;

      default:
	internal_error (_("unexpected catchpoint type"));
    }
  print_recreate_thread (fp);
}

/* See ada-lang.h.  */

bool
is_ada_exception_catchpoint (breakpoint *bp)
{
  return dynamic_cast<ada_catchpoint *> (bp) != nullptr;
}

/* Split the arguments specified in a "catch exception" command.  
   Set EX to the appropriate catchpoint type.
   Set EXCEP_STRING to the name of the specific exception if
   specified by the user.
   IS_CATCH_HANDLERS_CMD: True if the arguments are for a
   "catch handlers" command.  False otherwise.
   If a condition is found at the end of the arguments, the condition
   expression is stored in COND_STRING (memory must be deallocated
   after use).  Otherwise COND_STRING is set to NULL.  */

static void
catch_ada_exception_command_split (const char *args,
				   bool is_catch_handlers_cmd,
				   enum ada_exception_catchpoint_kind *ex,
				   std::string *excep_string,
				   std::string *cond_string)
{
  std::string exception_name;

  exception_name = extract_arg (&args);
  if (exception_name == "if")
    {
      /* This is not an exception name; this is the start of a condition
	 expression for a catchpoint on all exceptions.  So, "un-get"
	 this token, and set exception_name to NULL.  */
      exception_name.clear ();
      args -= 2;
    }

  /* Check to see if we have a condition.  */

  args = skip_spaces (args);
  if (startswith (args, "if")
      && (isspace (args[2]) || args[2] == '\0'))
    {
      args += 2;
      args = skip_spaces (args);

      if (args[0] == '\0')
	error (_("Condition missing after `if' keyword"));
      *cond_string = args;

      args += strlen (args);
    }

  /* Check that we do not have any more arguments.  Anything else
     is unexpected.  */

  if (args[0] != '\0')
    error (_("Junk at end of expression"));

  if (is_catch_handlers_cmd)
    {
      /* Catch handling of exceptions.  */
      *ex = ada_catch_handlers;
      *excep_string = exception_name;
    }
  else if (exception_name.empty ())
    {
      /* Catch all exceptions.  */
      *ex = ada_catch_exception;
      excep_string->clear ();
    }
  else if (exception_name == "unhandled")
    {
      /* Catch unhandled exceptions.  */
      *ex = ada_catch_exception_unhandled;
      excep_string->clear ();
    }
  else
    {
      /* Catch a specific exception.  */
      *ex = ada_catch_exception;
      *excep_string = exception_name;
    }
}

/* Return the name of the symbol on which we should break in order to
   implement a catchpoint of the EX kind.  */

static const char *
ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
{
  struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());

  gdb_assert (data->exception_info != NULL);

  switch (ex)
    {
      case ada_catch_exception:
	return (data->exception_info->catch_exception_sym);
	break;
      case ada_catch_exception_unhandled:
	return (data->exception_info->catch_exception_unhandled_sym);
	break;
      case ada_catch_assert:
	return (data->exception_info->catch_assert_sym);
	break;
      case ada_catch_handlers:
	return (data->exception_info->catch_handlers_sym);
	break;
      default:
	internal_error (_("unexpected catchpoint kind (%d)"), ex);
    }
}

/* Return the condition that will be used to match the current exception
   being raised with the exception that the user wants to catch.  This
   assumes that this condition is used when the inferior just triggered
   an exception catchpoint.
   EX: the type of catchpoints used for catching Ada exceptions.  */

static std::string
ada_exception_catchpoint_cond_string (const char *excep_string,
				      enum ada_exception_catchpoint_kind ex)
{
  bool is_standard_exc = false;
  std::string result;

  if (ex == ada_catch_handlers)
    {
      /* For exception handlers catchpoints, the condition string does
	 not use the same parameter as for the other exceptions.  */
      result = ("long_integer (GNAT_GCC_exception_Access"
		"(gcc_exception).all.occurrence.id)");
    }
  else
    result = "long_integer (e)";

  /* The standard exceptions are a special case.  They are defined in
     runtime units that have been compiled without debugging info; if
     EXCEP_STRING is the not-fully-qualified name of a standard
     exception (e.g. "constraint_error") then, during the evaluation
     of the condition expression, the symbol lookup on this name would
     *not* return this standard exception.  The catchpoint condition
     may then be set only on user-defined exceptions which have the
     same not-fully-qualified name (e.g. my_package.constraint_error).

     To avoid this unexpected behavior, these standard exceptions are
     systematically prefixed by "standard".  This means that "catch
     exception constraint_error" is rewritten into "catch exception
     standard.constraint_error".

     If an exception named constraint_error is defined in another package of
     the inferior program, then the only way to specify this exception as a
     breakpoint condition is to use its fully-qualified named:
     e.g. my_package.constraint_error.  */

  for (const char *name : standard_exc)
    {
      if (strcmp (name, excep_string) == 0)
	{
	  is_standard_exc = true;
	  break;
	}
    }

  result += " = ";

  if (is_standard_exc)
    string_appendf (result, "long_integer (&standard.%s)", excep_string);
  else
    string_appendf (result, "long_integer (&%s)", excep_string);

  return result;
}

/* Return the symtab_and_line that should be used to insert an
   exception catchpoint of the TYPE kind.  */

static struct symtab_and_line
ada_exception_sal (enum ada_exception_catchpoint_kind ex)
{
  const char *sym_name;
  struct symbol *sym;

  /* First, find out which exception support info to use.  */
  ada_exception_support_info_sniffer ();

  /* Then lookup the function on which we will break in order to catch
     the Ada exceptions requested by the user.  */
  sym_name = ada_exception_sym_name (ex);
  sym = standard_lookup (sym_name, NULL, SEARCH_VFT);

  if (sym == NULL)
    throw_error (NOT_FOUND_ERROR, _("Catchpoint symbol not found: %s"),
		 sym_name);

  if (sym->aclass () != LOC_BLOCK)
    error (_("Unable to insert catchpoint. %s is not a function."), sym_name);

  return find_function_start_sal (sym, 1);
}

/* Create an Ada exception catchpoint.

