aboutsummaryrefslogtreecommitdiff
path: root/gdb/infrun.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/infrun.c')
-rw-r--r--gdb/infrun.c252
1 files changed, 120 insertions, 132 deletions
diff --git a/gdb/infrun.c b/gdb/infrun.c
index b16cc62..0724546 100644
--- a/gdb/infrun.c
+++ b/gdb/infrun.c
@@ -2,8 +2,8 @@
process.
Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
- 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
- Foundation, Inc.
+ 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
+ Software Foundation, Inc.
This file is part of GDB.
@@ -61,9 +61,6 @@ static int hook_stop_stub (void *);
static void delete_breakpoint_current_contents (void *);
-static void set_follow_fork_mode_command (char *arg, int from_tty,
- struct cmd_list_element *c);
-
static int restore_selected_frame (void *);
static void build_infrun (void);
@@ -340,12 +337,10 @@ static struct
}
pending_follow;
-static const char follow_fork_mode_ask[] = "ask";
static const char follow_fork_mode_child[] = "child";
static const char follow_fork_mode_parent[] = "parent";
static const char *follow_fork_mode_kind_names[] = {
- follow_fork_mode_ask,
follow_fork_mode_child,
follow_fork_mode_parent,
NULL
@@ -357,16 +352,7 @@ static const char *follow_fork_mode_string = follow_fork_mode_parent;
static int
follow_fork (void)
{
- const char *follow_mode = follow_fork_mode_string;
- int follow_child = (follow_mode == follow_fork_mode_child);
-
- /* Or, did the user not know, and want us to ask? */
- if (follow_fork_mode_string == follow_fork_mode_ask)
- {
- internal_error (__FILE__, __LINE__,
- "follow_inferior_fork: \"ask\" mode not implemented");
- /* follow_mode = follow_fork_mode_...; */
- }
+ int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
return target_follow_fork (follow_child);
}
@@ -987,6 +973,7 @@ struct execution_control_state
void init_execution_control_state (struct execution_control_state *ecs);
+static void handle_step_into_function (struct execution_control_state *ecs);
void handle_inferior_event (struct execution_control_state *ecs);
static void check_sigtramp2 (struct execution_control_state *ecs);
@@ -1236,6 +1223,95 @@ pc_in_sigtramp (CORE_ADDR pc)
return PC_IN_SIGTRAMP (pc, name);
}
+/* Handle the inferior event in the cases when we just stepped
+ into a function. */
+
+static void
+handle_step_into_function (struct execution_control_state *ecs)
+{
+ CORE_ADDR real_stop_pc;
+
+ if ((step_over_calls == STEP_OVER_NONE)
+ || ((step_range_end == 1)
+ && in_prologue (prev_pc, ecs->stop_func_start)))
+ {
+ /* I presume that step_over_calls is only 0 when we're
+ supposed to be stepping at the assembly language level
+ ("stepi"). Just stop. */
+ /* Also, maybe we just did a "nexti" inside a prolog,
+ so we thought it was a subroutine call but it was not.
+ Stop as well. FENN */
+ stop_step = 1;
+ print_stop_reason (END_STEPPING_RANGE, 0);
+ stop_stepping (ecs);
+ return;
+ }
+
+ if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
+ {
+ /* We're doing a "next". */
+
+ if (pc_in_sigtramp (stop_pc)
+ && frame_id_inner (step_frame_id,
+ frame_id_build (read_sp (), 0)))
+ /* We stepped out of a signal handler, and into its
+ calling trampoline. This is misdetected as a
+ subroutine call, but stepping over the signal
+ trampoline isn't such a bad idea. In order to do that,
+ we have to ignore the value in step_frame_id, since
+ that doesn't represent the frame that'll reach when we
+ return from the signal trampoline. Otherwise we'll
+ probably continue to the end of the program. */
+ step_frame_id = null_frame_id;
+
+ step_over_function (ecs);
+ keep_going (ecs);
+ return;
+ }
+
+ /* If we are in a function call trampoline (a stub between
+ the calling routine and the real function), locate the real
+ function. That's what tells us (a) whether we want to step
+ into it at all, and (b) what prologue we want to run to
+ the end of, if we do step into it. */
+ real_stop_pc = skip_language_trampoline (stop_pc);
+ if (real_stop_pc == 0)
+ real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
+ if (real_stop_pc != 0)
+ ecs->stop_func_start = real_stop_pc;
+
+ /* If we have line number information for the function we
+ are thinking of stepping into, step into it.
