diff options
author | Thiemo Seufer <ths@networkno.de> | 2002-04-04 07:10:00 +0000 |
---|---|---|
committer | Thiemo Seufer <ths@networkno.de> | 2002-04-04 07:10:00 +0000 |
commit | b49e97c9441cc347fa37fb4ad887595afe4b3cc6 (patch) | |
tree | 9a66724da7121e2cfb58d3a1f6c5b75b296a89f9 /bfd | |
parent | c6e90b027b91f0b15fd90bcacfd602eca768e4d7 (diff) | |
download | binutils-b49e97c9441cc347fa37fb4ad887595afe4b3cc6.zip binutils-b49e97c9441cc347fa37fb4ad887595afe4b3cc6.tar.gz binutils-b49e97c9441cc347fa37fb4ad887595afe4b3cc6.tar.bz2 |
Actually commit the new files ommitted before.
Diffstat (limited to 'bfd')
-rw-r--r-- | bfd/elfxx-mips.c | 7772 | ||||
-rw-r--r-- | bfd/elfxx-mips.h | 100 |
2 files changed, 7872 insertions, 0 deletions
diff --git a/bfd/elfxx-mips.c b/bfd/elfxx-mips.c new file mode 100644 index 0000000..7cfa733 --- /dev/null +++ b/bfd/elfxx-mips.c @@ -0,0 +1,7772 @@ +/* MIPS-specific support for ELF + Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 + Free Software Foundation, Inc. + + Most of the information added by Ian Lance Taylor, Cygnus Support, + <ian@cygnus.com>. + N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. + <mark@codesourcery.com> + Traditional MIPS targets support added by Koundinya.K, Dansk Data + Elektronik & Operations Research Group. <kk@ddeorg.soft.net> + +This file is part of BFD, the Binary File Descriptor library. + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or +(at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with this program; if not, write to the Free Software +Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ + +/* This file handles functionality common to the different MIPS ABI's. */ + +#include "bfd.h" +#include "sysdep.h" +#include "libbfd.h" +#include "elf-bfd.h" +#include "elfxx-mips.h" +#include "elf/mips.h" + +/* Get the ECOFF swapping routines. */ +#include "coff/sym.h" +#include "coff/symconst.h" +#include "coff/ecoff.h" +#include "coff/mips.h" + +/* This structure is used to hold .got information when linking. It + is stored in the tdata field of the bfd_elf_section_data structure. */ + +struct mips_got_info +{ + /* The global symbol in the GOT with the lowest index in the dynamic + symbol table. */ + struct elf_link_hash_entry *global_gotsym; + /* The number of global .got entries. */ + unsigned int global_gotno; + /* The number of local .got entries. */ + unsigned int local_gotno; + /* The number of local .got entries we have used. */ + unsigned int assigned_gotno; +}; + +/* This structure is passed to mips_elf_sort_hash_table_f when sorting + the dynamic symbols. */ + +struct mips_elf_hash_sort_data +{ + /* The symbol in the global GOT with the lowest dynamic symbol table + index. */ + struct elf_link_hash_entry *low; + /* The least dynamic symbol table index corresponding to a symbol + with a GOT entry. */ + long min_got_dynindx; + /* The greatest dynamic symbol table index not corresponding to a + symbol without a GOT entry. */ + long max_non_got_dynindx; +}; + +/* The MIPS ELF linker needs additional information for each symbol in + the global hash table. */ + +struct mips_elf_link_hash_entry +{ + struct elf_link_hash_entry root; + + /* External symbol information. */ + EXTR esym; + + /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against + this symbol. */ + unsigned int possibly_dynamic_relocs; + + /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against + a readonly section. */ + boolean readonly_reloc; + + /* The index of the first dynamic relocation (in the .rel.dyn + section) against this symbol. */ + unsigned int min_dyn_reloc_index; + + /* We must not create a stub for a symbol that has relocations + related to taking the function's address, i.e. any but + R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition", + p. 4-20. */ + boolean no_fn_stub; + + /* If there is a stub that 32 bit functions should use to call this + 16 bit function, this points to the section containing the stub. */ + asection *fn_stub; + + /* Whether we need the fn_stub; this is set if this symbol appears + in any relocs other than a 16 bit call. */ + boolean need_fn_stub; + + /* If