   EX_KIND is the kind of exception catchpoint to be created.

   If EXCEPT_STRING is empty, this catchpoint is expected to trigger
   for all exceptions.  Otherwise, EXCEPT_STRING indicates the name
   of the exception to which this catchpoint applies.

   COND_STRING, if not empty, is the catchpoint condition.

   TEMPFLAG, if nonzero, means that the underlying breakpoint
   should be temporary.

   FROM_TTY is the usual argument passed to all commands implementations.  */

void
create_ada_exception_catchpoint (struct gdbarch *gdbarch,
				 enum ada_exception_catchpoint_kind ex_kind,
				 std::string &&excep_string,
				 const std::string &cond_string,
				 int tempflag,
				 int enabled,
				 int from_tty)
{
  std::unique_ptr<ada_catchpoint> c
    (new ada_catchpoint (gdbarch, ex_kind,
			 cond_string.empty () ? nullptr : cond_string.c_str (),
			 tempflag, enabled, from_tty,
			 std::move (excep_string)));
  install_breakpoint (0, std::move (c), 1);
}

/* Implement the "catch exception" command.  */

static void
catch_ada_exception_command (const char *arg_entry, int from_tty,
			     struct cmd_list_element *command)
{
  const char *arg = arg_entry;
  struct gdbarch *gdbarch = get_current_arch ();
  int tempflag;
  enum ada_exception_catchpoint_kind ex_kind;
  std::string excep_string;
  std::string cond_string;

  tempflag = command->context () == CATCH_TEMPORARY;

  if (!arg)
    arg = "";
  catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
				     &cond_string);
  create_ada_exception_catchpoint (gdbarch, ex_kind,
				   std::move (excep_string), cond_string,
				   tempflag, 1 /* enabled */,
				   from_tty);
}

/* Implement the "catch handlers" command.  */

static void
catch_ada_handlers_command (const char *arg_entry, int from_tty,
			    struct cmd_list_element *command)
{
  const char *arg = arg_entry;
  struct gdbarch *gdbarch = get_current_arch ();
  int tempflag;
  enum ada_exception_catchpoint_kind ex_kind;
  std::string excep_string;
  std::string cond_string;

  tempflag = command->context () == CATCH_TEMPORARY;

  if (!arg)
    arg = "";
  catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
				     &cond_string);
  create_ada_exception_catchpoint (gdbarch, ex_kind,
				   std::move (excep_string), cond_string,
				   tempflag, 1 /* enabled */,
				   from_tty);
}

/* Completion function for the Ada "catch" commands.  */

static void
catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
		     const char *text, const char *word)
{
  std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);

  for (const ada_exc_info &info : exceptions)
    {
      if (startswith (info.name, word))
	tracker.add_completion (make_unique_xstrdup (info.name));
    }
}

/* Split the arguments specified in a "catch assert" command.

   ARGS contains the command's arguments (or the empty string if
   no arguments were passed).

   If ARGS contains a condition, set COND_STRING to that condition
   (the memory needs to be deallocated after use).  */

static void
catch_ada_assert_command_split (const char *args, std::string &cond_string)
{
  args = skip_spaces (args);

  /* Check whether a condition was provided.  */
  if (startswith (args, "if")
      && (isspace (args[2]) || args[2] == '\0'))
    {
      args += 2;
      args = skip_spaces (args);
      if (args[0] == '\0')
	error (_("condition missing after `if' keyword"));
      cond_string.assign (args);
    }

  /* Otherwise, there should be no other argument at the end of
     the command.  */
  else if (args[0] != '\0')
    error (_("Junk at end of arguments."));
}

/* Implement the "catch assert" command.  */

static void
catch_assert_command (const char *arg_entry, int from_tty,
		      struct cmd_list_element *command)
{
  const char *arg = arg_entry;
  struct gdbarch *gdbarch = get_current_arch ();
  int tempflag;
  std::string cond_string;

  tempflag = command->context () == CATCH_TEMPORARY;

  if (!arg)
    arg = "";
  catch_ada_assert_command_split (arg, cond_string);
  create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
				   {}, cond_string,
				   tempflag, 1 /* enabled */,
				   from_tty);
}

/* Return non-zero if the symbol SYM is an Ada exception object.  */

static int
ada_is_exception_sym (struct symbol *sym)
{
  const char *type_name = sym->type ()->name ();

  return (sym->aclass () != LOC_TYPEDEF
	  && sym->aclass () != LOC_BLOCK
	  && sym->aclass () != LOC_CONST
	  && sym->aclass () != LOC_UNRESOLVED
	  && type_name != NULL && strcmp (type_name, "exception") == 0);
}

/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
   Ada exception object.  This matches all exceptions except the ones
   defined by the Ada language.  */

static int
ada_is_non_standard_exception_sym (struct symbol *sym)
{
  if (!ada_is_exception_sym (sym))
    return 0;

  for (const char *name : standard_exc)
    if (strcmp (sym->linkage_name (), name) == 0)
      return 0;  /* A standard exception.  */

  /* Numeric_Error is also a standard exception, so exclude it.
     See the STANDARD_EXC description for more details as to why
     this exception is not listed in that array.  */
  if (strcmp (sym->linkage_name (), "numeric_error") == 0)
    return 0;

  return 1;
}

/* A helper function for std::sort, comparing two struct ada_exc_info
   objects.