+
+ If there are several symtabs at that PC (e.g. with include
+ files), just want to know whether *any* of them have line
+ numbers. find_pc_line handles this. */
+ {
+ struct symtab_and_line tmp_sal;
+
+ tmp_sal = find_pc_line (ecs->stop_func_start, 0);
+ if (tmp_sal.line != 0)
+ {
+ step_into_function (ecs);
+ return;
+ }
+ }
+
+ /* If we have no line number and the step-stop-if-no-debug
+ is set, we stop the step so that the user has a chance to
+ switch in assembly mode. */
+ if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
+ {
+ stop_step = 1;
+ print_stop_reason (END_STEPPING_RANGE, 0);
+ stop_stepping (ecs);
+ return;
+ }
+
+ step_over_function (ecs);
+ keep_going (ecs);
+ return;
+}
/* Given an execution control state that has been freshly filled in
by an event from the inferior, figure out what it means and take
@@ -1244,7 +1320,6 @@ pc_in_sigtramp (CORE_ADDR pc)
void
handle_inferior_event (struct execution_control_state *ecs)
{
- CORE_ADDR real_stop_pc;
/* NOTE: cagney/2003-03-28: If you're looking at this code and
thinking that the variable stepped_after_stopped_by_watchpoint
isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
@@ -2226,7 +2301,7 @@ process_event_stop_test:
gdb of events. This allows the user to get control
and place breakpoints in initializer routines for
dynamically loaded objects (among other things). */
- if (stop_on_solib_events)
+ if (stop_on_solib_events || stop_stack_dummy)
{
stop_stepping (ecs);
return;
@@ -2479,88 +2554,8 @@ process_event_stop_test:
|| ecs->stop_func_name == 0)
{
/* It's a subroutine call. */
-
- if ((step_over_calls == STEP_OVER_NONE)
- || ((step_range_end == 1)
- && in_prologue (prev_pc, ecs->stop_func_start)))
- {
- /* I presume that step_over_calls is only 0 when we're
- supposed to be stepping at the assembly language level
- ("stepi"). Just stop. */
- /* Also, maybe we just did a "nexti" inside a prolog,
- so we thought it was a subroutine call but it was not.
- Stop as well. FENN */
- stop_step = 1;
- print_stop_reason (END_STEPPING_RANGE, 0);
- stop_stepping (ecs);
- return;
- }
-
- if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
- {
- /* We're doing a "next". */
-
- if (pc_in_sigtramp (stop_pc)
- && frame_id_inner (step_frame_id,
- frame_id_build (read_sp (), 0)))
- /* We stepped out of a signal handler, and into its
- calling trampoline. This is misdetected as a
- subroutine call, but stepping over the signal
- trampoline isn't such a bad idea. In order to do that,
- we have to ignore the value in step_frame_id, since
- that doesn't represent the frame that'll reach when we
- return from the signal trampoline. Otherwise we'll
- probably continue to the end of the program. */
- step_frame_id = null_frame_id;
-
- step_over_function (ecs);
- keep_going (ecs);
- return;
- }
-
- /* If we are in a function call trampoline (a stub between
- the calling routine and the real function), locate the real
- function. That's what tells us (a) whether we want to step
- into it at all, and (b) what prologue we want to run to
- the end of, if we do step into it. */
- real_stop_pc = skip_language_trampoline (stop_pc);
- if (real_stop_pc == 0)
- real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
- if (real_stop_pc != 0)
- ecs->stop_func_start = real_stop_pc;
-
- /* If we have line number information for the function we
- are thinking of stepping into, step into it.