there is a stub that 16 bit functions should use to call this + 32 bit function, this points to the section containing the stub. */ + asection *call_stub; + + /* This is like the call_stub field, but it is used if the function + being called returns a floating point value. */ + asection *call_fp_stub; +}; + +/* MIPS ELF linker hash table. */ + +struct mips_elf_link_hash_table +{ + struct elf_link_hash_table root; +#if 0 + /* We no longer use this. */ + /* String section indices for the dynamic section symbols. */ + bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES]; +#endif + /* The number of .rtproc entries. */ + bfd_size_type procedure_count; + /* The size of the .compact_rel section (if SGI_COMPAT). */ + bfd_size_type compact_rel_size; + /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic + entry is set to the address of __rld_obj_head as in Irix 5. */ + boolean use_rld_obj_head; + /* This is the value of the __rld_map or __rld_obj_head symbol. */ + bfd_vma rld_value; + /* This is set if we see any mips16 stub sections. */ + boolean mips16_stubs_seen; +}; + +/* Structure used to pass information to mips_elf_output_extsym. */ + +struct extsym_info +{ + bfd *abfd; + struct bfd_link_info *info; + struct ecoff_debug_info *debug; + const struct ecoff_debug_swap *swap; + boolean failed; +}; + +/* The names of the runtime procedure table symbols used on Irix 5. */ + +static const char * const mips_elf_dynsym_rtproc_names[] = +{ + "_procedure_table", + "_procedure_string_table", + "_procedure_table_size", + NULL +}; + +/* These structures are used to generate the .compact_rel section on + Irix 5. */ + +typedef struct +{ + unsigned long id1; /* Always one? */ + unsigned long num; /* Number of compact relocation entries. */ + unsigned long id2; /* Always two? */ + unsigned long offset; /* The file offset of the first relocation. */ + unsigned long reserved0; /* Zero? */ + unsigned long reserved1; /* Zero? */ +} Elf32_compact_rel; + +typedef struct +{ + bfd_byte id1[4]; + bfd_byte num[4]; + bfd_byte id2[4]; + bfd_byte offset[4]; + bfd_byte reserved0[4]; + bfd_byte reserved1[4]; +} Elf32_External_compact_rel; + +typedef struct +{ + unsigned int ctype : 1; /* 1: long 0: short format. See below. */ + unsigned int rtype : 4; /* Relocation types. See below. */ + unsigned int dist2to : 8; + unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ + unsigned long konst; /* KONST field. See below. */ + unsigned long vaddr; /* VADDR to be relocated. */ +} Elf32_crinfo; + +typedef struct +{ + unsigned int ctype : 1; /* 1: long 0: short format. See below. */ + unsigned int rtype : 4; /* Relocation types. See below. */ + unsigned int dist2to : 8; + unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ + unsigned long konst; /* KONST field. See below. */ +} Elf32_crinfo2; + +typedef struct +{ + bfd_byte info[4]; + bfd_byte konst[4]; + bfd_byte vaddr[4]; +} Elf32_External_crinfo; + +typedef struct +{ + bfd_byte info[4]; + bfd_byte konst[4]; +} Elf32_External_crinfo2; + +/* These are the constants used to swap the bitfields in a crinfo. */ + +#define CRINFO_CTYPE (0x1) +#define CRINFO_CTYPE_SH (31) +#define CRINFO_RTYPE (0xf) +#define CRINFO_RTYPE_SH (27) +#define CRINFO_DIST2TO (0xff) +#define CRINFO_DIST2TO_SH (19) +#define CRINFO_RELVADDR (0x7ffff) +#define CRINFO_RELVADDR_SH (0) + +/* A compact relocation info has long (3 words) or short (2 words) + formats. A short format doesn't have VADDR field and relvaddr + fields contains ((VADDR - vaddr of the previous entry) >> 2). */ +#define CRF_MIPS_LONG 1 +#define CRF_MIPS_SHORT 0 + +/* There are 4 types of compact relocation at least. The value KONST + has different meaning for each type: + + (type) (konst) + CT_MIPS_REL32 Address in data + CT_MIPS_WORD Address in word (XXX) + CT_MIPS_GPHI_LO GP - vaddr + CT_MIPS_JMPAD Address to jump + */ + +#define CRT_MIPS_REL32 0xa +#define CRT_MIPS_WORD 0xb +#define CRT_MIPS_GPHI_LO 0xc +#define CRT_MIPS_JMPAD 0xd + +#define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) +#define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) +#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) +#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) + +/* The