   The comparison is determined first by exception name, and then
   by exception address.  */

bool
ada_exc_info::operator< (const ada_exc_info &other) const
{
  int result;

  result = strcmp (name, other.name);
  if (result < 0)
    return true;
  if (result == 0 && addr < other.addr)
    return true;
  return false;
}

bool
ada_exc_info::operator== (const ada_exc_info &other) const
{
  return addr == other.addr && strcmp (name, other.name) == 0;
}

/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
   routine, but keeping the first SKIP elements untouched.

   All duplicates are also removed.  */

static void
sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
				      int skip)
{
  std::sort (exceptions->begin () + skip, exceptions->end ());
  exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
		     exceptions->end ());
}

/* Add all exceptions defined by the Ada standard whose name match
   a regular expression.

   If PREG is not NULL, then this regexp_t object is used to
   perform the symbol name matching.  Otherwise, no name-based
   filtering is performed.

   EXCEPTIONS is a vector of exceptions to which matching exceptions
   gets pushed.  */

static void
ada_add_standard_exceptions (compiled_regex *preg,
			     std::vector<ada_exc_info> *exceptions)
{
  for (const char *name : standard_exc)
    {
      if (preg == NULL || preg->exec (name, 0, NULL, 0) == 0)
	{
	  symbol_name_match_type match_type = name_match_type_from_name (name);
	  lookup_name_info lookup_name (name, match_type);

	  symbol_name_matcher_ftype *match_name
	    = ada_get_symbol_name_matcher (lookup_name);

	  /* Iterate over all objfiles irrespective of scope or linker
	     namespaces so we get all exceptions anywhere in the
	     progspace.  */
	  for (objfile *objfile : current_program_space->objfiles ())
	    {
	      for (minimal_symbol *msymbol : objfile->msymbols ())
		{
		  if (match_name (msymbol->linkage_name (), lookup_name,
				  nullptr)
		      && msymbol->type () != mst_solib_trampoline)
		    {
		      ada_exc_info info
			= {name, msymbol->value_address (objfile)};

		      exceptions->push_back (info);
		    }
		}
	    }
	}
    }
}

/* Add all Ada exceptions defined locally and accessible from the given
   FRAME.

   If PREG is not NULL, then this regexp_t object is used to
   perform the symbol name matching.  Otherwise, no name-based
   filtering is performed.

   EXCEPTIONS is a vector of exceptions to which matching exceptions
   gets pushed.  */

static void
ada_add_exceptions_from_frame (compiled_regex *preg,
			       const frame_info_ptr &frame,
			       std::vector<ada_exc_info> *exceptions)
{
  const struct block *block = get_frame_block (frame, 0);

  while (block != 0)
    {
      for (struct symbol *sym : block_iterator_range (block))
	{
	  switch (sym->aclass ())
	    {
	    case LOC_TYPEDEF:
	    case LOC_BLOCK:
	    case LOC_CONST:
	      break;
	    default:
	      if (ada_is_exception_sym (sym))
		{
		  struct ada_exc_info info = {sym->print_name (),
					      sym->value_address ()};

		  exceptions->push_back (info);
		}
	    }
	}
      if (block->function () != NULL)
	break;
      block = block->superblock ();
    }
}

/* Return true if NAME matches PREG or if PREG is NULL.  */

static bool
name_matches_regex (const char *name, compiled_regex *preg)
{
  return (preg == NULL
	  || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
}

/* Add all exceptions defined globally whose name name match
   a regular expression, excluding standard exceptions.

   The reason we exclude standard exceptions is that they need
   to be handled separately: Standard exceptions are defined inside
   a runtime unit which is normally not compiled with debugging info,
   and thus usually do not show up in our symbol search.  However,
   if the unit was in fact built with debugging info, we need to
   exclude them because they would duplicate the entry we found
   during the special loop that specifically searches for those
   standard exceptions.

   If PREG is not NULL, then this regexp_t object is used to
   perform the symbol name matching.  Otherwise, no name-based
   filtering is performed.

   EXCEPTIONS is a vector of exceptions to which matching exceptions
   gets pushed.  */

static void
ada_add_global_exceptions (compiled_regex *preg,
			   std::vector<ada_exc_info> *exceptions)
{
  /* In Ada, the symbol "search name" is a linkage name, whereas the
     regular expression used to do the matching refers to the natural
     name.  So match against the decoded name.  */
  expand_symtabs_matching (NULL,
			   lookup_name_info::match_any (),
			   [&] (const char *search_name)
			   {
			     std::string decoded = ada_decode (search_name);
			     return name_matches_regex (decoded.c_str (), preg);
			   },
			   NULL,
			   SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
			   SEARCH_VAR_DOMAIN);

  /* Iterate over all objfiles irrespective of scope or linker namespaces
     so we get all exceptions anywhere in the progspace.  */
  for (objfile *objfile : current_program_space->objfiles ())
    {
      for (compunit_symtab *s : objfile->compunits ())
	{
	  const struct blockvector *bv = s->blockvector ();
	  int i;

	  for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
	    {
	      const struct block *b = bv->block (i);

	      for (struct symbol *sym : block_iterator_range (b))
		if (ada_is_non_standard_exception_sym (sym)
		    && name_matches_regex (sym->natural_name (), preg))
		  {
		    struct ada_exc_info info
		      = {sym->print_name (), sym->value_address ()};

		    exceptions->push_back (info);
		  }
	    }
	}
    }
}

/* Implements ada_exceptions_list with the regular expression passed
   as a regex_t, rather than a string.

