aboutsummaryrefslogtreecommitdiff
path: root/gdb/python/py-linetable.c
diff options
context:
space:
mode:
authorAndrew Burgess <aburgess@redhat.com>2024-05-15 15:28:45 +0100
committerAndrew Burgess <aburgess@redhat.com>2024-09-07 20:28:57 +0100
commit522875f679bd0a5c31cc02a57a7a2149193dea1d (patch)
tree66ac3455628d5a1fee3b4668a498f4684643777b /gdb/python/py-linetable.c
parent9a33a0b9c65e587c3142600571f59efb25c973f9 (diff)
downloadbinutils-522875f679bd0a5c31cc02a57a7a2149193dea1d.zip
binutils-522875f679bd0a5c31cc02a57a7a2149193dea1d.tar.gz
binutils-522875f679bd0a5c31cc02a57a7a2149193dea1d.tar.bz2
gdb/corefile: don't pretend unavailable sections are readable
When GDB opens a core file the bfd library processes the core file and creates sections within the bfd object to represent each of the segments within the core file. GDB then creates two target_section lists, m_core_section_table and m_core_file_mappings, these, along with m_core_unavailable_mappings, are used by GDB to implement core_target::xfer_partial; this is the function used when GDB tries to read memory from a core file inferior. The m_core_section_table list represents sections within the core file itself. The sections in this list can be split into two groups based on whether the section has the SEC_HAS_CONTENTS flag set or not. Sections (from the core file) that have the SEC_HAS_CONTENTS flag had their contents copied into the core file when the core file was created. These correspond to writable sections within the original inferior (the inferior for which the core file was created). Sections (from the core file) that do not have the SEC_HAS_CONTENTS flag will not have had their contents copied into the core file when it was created. These sections correspond to read-only sections mapped from a file (possibly the initial executable, or possibly some other file) in the original inferior. The expectation is that the contents of these sections can still be found by looking in the file that was originally mapped. The m_core_file_mappings list is created when GDB parses the mapped file list in the core file. Every mapped region will be covered by entries in the m_core_section_table list (see above), but for read-only mappings the entry in m_core_section_table will not have the SEC_HAS_CONTENTS flag set. As GDB parses the mapped file list, if the file that was originally mapped can be found, then GDB creates an entry in the m_core_file_mappings list which represents the region of the file that was mapped into the original inferior. However, GDB only creates entries in m_core_file_mappings if it is able to find the correct on-disk file to open. If the file can't be found then an entry is added to m_core_unavailable_mappings instead. If is the handling m_core_unavailable_mappings which I think is currently not completely correct. When a read lands within an m_core_unavailable_mappings region we currently forward the read to the exec file stratum. The reason for this is this: when GDB read the mapped file list, if the executable file could not be found at the expected path then mappings within the executable will end up in the m_core_unavailable_mappings list. However, the user might provide the executable to GDB from a different location. If this happens then forwarding the read to the exec file stratum might give a result. But, if the exec file stratum does not resolve the access then currently we continue through ::xfer_partial, the next step of which is to handle m_core_section_table entries that don't have the SEC_HAS_CONTENTS flag set. Every m_core_unavailable_mappings entry will naturally have an m_core_section_table without the SEC_HAS_CONTENTS flag set, and so we treat the unavailable mapping as zero initialised memory and return all zeros. It is this fall through behaviour that I think is wrong. If a read falls in an unavailable region, and the exec file stratum cannot help, then I think the access should fail. To achieve this goal I have removed the xfer_memory_via_mappings helper function and moved its content inline into ::xfer_partial. Now, if an access is within an m_core_unavailable_mappings region, and the exec file stratum doesn't help, we immediately return with an error. The reset of ::xfer_partial is unchanged, I've extended some comments in the area that I have changed to (I hope) explain better what's going on. There's a new test that covers the new functionality, an inferior maps a file and generates a core file. We then remove the mapped file, load the core file and try to read from the mapped region. The expectation is that GDB should give an error rather than claiming that the region is full of zeros.
Diffstat (limited to 'gdb/python/py-linetable.c')
0 files changed, 0 insertions, 0 deletions