structure of the runtime procedure descriptor created by the + loader for use by the static exception system. */ + +typedef struct runtime_pdr { + bfd_vma adr; /* memory address of start of procedure */ + long regmask; /* save register mask */ + long regoffset; /* save register offset */ + long fregmask; /* save floating point register mask */ + long fregoffset; /* save floating point register offset */ + long frameoffset; /* frame size */ + short framereg; /* frame pointer register */ + short pcreg; /* offset or reg of return pc */ + long irpss; /* index into the runtime string table */ + long reserved; + struct exception_info *exception_info;/* pointer to exception array */ +} RPDR, *pRPDR; +#define cbRPDR sizeof (RPDR) +#define rpdNil ((pRPDR) 0) + +static struct bfd_hash_entry *mips_elf_link_hash_newfunc + PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); +static void ecoff_swap_rpdr_out + PARAMS ((bfd *, const RPDR *, struct rpdr_ext *)); +static boolean mips_elf_create_procedure_table + PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *, + struct ecoff_debug_info *)); +static boolean mips_elf_check_mips16_stubs + PARAMS ((struct mips_elf_link_hash_entry *, PTR)); +static void bfd_mips_elf32_swap_gptab_in + PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *)); +static void bfd_mips_elf32_swap_gptab_out + PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *)); +static void bfd_elf32_swap_compact_rel_out + PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *)); +static void bfd_elf32_swap_crinfo_out + PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *)); +#if 0 +static void bfd_mips_elf_swap_msym_in + PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *)); +#endif +static void bfd_mips_elf_swap_msym_out + PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *)); +static int sort_dynamic_relocs + PARAMS ((const void *, const void *)); +static boolean mips_elf_output_extsym + PARAMS ((struct mips_elf_link_hash_entry *, PTR)); +static int gptab_compare PARAMS ((const void *, const void *)); +static asection * mips_elf_got_section PARAMS ((bfd *)); +static struct mips_got_info *mips_elf_got_info + PARAMS ((bfd *, asection **)); +static bfd_vma mips_elf_local_got_index + PARAMS ((bfd *, struct bfd_link_info *, bfd_vma)); +static bfd_vma mips_elf_global_got_index + PARAMS ((bfd *, struct elf_link_hash_entry *)); +static bfd_vma mips_elf_got_page + PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *)); +static bfd_vma mips_elf_got16_entry + PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, boolean)); +static bfd_vma mips_elf_got_offset_from_index + PARAMS ((bfd *, bfd *, bfd_vma)); +static bfd_vma mips_elf_create_local_got_entry + PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma)); +static boolean mips_elf_sort_hash_table + PARAMS ((struct bfd_link_info *, unsigned long)); +static boolean mips_elf_sort_hash_table_f + PARAMS ((struct mips_elf_link_hash_entry *, PTR)); +static boolean mips_elf_record_global_got_symbol + PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *, + struct mips_got_info *)); +static const Elf_Internal_Rela *mips_elf_next_relocation + PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *, + const Elf_Internal_Rela *)); +static boolean mips_elf_local_relocation_p + PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, boolean)); +static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int)); +static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int)); +static bfd_vma mips_elf_high PARAMS ((bfd_vma)); +static bfd_vma mips_elf_higher PARAMS ((bfd_vma)); +static bfd_vma mips_elf_highest PARAMS ((bfd_vma)); +static boolean mips_elf_create_compact_rel_section + PARAMS ((bfd *, struct bfd_link_info *)); +static boolean mips_elf_create_got_section + PARAMS ((bfd *, struct bfd_link_info *)); +static asection *mips_elf_create_msym_section + PARAMS ((bfd *)); +static bfd_reloc_status_type mips_elf_calculate_relocation + PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *, + const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *, + Elf_Internal_Sym *, asection **, bfd_vma *, const char **, + boolean *)); +static bfd_vma mips_elf_obtain_contents + PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *)); +static boolean mips_elf_perform_relocation + PARAMS ((struct bfd_link_info *, reloc_howto_type *, + const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *, + boolean)); +static boolean mips_elf_stub_section_p + PARAMS ((bfd *, asection *)); +static void mips_elf_allocate_dynamic_relocations + PARAMS ((bfd *, unsigned int)); +static boolean mips_elf_create_dynamic_relocation + PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, + struct mips_elf_link_hash_entry *, asection *, + bfd_vma, bfd_vma *, asection *)); +static INLINE int elf_mips_isa PARAMS ((flagword)); +static INLINE char* elf_mips_abi_name PARAMS ((bfd *)); +static void mips_elf_irix6_finish_dynamic_symbol + PARAMS ((bfd *, const char *, Elf_Internal_Sym *)); + +/* This will be used when we sort the dynamic relocation records. */ +static bfd *reldyn_sorting_bfd; + +/* Nonzero if ABFD is using the N32 ABI. */ + +#define ABI_N32_P(abfd) \ + ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) + +/* Nonzero if ABFD is using the 64-bit ABI. */ +#define ABI_64_P(abfd) \ + ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0) + +#define IRIX_COMPAT(abfd) \ + (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) + +#define NEWABI_P(abfd) (ABI_N32_P(abfd) || ABI_64_P(abfd)) + +/* Whether we are trying to be compatible with IRIX at all. */ +#define SGI_COMPAT(abfd) \ + (IRIX_COMPAT (abfd) != ict_none) + +/* The name of the options section. */ +#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ + (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options") + +/* The name of the stub section. */ +#define MIPS_ELF_STUB_SECTION_NAME(abfd) \ + (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub") + +/* The size of an external REL relocation. */ +#define MIPS_ELF_REL_SIZE(abfd) \ + (get_elf_backend_data (abfd)->s->sizeof_rel) + +/* The size of an external dynamic table entry. */ +#define MIPS_ELF_DYN_SIZE(abfd) \ + (get_elf_backend_data (abfd)->s->sizeof_dyn) + +/* The size of a GOT entry. */ +#define MIPS_ELF_GOT_SIZE(abfd) \ + (get_elf_backend_data (abfd)->s->arch_size / 8) + +/* The size of a symbol-table entry. */ +#define MIPS_ELF_SYM_SIZE(abfd) \ + (get_elf_backend_data (abfd)->s->sizeof_sym) + +/* The default alignment for sections, as a power of two. */ +#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ + (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2) + +/* Get word-sized data. */ +#define MIPS_ELF_GET_WORD(abfd, ptr) \ + (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) + +/* Put out word-sized data. */ +#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ + (ABI_64_P (abfd) \ + ? bfd_put_64 (abfd, val, ptr) \ + : bfd_put_32 (abfd, val, ptr)) + +/* Add a dynamic symbol table-entry. */ +#ifdef BFD64 +#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ + (ABI_64_P (elf_hash_table (info)->dynobj) \ + ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \ + : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val)) +#else +#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ + (ABI_64_P (elf_hash_table (info)->dynobj) \ + ? (boolean) (abort (), false) \ + : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val)) +#endif + +#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ + (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela)) + +/* In case we're on a 32-bit machine, construct a 64-bit "-1" value + from smaller values. Start with zero, widen, *then* decrement. */ +#define MINUS_ONE (((bfd_vma)0) - 1) + +/* The number of local .got entries we reserve. */ +#define MIPS_RESERVED_GOTNO (2) + +/* Instructions which appear in a stub. For some reason the stub is + slightly different on an SGI system. */ +#define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000) +#define STUB_LW(abfd) \ + (SGI_COMPAT (abfd) \ + ? (ABI_64_P (abfd) \ + ? 