   If not NULL, PREG is used to filter out exceptions whose names
   do not match.  Otherwise, all exceptions are listed.  */

static std::vector<ada_exc_info>
ada_exceptions_list_1 (compiled_regex *preg)
{
  std::vector<ada_exc_info> result;
  int prev_len;

  /* First, list the known standard exceptions.  These exceptions
     need to be handled separately, as they are usually defined in
     runtime units that have been compiled without debugging info.  */

  ada_add_standard_exceptions (preg, &result);

  /* Next, find all exceptions whose scope is local and accessible
     from the currently selected frame.  */

  if (has_stack_frames ())
    {
      prev_len = result.size ();
      ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
				     &result);
      if (result.size () > prev_len)
	sort_remove_dups_ada_exceptions_list (&result, prev_len);
    }

  /* Add all exceptions whose scope is global.  */

  prev_len = result.size ();
  ada_add_global_exceptions (preg, &result);
  if (result.size () > prev_len)
    sort_remove_dups_ada_exceptions_list (&result, prev_len);

  return result;
}

/* Return a vector of ada_exc_info.

   If REGEXP is NULL, all exceptions are included in the result.
   Otherwise, it should contain a valid regular expression,
   and only the exceptions whose names match that regular expression
   are included in the result.

   The exceptions are sorted in the following order:
     - Standard exceptions (defined by the Ada language), in
       alphabetical order;
     - Exceptions only visible from the current frame, in
       alphabetical order;
     - Exceptions whose scope is global, in alphabetical order.  */

std::vector<ada_exc_info>
ada_exceptions_list (const char *regexp)
{
  if (regexp == NULL)
    return ada_exceptions_list_1 (NULL);

  compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
  return ada_exceptions_list_1 (&reg);
}

/* Implement the "info exceptions" command.  */

static void
info_exceptions_command (const char *regexp, int from_tty)
{
  struct gdbarch *gdbarch = get_current_arch ();

  std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);

  if (regexp != NULL)
    gdb_printf
      (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
  else
    gdb_printf (_("All defined Ada exceptions:\n"));

  for (const ada_exc_info &info : exceptions)
    gdb_printf ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
}


				/* Language vector */

/* symbol_name_matcher_ftype adapter for wild_match.  */

static bool
do_wild_match (const char *symbol_search_name,
	       const lookup_name_info &lookup_name,
	       completion_match_result *comp_match_res)
{
  return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
}

/* symbol_name_matcher_ftype adapter for full_match.  */

static bool
do_full_match (const char *symbol_search_name,
	       const lookup_name_info &lookup_name,
	       completion_match_result *comp_match_res)
{
  const char *lname = lookup_name.ada ().lookup_name ().c_str ();

  /* If both symbols start with "_ada_", just let the loop below
     handle the comparison.  However, if only the symbol name starts
     with "_ada_", skip the prefix and let the match proceed as
     usual.  */
  if (startswith (symbol_search_name, "_ada_")
      && !startswith (lname, "_ada"))
    symbol_search_name += 5;
  /* Likewise for ghost entities.  */
  if (startswith (symbol_search_name, "___ghost_")
      && !startswith (lname, "___ghost_"))
    symbol_search_name += 9;

  int uscore_count = 0;
  while (*lname != '\0')
    {
      if (*symbol_search_name != *lname)
	{
	  if (*symbol_search_name == 'B' && uscore_count == 2
	      && symbol_search_name[1] == '_')
	    {
	      symbol_search_name += 2;
	      while (isdigit (*symbol_search_name))
		++symbol_search_name;
	      if (symbol_search_name[0] == '_'
		  && symbol_search_name[1] == '_')
		{
		  symbol_search_name += 2;
		  continue;
		}
	    }
	  return false;
	}

      if (*symbol_search_name == '_')
	++uscore_count;
      else
	uscore_count = 0;

      ++symbol_search_name;
      ++lname;
    }

  return is_name_suffix (symbol_search_name);
}

/* symbol_name_matcher_ftype for exact (verbatim) matches.  */

static bool
do_exact_match (const char *symbol_search_name,
		const lookup_name_info &lookup_name,
		completion_match_result *comp_match_res)
{
  return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
}

/* Build the Ada lookup name for LOOKUP_NAME.  */

ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
{
  std::string_view user_name = lookup_name.name ();

  if (!user_name.empty () && user_name[0] == '<')
    {
      if (user_name.back () == '>')
	m_encoded_name = user_name.substr (1, user_name.size () - 2);
      else
	m_encoded_name = user_name.substr (1, user_name.size () - 1);
      m_encoded_p = true;
      m_verbatim_p = true;
      m_wild_match_p = false;
      m_standard_p = false;
    }
  else
    {
      m_verbatim_p = false;

      m_encoded_p = user_name.find ("__") != std::string_view::npos;

      if (!m_encoded_p)
	{
	  const char *folded = ada_fold_name (user_name);
	  m_encoded_name = ada_encode_1 (folded, false);
	  if (m_encoded_name.empty ())
	    m_encoded_name = user_name;
	}
      else
	m_encoded_name = user_name;

      /* Handle the 'package Standard' special case.  See description
	 of m_standard_p.  */
      if (startswith (m_encoded_name.c_str (), "standard__"))
	{
	  m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
	  m_standard_p = true;
	}
      else
	m_standard_p = false;

      m_decoded_name = ada_decode (m_encoded_name.c_str (), true, false, false);

      /* If the name contains a ".", then the user is entering a fully
	 qualified entity name, and the match must not be done in wild
	 mode.  Similarly, if the user wants to complete what looks
	 like an encoded name, the match must not be done in wild
	 mode.  Also, in the standard__ special case always do
	 non-wild matching.  */
      m_wild_match_p
	= (lookup_name.match_type () != symbol_name_match_type::FULL
	   && !m_encoded_p
	   && !m_standard_p
	   && user_name.find ('.') == std::string::npos);
    }
}

