aboutsummaryrefslogtreecommitdiff
path: root/binutils/testsuite
diff options
context:
space:
mode:
authorPedro Franco de Carvalho <pedromfc@linux.ibm.com>2020-03-30 12:04:25 -0300
committerPedro Franco de Carvalho <pedromfc@linux.ibm.com>2020-03-30 12:10:13 -0300
commit227c0bf4b3dd0cf65dceb58e729e9da81b38b5a7 (patch)
tree28f966c4b4b08d2b544d5f2722b04f2b4b6bc2f6 /binutils/testsuite
parent4db10d8f4911298d06d2bb25927946f66f0f33e3 (diff)
downloadbinutils-227c0bf4b3dd0cf65dceb58e729e9da81b38b5a7.zip
binutils-227c0bf4b3dd0cf65dceb58e729e9da81b38b5a7.tar.gz
binutils-227c0bf4b3dd0cf65dceb58e729e9da81b38b5a7.tar.bz2
[PowerPC] Fix debug register issues in ppc-linux-nat
This patch fixes some issues with debug register handling for the powerpc linux native target. Currently, the target methods for installing and removing hardware breakpoints and watchpoints in ppc-linux-nat.c affect all threads known to linux-nat, including threads of different processes. This patch changes ppc-linux-nat.c so that only the process of inferior_ptid is affected by these target methods, as GDB expects. This is done in the same way as various other architectures. The install/remove target methods only register a hardware breakpoint or watchpoint, and then send a stop signal to the threads. The debug registers are only changed with ptrace right before each thread is next resumed, using low_prepare_to_resume. There are two interfaces to modify debug registers for linux running on powerpc, with different sets of ptrace requests: - PPC_PTRACE_GETHWDBGINFO, PPC_PTRACE_SETHWDEBUG, and PPC_PTRACE_DELHWDEBUG. Or - PTRACE_SET_DEBUGREG and PTRACE_GET_DEBUGREG The first set (HWDEBUG) is the more flexible one and allows setting watchpoints with a variable watched region length and, for certain embedded processors, multiple types of debug registers (e.g. hardware breakpoints and hardware-assisted conditions for watchpoints). Currently, server processors only provide one watchpoint. The second one (DEBUGREG) only allows setting one debug register, a watchpoint, so we only use it if the first one is not available. The HWDEBUG interface handles debug registers with slot numbers. Once a hardware watchpoint or breakpoint is installed (with PPC_PTRACE_SETHWDEBUG), ptrace returns a slot number. This slot number can then be used to remove the watchpoint or breakpoint from the inferior (with PPC_PTRACE_DELHWDEBUG). The first interface also provides a bitmask of available debug register features, which can be obtained with PPC_PTRACE_GETHWDBGINFO. When GDB first tries to use debug registers, we try the first interface with a ptrace call, and if it isn't available, we fall back to the second one, if available. We use EIO as an indicator that an interface is not available in the kernel. For simplicity, with any other error we immediately assume no interface is available. Unfortunately this means that if a process is killed by a signal right before we try to detect the interface, we might get an ESRCH, which would prevent debug registers to be used in the GDB session. However, it isn't clear that we can safely raise an exception and try again in the future in all the contexts where we try to detect the interface. If the HWDEBUG interface works but provides no feature bits, the target falls back to the DEBUGREG interface. When the kernel is configured without CONFIG_HW_BREAKPOINTS (selected by CONFIG_PERF_EVENTS), there is a bug that causes watchpoints installed with the HWDEBUG interface not to trigger. When this is the case, the feature bits will be zero, which is used as the indicator to fall back to the DEBUGREG interface. This isn't ideal, but has always been the behavior of GDB before this patch, so I decided not to change it. A flag indicates for each thread if its debug registers need to be updated the next time it is resumed. The flag is set whenever the upper layers request or remove a hardware watchpoint or breakpoint, or when a new thread is detected. Because some kernel configurations disable watchpoints after they are hit, we also use the last stop reason of the LWP to determine whether we should update the debug registers. It isn't clear that this is also true of BookE hardware breakpoints, but we also check their stop reason to be on the safe side, since it doesn't hurt. A map from process numbers to hardware watchpoint or breakpoint objects keeps track of what has been requested by the upper layers of GDB, since for GDB installing a hardware watchpoint or breakpoint means doing so for the whole process. When using the HWDEBUG interface we also have to keep track of which slots were last installed in each thread with a map from threads to the slots, so that they can be removed when needed. When resuming a thread, we remove all the slots using this map, then we install all the hardware watchpoints and breakpoints from the per-process map of requests, and then update the per-thread map accordingly. This per-thread state is also used for copying the debug register state after a fork or a clone is detected. The kernel might do this depending on the configuration. Recent kernels running on server processors that were configured with CONFIG_PERF_EVENTS (and therefore CONFIG_HW_BREAKPOINTS) don't copy debug registers across forks and clones. Recent kernels without CONFIG_HW_BREAKPOINTS copy this state. I believe that on