-
- If there are several symtabs at that PC (e.g. with include
- files), just want to know whether *any* of them have line
- numbers. find_pc_line handles this. */
- {
- struct symtab_and_line tmp_sal;
-
- tmp_sal = find_pc_line (ecs->stop_func_start, 0);
- if (tmp_sal.line != 0)
- {
- step_into_function (ecs);
- return;
- }
- }
-
- /* If we have no line number and the step-stop-if-no-debug
- is set, we stop the step so that the user has a chance to
- switch in assembly mode. */
- if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
- {
- stop_step = 1;
- print_stop_reason (END_STEPPING_RANGE, 0);
- stop_stepping (ecs);
- return;
- }
-
- step_over_function (ecs);
- keep_going (ecs);
+ handle_step_into_function (ecs);
return;
-
}
/* We've wandered out of the step range. */
@@ -2582,7 +2577,7 @@ process_event_stop_test:
if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
{
/* Determine where this trampoline returns. */
- real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
+ CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
/* Only proceed through if we know where it's going. */
if (real_stop_pc)
@@ -2762,6 +2757,29 @@ step_into_function (struct execution_control_state *ecs)
&& ecs->sal.end < ecs->stop_func_end)
ecs->stop_func_start = ecs->sal.end;
+ /* Architectures which require breakpoint adjustment might not be able
+ to place a breakpoint at the computed address. If so, the test
+ ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
+ ecs->stop_func_start to an address at which a breakpoint may be
+ legitimately placed.
+
+ Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
+ made, GDB will enter an infinite loop when stepping through
+ optimized code consisting of VLIW instructions which contain
+ subinstructions corresponding to different source lines. On
+ FR-V, it's not permitted to place a breakpoint on any but the
+ first subinstruction of a VLIW instruction. When a breakpoint is
+ set, GDB will adjust the breakpoint address to the beginning of
+ the VLIW instruction. Thus, we need to make the corresponding
+ adjustment here when computing the stop address. */
+
+ if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
+ {
+ ecs->stop_func_start
+ = gdbarch_adjust_breakpoint_address (current_gdbarch,
+ ecs->stop_func_start);
+ }
+
if (ecs->stop_func_start == stop_pc)
{
/* We are already there: stop now. */
@@ -2945,17 +2963,6 @@ keep_going (struct execution_control_state *ecs)
if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
stop_signal = TARGET_SIGNAL_0;
-#ifdef SHIFT_INST_REGS
- /* I'm not sure when this following segment applies. I do know,
- now, that we shouldn't rewrite the regs when we were stopped
- by a random signal from the inferior process. */
- /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
- (this is only used on the 88k). */
-
- if (!bpstat_explains_signal (stop_bpstat)
- && (stop_signal != TARGET_SIGNAL_CHLD) && !stopped_by_random_signal)
- SHIFT_INST_REGS ();
-#endif /* SHIFT_INST_REGS */
resume (currently_stepping (ecs), stop_signal);
}
@@ -4066,31 +4073,12 @@ to the user would be loading/unloading of a new library.\n", &setlist), &showlis
c = add_set_enum_cmd ("follow-fork-mode",
class_run,
follow_fork_mode_kind_names, &follow_fork_mode_string,
-/* ??rehrauer: The "both" option is broken, by what may be a 10.20
- kernel problem. It's also not terribly useful without a GUI to
- help the user drive two debuggers. So for now, I'm disabling
- the "both" option. */
-/* "Set debugger response to a program call of fork \
- or vfork.\n\
- A fork or vfork creates a new process. follow-fork-mode can be:\n\
- parent - the original process is debugged after a fork\n\
- child - the new process is debugged after a fork\n\
- both - both the parent and child are debugged after a fork\n\
- ask - the debugger will ask for one of the above choices\n\
- For \"both\", another copy of the debugger will be started to follow\n\
- the new child process. The original debugger will continue to follow\n\
- the original parent process. To distinguish their prompts, the\n\
- debugger copy's prompt will be changed.\n\
- For \"parent\" or \"child\", the unfollowed process will run free.\n\
- By default, the debugger will follow the parent process.",
- */
"Set debugger response to a program call of fork \
or vfork.\n\
A fork or vfork creates a new process. follow-fork-mode can be:\n\
parent - the original process is debugged after a fork\n\
child - the new process is debugged after a fork\n\
- ask - the debugger will ask for one of the above choices\n\
-For \"parent\" or \"child\", the unfollowed process will run free.\n\
+The unfollowed process will continue to run.\n\
By default, the debugger will follow the parent process.", &setlist);
add_show_from_set (c, &showlist);