/* symbol_name_matcher_ftype method for Ada.  This only handles
   completion mode.  */

static bool
ada_symbol_name_matches (const char *symbol_search_name,
			 const lookup_name_info &lookup_name,
			 completion_match_result *comp_match_res)
{
  return lookup_name.ada ().matches (symbol_search_name,
				     lookup_name.match_type (),
				     comp_match_res);
}

/* A name matcher that matches the symbol name exactly, with
   strcmp.  */

static bool
literal_symbol_name_matcher (const char *symbol_search_name,
			     const lookup_name_info &lookup_name,
			     completion_match_result *comp_match_res)
{
  std::string_view name_view = lookup_name.name ();

  if (lookup_name.completion_mode ()
      ? (strncmp (symbol_search_name, name_view.data (),
		  name_view.size ()) == 0)
      : symbol_search_name == name_view)
    {
      if (comp_match_res != NULL)
	comp_match_res->set_match (symbol_search_name);
      return true;
    }
  else
    return false;
}

/* Implement the "get_symbol_name_matcher" language_defn method for
   Ada.  */

static symbol_name_matcher_ftype *
ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
{
  if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
    return literal_symbol_name_matcher;

  if (lookup_name.completion_mode ())
    return ada_symbol_name_matches;
  else
    {
      if (lookup_name.ada ().wild_match_p ())
	return do_wild_match;
      else if (lookup_name.ada ().verbatim_p ())
	return do_exact_match;
      else
	return do_full_match;
    }
}

/* Class representing the Ada language.  */

class ada_language : public language_defn
{
public:
  ada_language ()
    : language_defn (language_ada)
  { /* Nothing.  */ }

  /* See language.h.  */

  const char *name () const override
  { return "ada"; }

  /* See language.h.  */

  const char *natural_name () const override
  { return "Ada"; }

  /* See language.h.  */

  const std::vector<const char *> &filename_extensions () const override
  {
    static const std::vector<const char *> extensions
      = { ".adb", ".ads", ".a", ".ada", ".dg" };
    return extensions;
  }

  /* Print an array element index using the Ada syntax.  */

  void print_array_index (struct type *index_type,
			  LONGEST index,
			  struct ui_file *stream,
			  const value_print_options *options) const override
  {
    struct value *index_value = val_atr (index_type, index);

    value_print (index_value, stream, options);
    gdb_printf (stream, " => ");
  }

  /* Implement the "read_var_value" language_defn method for Ada.  */

  struct value *read_var_value (struct symbol *var,
				const struct block *var_block,
				const frame_info_ptr &frame) const override
  {
    /* The only case where default_read_var_value is not sufficient
       is when VAR is a renaming...  */
    if (frame != nullptr)
      {
	const struct block *frame_block = get_frame_block (frame, NULL);
	if (frame_block != nullptr && ada_is_renaming_symbol (var))
	  return ada_read_renaming_var_value (var, frame_block);
      }

    /* This is a typical case where we expect the default_read_var_value
       function to work.  */
    return language_defn::read_var_value (var, var_block, frame);
  }

  /* See language.h.  */
  bool symbol_printing_suppressed (struct symbol *symbol) const override
  {
    return symbol->is_artificial ();
  }

  /* See language.h.  */
  struct value *value_string (struct gdbarch *gdbarch,
			      const char *ptr, ssize_t len) const override
  {
    struct type *type = language_string_char_type (this, gdbarch);
    value *val = ::value_string (ptr, len, type);
    /* VAL will be a TYPE_CODE_STRING, but Ada only knows how to print
       strings that are arrays of characters, so fix the type now.  */
    gdb_assert (val->type ()->code () == TYPE_CODE_STRING);
    val->type ()->set_code (TYPE_CODE_ARRAY);
    return val;
  }

  /* See language.h.  */
  void language_arch_info (struct gdbarch *gdbarch,
			   struct language_arch_info *lai) const override
  {
    const struct builtin_type *builtin = builtin_type (gdbarch);

    /* Helper function to allow shorter lines below.  */
    auto add = [&] (struct type *t)
    {
      lai->add_primitive_type (t);
    };

    type_allocator alloc (gdbarch);
    add (init_integer_type (alloc, gdbarch_int_bit (gdbarch),
			    0, "integer"));
    add (init_integer_type (alloc, gdbarch_long_bit (gdbarch),
			    0, "long_integer"));
    add (init_integer_type (alloc, gdbarch_short_bit (gdbarch),
			    0, "short_integer"));
    struct type *char_type = init_character_type (alloc, TARGET_CHAR_BIT,
						  1, "character");
    lai->set_string_char_type (char_type);
    add (char_type);
    add (init_character_type (alloc, 16, 1, "wide_character"));
    add (init_character_type (alloc, 32, 1, "wide_wide_character"));
    add (init_float_type (alloc, gdbarch_float_bit (gdbarch),
			  "float", gdbarch_float_format (gdbarch)));
    add (init_float_type (alloc, gdbarch_double_bit (gdbarch),
			  "long_float", gdbarch_double_format (gdbarch)));
    add (init_integer_type (alloc, gdbarch_long_long_bit (gdbarch),
			    0, "long_long_integer"));
    add (init_integer_type (alloc, 128, 0, "long_long_long_integer"));
    add (init_integer_type (alloc, 128, 1, "unsigned_long_long_long_integer"));
    add (init_float_type (alloc, gdbarch_long_double_bit (gdbarch),
			  "long_long_float",
			  gdbarch_long_double_format (gdbarch)));
    add (init_integer_type (alloc, gdbarch_int_bit (gdbarch),
			    0, "natural"));
    add (init_integer_type (alloc, gdbarch_int_bit (gdbarch),
			    0, "positive"));
    add (builtin->builtin_void);

    struct type *system_addr_ptr
      = lookup_pointer_type (alloc.new_type (TYPE_CODE_VOID, TARGET_CHAR_BIT,
					     "void"));
    system_addr_ptr->set_name ("system__address");
    add (system_addr_ptr);