embedded processors (e.g. a ppc440) the debug register state is copied, but I haven't been able to test this. To handle both cases, the per-thread state is always copied when forks and clones are detected, and when we resume the thread and delete the debug register slots before updating them, we ignore ENOENT errors. We don't need to handle this when using the DEBUGREG interface since it only allows one hardware watchpoint and doesn't return slot numbers, we just set or clear this watchpoint when needed. Since we signal running threads to stop after a request is processed, so that we can update their debug registers when they are next resumed, there will be a time between signalling the threads and their stop during which the debug registers haven't been updated, even if the target methods completed. The tests in gdb.threads/watchpoint-fork.exp no longer fail with this patch. gdb/ChangeLog: 2020-03-30 Pedro Franco de Carvalho <pedromfc@linux.ibm.com> * ppc-linux-nat.c: Include <algorithm>, <unordered_map>, and <list>. Remove inclusion of observable.h. (PPC_DEBUG_CURRENT_VERSION): Move up define. (struct arch_lwp_info): New struct. (class ppc_linux_dreg_interface): New class. (struct ppc_linux_process_info): New struct. (struct ppc_linux_nat_target) <low_delete_thread, low_new_fork> <low_new_clone, low_forget_process, low_prepare_to_resume> <copy_thread_dreg_state, mark_thread_stale> <mark_debug_registers_changed, register_hw_breakpoint> <clear_hw_breakpoint, register_wp, clear_wp> <can_use_watchpoint_cond_accel, calculate_dvc, check_condition> <num_memory_accesses, get_trigger_type> <create_watchpoint_request, hwdebug_point_cmp> <init_arch_lwp_info, get_arch_lwp_info> <low_stopped_by_watchpoint, low_stopped_data_address>: Declare as methods. <struct ptid_hash>: New inner struct. <m_dreg_interface, m_process_info, m_installed_hw_bps>: Declare members. (saved_dabr_value, hwdebug_info, max_slots_number) (struct hw_break_tuple, struct thread_points, ppc_threads) (have_ptrace_hwdebug_interface) (hwdebug_find_thread_points_by_tid) (hwdebug_insert_point, hwdebug_remove_point): Remove. (ppc_linux_nat_target::can_use_hw_breakpoint): Use m_dreg_interface, remove call to PTRACE_SET_DEBUGREG. (ppc_linux_nat_target::region_ok_for_hw_watchpoint): Add comment, use m_dreg_interface. (hwdebug_point_cmp): Change to... (ppc_linux_nat_target::hwdebug_point_cmp): ...this method. Use reference arguments instead of pointers. (ppc_linux_nat_target::ranged_break_num_registers): Use m_dreg_interface. (ppc_linux_nat_target::insert_hw_breakpoint): Add comment, use m_dreg_interface. Call register_hw_breakpoint. (ppc_linux_nat_target::remove_hw_breakpoint): Add comment, use m_dreg_interface. Call clear_hw_breakpoint. (get_trigger_type): Change to... (ppc_linux_nat_target::get_trigger_type): ...this method. Add comment. (ppc_linux_nat_target::insert_mask_watchpoint): Update comment, use m_dreg_interface. Call register_hw_breakpoint. (ppc_linux_nat_target::remove_mask_watchpoint): Update comment, use m_dreg_interface. Call clear_hw_breakpoint. (can_use_watchpoint_cond_accel): Change to... (ppc_linux_nat_target::can_use_watchpoint_cond_accel): ...this method. Update comment, use m_dreg_interface and m_process_info. (calculate_dvc): Change to... (ppc_linux_nat_target::calculate_dvc): ...this method. Use m_dreg_interface. (num_memory_accesses): Change to... (ppc_linux_nat_target::num_memory_accesses): ...this method. (check_condition): Change to... (ppc_linux_nat_target::check_condition): ...this method. (ppc_linux_nat_target::can_accel_watchpoint_condition): Update comment, use m_dreg_interface. (create_watchpoint_request): Change to... (ppc_linux_nat_target::create_watchpoint_request): ...this method. Use m_dreg_interface. (ppc_linux_nat_target::insert_watchpoint): Add comment, use m_dreg_interface. Call register_hw_breakpoint or register_wp. (ppc_linux_nat_target::remove_watchpoint): Add comment, use m_dreg_interface. Call clear_hw_breakpoint or clear_wp. (ppc_linux_nat_target::low_forget_process) (ppc_linux_nat_target::low_new_fork) (ppc_linux_nat_target::low_new_clone) (ppc_linux_nat_target::low_delete_thread) (ppc_linux_nat_target::low_prepare_to_resume): New methods. (ppc_linux_nat_target::low_new_thread): Remove previous logic, only call mark_thread_stale. (ppc_linux_thread_exit): Remove. (ppc_linux_nat_target::stopped_data_address): Change to... (ppc_linux_nat_target::low_stopped_data_address): This. Add comment, use m_dreg_interface and m_thread_hw_breakpoints. (ppc_linux_nat_target::stopped_by_watchpoint): Change to... (ppc_linux_nat_target::stopped_by_watchpoint): This. Add comment. Call low_stopped_data_address. (ppc_linux_nat_target::watchpoint_addr_within_range): Use m_dreg_interface. (ppc_linux_nat_target::masked_watch_num_registers): Use m_dreg_interface. (ppc_linux_nat_target::copy_thread_dreg_state) (ppc_linux_nat_target::mark_thread_stale) (ppc_linux_nat_target::mark_debug_registers_changed) (ppc_linux_nat_target::register_hw_breakpoint) (ppc_linux_nat_target::clear_hw_breakpoint) (ppc_linux_nat_target::register_wp) (ppc_linux_nat_target::clear_wp) (ppc_linux_nat_target::init_arch_lwp_info) (ppc_linux_nat_target::get_arch_lwp_info): New methods. (_initialize_ppc_linux_nat): Remove observer callback.
Diffstat (limited to 'binutils/testsuite')
0 files changed, 0 insertions, 0 deletions