    /* Create the equivalent of the System.Storage_Elements.Storage_Offset
       type.  This is a signed integral type whose size is the same as
       the size of addresses.  */
    unsigned int addr_length = system_addr_ptr->length ();
    add (init_integer_type (alloc, addr_length * HOST_CHAR_BIT, 0,
			    "storage_offset"));

    lai->set_bool_type (builtin->builtin_bool);
  }

  /* See language.h.  */

  bool iterate_over_symbols
	(const struct block *block, const lookup_name_info &name,
	 domain_search_flags domain,
	 gdb::function_view<symbol_found_callback_ftype> callback) const override
  {
    std::vector<struct block_symbol> results
      = ada_lookup_symbol_list_worker (name, block, domain, 0);
    for (block_symbol &sym : results)
      {
	if (!callback (&sym))
	  return false;
      }

    return true;
  }

  /* See language.h.  */
  bool sniff_from_mangled_name
       (const char *mangled,
	gdb::unique_xmalloc_ptr<char> *out) const override
  {
    std::string demangled = ada_decode (mangled);

    *out = NULL;

    if (demangled != mangled && demangled[0] != '<')
      {
	/* Set the gsymbol language to Ada, but still return 0.
	   Two reasons for that:

	   1. For Ada, we prefer computing the symbol's decoded name
	   on the fly rather than pre-compute it, in order to save
	   memory (Ada projects are typically very large).

	   2. There are some areas in the definition of the GNAT
	   encoding where, with a bit of bad luck, we might be able
	   to decode a non-Ada symbol, generating an incorrect
	   demangled name (Eg: names ending with "TB" for instance
	   are identified as task bodies and so stripped from
	   the decoded name returned).

	   Returning true, here, but not setting *DEMANGLED, helps us get
	   a little bit of the best of both worlds.  Because we're last,
	   we should not affect any of the other languages that were
	   able to demangle the symbol before us; we get to correctly
	   tag Ada symbols as such; and even if we incorrectly tagged a
	   non-Ada symbol, which should be rare, any routing through the
	   Ada language should be transparent (Ada tries to behave much
	   like C/C++ with non-Ada symbols).  */
	return true;
      }

    return false;
  }

  /* See language.h.  */

  gdb::unique_xmalloc_ptr<char> demangle_symbol (const char *mangled,
						 int options) const override
  {
    return make_unique_xstrdup (ada_decode (mangled).c_str ());
  }

  /* See language.h.  */

  void print_type (struct type *type, const char *varstring,
		   struct ui_file *stream, int show, int level,
		   const struct type_print_options *flags) const override
  {
    ada_print_type (type, varstring, stream, show, level, flags);
  }

  /* See language.h.  */

  const char *word_break_characters (void) const override
  {
    return ada_completer_word_break_characters;
  }

  /* See language.h.  */

  void collect_symbol_completion_matches (completion_tracker &tracker,
					  complete_symbol_mode mode,
					  symbol_name_match_type name_match_type,
					  const char *text, const char *word,
					  enum type_code code) const override
  {
    const struct block *b, *surrounding_static_block = 0;

    gdb_assert (code == TYPE_CODE_UNDEF);

    lookup_name_info lookup_name (text, name_match_type, true);

    /* First, look at the partial symtab symbols.  */
    expand_symtabs_matching (NULL,
			     lookup_name,
			     NULL,
			     NULL,
			     SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
			     SEARCH_ALL_DOMAINS);

    /* At this point scan through the misc symbol vectors and add each
       symbol you find to the list.  Eventually we want to ignore
       anything that isn't a text symbol (everything else will be
       handled by the psymtab code above).  */

    for (objfile *objfile : current_program_space->objfiles ())
      {
	for (minimal_symbol *msymbol : objfile->msymbols ())
	  {
	    QUIT;

	    if (completion_skip_symbol (mode, msymbol))
	      continue;

	    language symbol_language = msymbol->language ();

	    /* Ada minimal symbols won't have their language set to Ada.  If
	       we let completion_list_add_name compare using the
	       default/C-like matcher, then when completing e.g., symbols in a
	       package named "pck", we'd match internal Ada symbols like
	       "pckS", which are invalid in an Ada expression, unless you wrap
	       them in '<' '>' to request a verbatim match.

	       Unfortunately, some Ada encoded names successfully demangle as
	       C++ symbols (using an old mangling scheme), such as "name__2Xn"
	       -> "Xn::name(void)" and thus some Ada minimal symbols end up
	       with the wrong language set.  Paper over that issue here.  */
	    if (symbol_language == language_unknown
		|| symbol_language == language_cplus)
	      symbol_language = language_ada;

	    completion_list_add_name (tracker,
				      symbol_language,
				      msymbol->linkage_name (),
				      lookup_name, text, word);
	  }
      }

    /* Search upwards from currently selected frame (so that we can
       complete on local vars.  */

    for (b = get_selected_block (0); b != NULL; b = b->superblock ())
      {
	if (!b->superblock ())
	  surrounding_static_block = b;   /* For elmin of dups */

	for (struct symbol *sym : block_iterator_range (b))
	  {
	    if (completion_skip_symbol (mode, sym))
	      continue;

	    completion_list_add_name (tracker,
				      sym->language (),
				      sym->linkage_name (),
				      lookup_name, text, word);
	  }
      }

    /* Go through the symtabs and check the externs and statics for
       symbols which match.  */

    for (objfile *objfile : current_program_space->objfiles ())
      {
	for (compunit_symtab *s : objfile->compunits ())
	  {
	    QUIT;
	    b = s->blockvector ()->global_block ();
	    for (struct symbol *sym : block_iterator_range (b))
	      {
		if (completion_skip_symbol (mode, sym))
		  continue;

		completion_list_add_name (tracker,
					  sym->language (),
					  sym->linkage_name (),
					  lookup_name, text, word);
	      }
	  }
      }

    for (objfile *objfile : current_program_space->objfiles ())
      {
	for (compunit_symtab *s : objfile->compunits ())
	  {
	    QUIT;
	    b = s->blockvector ()->static_block ();
	    /* Don't do this block twice.  */
	    if (b == surrounding_static_block)
	      continue;
	    for (struct symbol *sym : block_iterator_range (b))
	      {
		if (completion_skip_symbol (mode, sym))
		  continue;

		completion_list_add_name (tracker,
					  sym->language (),
					  sym->linkage_name (),
					  lookup_name, text, word);
	      }
	  }
      }
  }

  /* See language.h.  */

  gdb::unique_xmalloc_ptr<char> watch_location_expression
	(struct type *type, CORE_ADDR addr) const override
  {
    type = check_typedef (check_typedef (type)->target_type ());
    std::string name = type_to_string (type);
    return xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr));
  }

  /* See language.h.  */

  void value_print (struct value *val, struct ui_file *stream,
		    const struct value_print_options *options) const override
  {
    return ada_value_print (val, stream, options);
  }

  /* See language.h.  */

  void value_print_inner
	(struct value *val, struct ui_file *stream, int recurse,
	 const struct value_print_options *options) const override
  {
    return ada_value_print_inner (val, stream, recurse, options);
  }

  /* See language.h.  */

  struct block_symbol lookup_symbol_nonlocal
	(const char *name, const struct block *block,
	 const domain_search_flags domain) const override
  {
    struct block_symbol sym;

    sym = ada_lookup_symbol (name,
			     (block == nullptr
			      ? nullptr
			      : block->static_block ()),
			     domain);
    if (sym.symbol != NULL)
      return sym;

    /* If we haven't found a match at this point, try the primitive
       types.  In other languages, this search is performed before
       searching for global symbols in order to short-circuit that
       global-symbol search if it happens that the name corresponds
       to a primitive type.  But we cannot do the same in Ada, because
       it is perfectly legitimate for a program to declare a type which
       has the same name as a standard type.  If looking up a type in
       that situation, we have traditionally ignored the primitive type
       in favor of user-defined types.  This is why, unlike most other
       languages, we search the primitive types this late and only after
       having searched the global symbols without success.  */

    if ((domain & SEARCH_TYPE_DOMAIN) != 0)
      {
	struct gdbarch *gdbarch;

	if (block == NULL)
	  gdbarch = current_inferior ()->arch ();
	else
	  gdbarch = block->gdbarch ();
	sym.symbol
	  = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
	if (sym.symbol != NULL)
	  return sym;
      }

    return {};
  }

  /* See language.h.  */

  int parser (struct parser_state *ps) const override
  {
    warnings_issued = 0;
    return ada_parse (ps);
  }

  /* See language.h.  */

  void emitchar (int ch, struct type *chtype,
		 struct ui_file *stream, int quoter) const override
  {
    ada_emit_char (ch, chtype, stream, quoter, 1);
  }

  /* See language.h.  */

  void printchar (int ch, struct type *chtype,
		  struct ui_file *stream) const override
  {
    ada_printchar (ch, chtype, stream);
  }

  /* See language.h.  */

  void printstr (struct ui_file *stream, struct type *elttype,
		 const gdb_byte *string, unsigned int length,
		 const char *encoding, int force_ellipses,
		 const struct value_print_options *options) const override
  {
    ada_printstr (stream, elttype, string, length, encoding,
		  force_ellipses, options);
  }

  /* See language.h.  */

  void print_typedef (struct type *type, struct symbol *new_symbol,
		      struct ui_file *stream) const override
  {
    ada_print_typedef (type, new_symbol, stream);
  }

  /* See language.h.  */

  bool is_string_type_p (struct type *type) const override
  {
    return ada_is_string_type (type);
  }

  /* See language.h.  */

  bool is_array_like (struct type *type) const override
  {
    return (ada_is_constrained_packed_array_type (type)
	    || ada_is_array_descriptor_type (type));
  }

  /* See language.h.  */

  struct value *to_array (struct value *val) const override
  { return ada_coerce_to_simple_array (val); }

  /* See language.h.  */

  const char *struct_too_deep_ellipsis () const override
  { return "(...)"; }

  /* See language.h.  */

  bool c_style_arrays_p () const override
  { return false; }

  /* See language.h.  */

  bool store_sym_names_in_linkage_form_p () const override
  { return true; }

  /* See language.h.  */

  const struct lang_varobj_ops *varobj_ops () const override
  { return &ada_varobj_ops; }

protected:
  /* See language.h.  */

  symbol_name_matcher_ftype *get_symbol_name_matcher_inner
	(const lookup_name_info &lookup_name) const override
  {
    return ada_get_symbol_name_matcher (lookup_name);
  }
};

/* Single instance of the Ada language class.  */

static ada_language ada_language_defn;

/* Command-list for the "set/show ada" prefix command.  */
static struct cmd_list_element *set_ada_list;
static struct cmd_list_element *show_ada_list;

/* This module's 'new_objfile' observer.  */

static void
ada_new_objfile_observer (struct objfile *objfile)
{
  ada_clear_symbol_cache (objfile->pspace ());
}

/* This module's 'free_objfile' observer.  */

static void
ada_free_objfile_observer (struct objfile *objfile)
{
  ada_clear_symbol_cache (objfile->pspace ());
}

/* Charsets known to GNAT.  */
static const char * const gnat_source_charsets[] =
{
  /* Note that code below assumes that the default comes first.
     Latin-1 is the default here, because that is also GNAT's
     default.  */
  "ISO-8859-1",
  "ISO-8859-2",
  "ISO-8859-3",
  "ISO-8859-4",
  "ISO-8859-5",
  "ISO-8859-15",
  "CP437",
  "CP850",
  /* Note that this value is special-cased in the encoder and
     decoder.  */
  ada_utf8,
  nullptr
};

void _initialize_ada_language ();
void
_initialize_ada_language ()
{
  add_setshow_prefix_cmd
    ("ada", no_class,
     _("Prefix command for changing Ada-specific settings."),
     _("Generic command for showing Ada-specific settings."),
     &set_ada_list, &show_ada_list,
     &setlist, &showlist);

  add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
			   &trust_pad_over_xvs, _("\
Enable or disable an optimization trusting PAD types over XVS types."), _("\
Show whether an optimization trusting PAD types over XVS types is activated."),
			   _("\
This is related to the encoding used by the GNAT compiler.  The debugger\n\
should normally trust the contents of PAD types, but certain older versions\n\
of GNAT have a bug that sometimes causes the information in the PAD type\n\
to be incorrect.  Turning this setting \"off\" allows the debugger to\n\
work around this bug.  It is always safe to turn this option \"off\", but\n\
this incurs a slight performance penalty, so it is recommended to NOT change\n\
this option to \"off\" unless necessary."),
			    NULL, NULL, &set_ada_list, &show_ada_list);

  add_setshow_boolean_cmd ("print-signatures", class_vars,
			   &print_signatures, _("\
Enable or disable the output of formal and return types for functions in the \
overloads selection menu."), _("\
Show whether the output of formal and return types for functions in the \
overloads selection menu is activated."),
			   NULL, NULL, NULL, &set_ada_list, &show_ada_list);

  ada_source_charset = gnat_source_charsets[0];
  add_setshow_enum_cmd ("source-charset", class_files,
			gnat_source_charsets,
			&ada_source_charset,  _("\
Set the Ada source character set."), _("\
Show the Ada source character set."), _("\
The character set used for Ada source files.\n\
This must correspond to the '-gnati' or '-gnatW' option passed to GNAT."),
			nullptr, nullptr,
			&set_ada_list, &show_ada_list);

  add_catch_command ("exception", _("\
Catch Ada exceptions, when raised.\n\
Usage: catch exception [ARG] [if CONDITION]\n\
Without any argument, stop when any Ada exception is raised.\n\
If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
being raised does not have a handler (and will therefore lead to the task's\n\
termination).\n\
Otherwise, the catchpoint only stops when the name of the exception being\n\
raised is the same as ARG.\n\
CONDITION is a boolean expression that is evaluated to see whether the\n\
exception should cause a stop."),
		     catch_ada_exception_command,
		     catch_ada_completer,
		     CATCH_PERMANENT,
		     CATCH_TEMPORARY);

  add_catch_command ("handlers", _("\
Catch Ada exceptions, when handled.\n\
Usage: catch handlers [ARG] [if CONDITION]\n\
Without any argument, stop when any Ada exception is handled.\n\
With an argument, catch only exceptions with the given name.\n\
CONDITION is a boolean expression that is evaluated to see whether the\n\
exception should cause a stop."),
		     catch_ada_handlers_command,
		     catch_ada_completer,
		     CATCH_PERMANENT,
		     CATCH_TEMPORARY);
  add_catch_command ("assert", _("\
Catch failed Ada assertions, when raised.\n\
Usage: catch assert [if CONDITION]\n\
CONDITION is a boolean expression that is evaluated to see whether the\n\
exception should cause a stop."),
		     catch_assert_command,
		     NULL,
		     CATCH_PERMANENT,
		     CATCH_TEMPORARY);

  add_info ("exceptions", info_exceptions_command,
	    _("\
List all Ada exception names.\n\
Usage: info exceptions [REGEXP]\n\
If a regular expression is passed as an argument, only those matching\n\
the regular expression are listed."));

  add_setshow_prefix_cmd ("ada", class_maintenance,
			  _("Set Ada maintenance-related variables."),
			  _("Show Ada maintenance-related variables."),
			  &maint_set_ada_cmdlist, &maint_show_ada_cmdlist,
			  &maintenance_set_cmdlist, &maintenance_show_cmdlist);

  add_setshow_boolean_cmd
    ("ignore-descriptive-types", class_maintenance,
     &ada_ignore_descriptive_types_p,
     _("Set whether descriptive types generated by GNAT should be ignored."),
     _("Show whether descriptive types generated by GNAT should be ignored."),
     _("\
When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
DWARF attribute."),
     NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);

  decoded_names_store = htab_create_alloc (256, htab_hash_string,
					   htab_eq_string,
					   NULL, xcalloc, xfree);

  /* The ada-lang observers.  */
  gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
  gdb::observers::all_objfiles_removed.attach (ada_clear_symbol_cache,
					       "ada-lang");
  gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
  gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");

#ifdef GDB_SELF_TEST
  selftests::register_test ("ada-decode", ada_decode_tests);
#endif
}