0xdf998010 /* ld t9,0x8010(gp) */ \ + : 0x8f998010) /* lw t9,0x8010(gp) */ \ + : 0x8f998010) /* lw t9,0x8000(gp) */ +#define STUB_MOVE(abfd) \ + (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */ +#define STUB_JALR 0x0320f809 /* jal t9 */ +#define STUB_LI16(abfd) \ + (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */ +#define MIPS_FUNCTION_STUB_SIZE (16) + +/* The name of the dynamic interpreter. This is put in the .interp + section. */ + +#define ELF_DYNAMIC_INTERPRETER(abfd) \ + (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ + : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ + : "/usr/lib/libc.so.1") + +#ifdef BFD64 +#define ELF_R_SYM(bfd, i) \ + (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) +#define ELF_R_TYPE(bfd, i) \ + (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) +#define ELF_R_INFO(bfd, s, t) \ + (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) +#else +#define ELF_R_SYM(bfd, i) \ + (ELF32_R_SYM (i)) +#define ELF_R_TYPE(bfd, i) \ + (ELF32_R_TYPE (i)) +#define ELF_R_INFO(bfd, s, t) \ + (ELF32_R_INFO (s, t)) +#endif + + /* The mips16 compiler uses a couple of special sections to handle + floating point arguments. + + Section names that look like .mips16.fn.FNNAME contain stubs that + copy floating point arguments from the fp regs to the gp regs and + then jump to FNNAME. If any 32 bit function calls FNNAME, the + call should be redirected to the stub instead. If no 32 bit + function calls FNNAME, the stub should be discarded. We need to + consider any reference to the function, not just a call, because + if the address of the function is taken we will need the stub, + since the address might be passed to a 32 bit function. + + Section names that look like .mips16.call.FNNAME contain stubs + that copy floating point arguments from the gp regs to the fp + regs and then jump to FNNAME. If FNNAME is a 32 bit function, + then any 16 bit function that calls FNNAME should be redirected + to the stub instead. If FNNAME is not a 32 bit function, the + stub should be discarded. + + .mips16.call.fp.FNNAME sections are similar, but contain stubs + which call FNNAME and then copy the return value from the fp regs + to the gp regs. These stubs store the return value in $18 while + calling FNNAME; any function which might call one of these stubs + must arrange to save $18 around the call. (This case is not + needed for 32 bit functions that call 16 bit functions, because + 16 bit functions always return floating point values in both + $f0/$f1 and $2/$3.) + + Note that in all cases FNNAME might be defined statically. + Therefore, FNNAME is not used literally. Instead, the relocation + information will indicate which symbol the section is for. + + We record any stubs that we find in the symbol table. */ + +#define FN_STUB ".mips16.fn." +#define CALL_STUB ".mips16.call." +#define CALL_FP_STUB ".mips16.call.fp." + +/* Look up an entry in a MIPS ELF linker hash table. */ + +#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ + ((struct mips_elf_link_hash_entry *) \ + elf_link_hash_lookup (&(table)->root, (string), (create), \ + (copy), (follow))) + +/* Traverse a MIPS ELF linker hash table. */ + +#define mips_elf_link_hash_traverse(table, func, info) \ + (elf_link_hash_traverse \ + (&(table)->root, \ + (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \ + (info))) + +/* Get the MIPS ELF linker hash table from a link_info structure. */ + +#define mips_elf_hash_table(p) \ + ((struct mips_elf_link_hash_table *) ((p)->hash)) + +/* Create an entry in a MIPS ELF linker hash table. */ + +static struct bfd_hash_entry * +mips_elf_link_hash_newfunc (entry, table, string) + struct bfd_hash_entry *entry; + struct bfd_hash_table *table; + const char *string; +{ + struct mips_elf_link_hash_entry *ret = + (struct mips_elf_link_hash_entry *) entry; + + /* Allocate the structure if it has not already been allocated by a + subclass. */ + if (ret == (struct mips_elf_link_hash_entry *) NULL) + ret = ((struct mips_elf_link_hash_entry *) + bfd_hash_allocate (table, + sizeof (struct mips_elf_link_hash_entry))); + if (ret == (struct mips_elf_link_hash_entry *) NULL) + return (struct bfd_hash_entry *) ret; + + /* Call the allocation method of the superclass. */ + ret = ((struct mips_elf_link_hash_entry *) + _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, + table, string)); + if (ret != (struct mips_elf_link_hash_entry *) NULL) + { + /* Set local fields. */ + memset (&ret->esym, 0, sizeof (EXTR)); + /* We use -2 as a marker to indicate that the information has + not been set. -1 means there is no associated ifd. */ + ret->esym.ifd = -2; + ret->possibly_dynamic_relocs = 0; + ret->readonly_reloc = false; + ret->min_dyn_reloc_index = 0; + ret->no_fn_stub = false; + ret->fn_stub = NULL; + ret->need_fn_stub = false; + ret->call_stub = NULL; + ret->call_fp_stub = NULL; + } + + return (struct bfd_hash_entry *) ret; +} + +/* Read ECOFF debugging information from a .mdebug section into a + ecoff_debug_info structure. */ + +boolean +_bfd_mips_elf_read_ecoff_info (abfd, section, debug) + bfd *abfd; + asection *section; + struct ecoff_debug_info *debug; +{ + HDRR *symhdr; + const struct ecoff_debug_swap *swap; + char *ext_hdr = NULL; + + swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; + memset (debug, 0, sizeof (*debug)); + + ext_hdr = (char *) bfd_malloc (swap->external_hdr_size); + if (ext_hdr == NULL && swap->external_hdr_size != 0) + goto error_return; + + if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0, + swap->external_hdr_size) + == false) + goto error_return; + + symhdr = &debug->symbolic_header; + (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); + + /* The symbolic header contains absolute file offsets and sizes to + read. */ +#define READ(ptr, offset, count, size, type) \ + if (symhdr->count == 0) \ + debug->ptr = NULL; \ + else \ + { \ + bfd_size_type amt = (bfd_size_type) size * symhdr->count; \ + debug->ptr = (type) bfd_malloc (amt); \ + if (debug->ptr == NULL) \ + goto error_return; \ + if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \ + || bfd_bread (debug->ptr, amt, abfd) != amt) \ + goto error_return; \ + } + + READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); + READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR); + READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR); + READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR); + READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR); + READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), + union aux_ext *); + READ (ss, cbSsOffset, issMax, sizeof (char), char *); + READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); + READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR); + READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR); + READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR); +#undef READ + + debug->fdr = NULL; + debug->adjust = NULL; + + return true; + + error_return: + if (ext_hdr != NULL) + free (ext_hdr); + if (debug->line != NULL) + free (debug->line); + if (debug->external_dnr != NULL) + free (debug->external_dnr); + if (debug->external_pdr != NULL) + free (debug->external_pdr); + if (debug->external_sym != NULL) + free (debug->external_sym); + if (debug->external_opt != NULL) + free (debug->external_opt); + if (debug->external_aux != NULL) + free (debug->external_aux); + if (debug->ss != NULL) + free (debug->ss); + if (debug->ssext != NULL) + free (debug->ssext); + if (debug->external_fdr != NULL) + free (debug->external_fdr); + if (debug->external_rfd != NULL) + free (debug->external_rfd); + if (debug->external_ext != NULL) + free (debug->external_ext); + return false; +} + +/* Swap RPDR (runtime procedure table entry) for output. */ + +static void +ecoff_swap_rpdr_out (abfd, in, ex) + bfd *abfd; + const RPDR *in; + struct rpdr_ext *ex; +{ + H_PUT_S32 (abfd, in->adr, ex->p_adr); + H_PUT_32 (abfd, in->regmask, ex->p_regmask); + H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); + H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); + H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); + H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); + + H_PUT_16 (abfd, in->framereg, ex->p_framereg); + H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); + + H_PUT_32 (abfd, in->irpss, ex->p_irpss); +#if 0 /* FIXME */ + H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info); +#endif +} + +/* Create a runtime procedure table from the .mdebug section. */ + +static boolean +mips_elf_create_procedure_table (handle, abfd, info, s, debug) + PTR handle; + bfd *abfd; + struct bfd_link_info *info; + asection *s; + struct ecoff_debug_info *debug; +{ + const struct ecoff_debug_swap *swap; + HDRR *hdr = &debug->symbolic_header; + RPDR *rpdr, *rp; + struct rpdr_ext *erp; + PTR rtproc; + struct pdr_ext *epdr; + struct sym_ext *esym; + char *ss, **sv; + char *str; + bfd_size_type size; + bfd_size_type count; + unsigned long sindex; + unsigned long i; + PDR pdr; + SYMR sym; + const char *no_name_func = _("static procedure (no name)"); + + epdr = NULL; + rpdr = NULL; + esym = NULL; + ss = NULL; + sv = NULL; + + swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; + + sindex = strlen (no_name_func) + 1; + count = hdr->ipdMax; + if (count > 0) + { + size = swap->external_pdr_size; + + epdr = (struct pdr_ext *) bfd_malloc (size * count); + if (epdr == NULL) + goto error_return; + + if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr)) + goto error_return; + + size = sizeof (RPDR); + rp = rpdr = (RPDR *) bfd_malloc (size * count); + if (rpdr == NULL) + goto error_return; + + size = sizeof (char *); + sv = (char **) bfd_malloc (size * count); + if (sv == NULL) + goto error_return; + + count = hdr->isymMax; + size = swap->external_sym_size; + esym = (struct sym_ext *) bfd_malloc (size * count); + if (esym == NULL) + goto error_return; + + if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym)) + goto error_return; + + count = hdr->issMax; + ss = (char *) bfd_malloc (count); + if (ss == NULL) + goto error_return; + if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss)) + goto error_return; + + count = hdr->ipdMax; + for (i = 0; i < (unsigned long) count; i++, rp++) + { + (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr); + (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym); + rp->adr = sym.value; + rp->regmask = pdr.regmask; + rp->regoffset = pdr.regoffset; + rp->fregmask = pdr.fregmask; + rp->fregoffset = pdr.fregoffset; + rp->frameoffset = pdr.frameoffset; + rp->framereg = pdr.framereg; + rp->pcreg = pdr.pcreg; + rp->irpss = sindex; + sv[i] = ss + sym.iss; + sindex += strlen (sv[i]) + 1; + } + } + + size = sizeof (struct rpdr_ext) * (count + 2) + sindex; + size = BFD_ALIGN (size, 16); + rtproc = (PTR) bfd_alloc (abfd, size); + if (rtproc == NULL) + { + mips_elf_hash_table (info)->procedure_count = 0; + goto error_return; + } + + mips_elf_hash_table (info)->procedure_count = count + 2; + + erp = (struct rpdr_ext *) rtproc; + memset (erp, 0, sizeof (struct rpdr_ext)); + erp++; + str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); + strcpy (str, no_name_func); + str += strlen (no_name_func) + 1; + for (i = 0; i < count; i++) + { + ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); + strcpy (str, sv[i]); + str += strlen (sv[i]) + 1; + } + H_PUT_S32 (abfd, -1, (erp + count)->p_adr); + + /* Set the size and contents of .rtproc section. */ + s->_raw_size = size; + s->contents = (bfd_byte *) rtproc; + + /* Skip this section later on (I don't think this currently + matters, but someday it might). */ + s->link_order_head = (struct bfd_link_order *) NULL; + + if (epdr != NULL) + free (epdr); + if (rpdr != NULL) + free (rpdr); + if (esym != NULL) + free (esym); + if (ss != NULL) + free (ss); + if (sv != NULL) + free (sv); + + return true; + + error_return: + if (epdr != NULL) + free (epdr); + if (rpdr != NULL) + free (rpdr); + if (esym != NULL) + free (esym); + if (ss != NULL) + free (ss); + if (sv != NULL) + free (sv); + return false; +} + +/* Check the mips16 stubs for a particular symbol, and see if we can + discard them. */ + +static boolean +mips_elf_check_mips16_stubs (h, data) + struct mips_elf_link_hash_entry *h; + PTR data ATTRIBUTE_UNUSED; +{ + if (h->root.root.type == bfd_link_hash_warning) + h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; + + if (h->fn_stub != NULL + && ! h->need_fn_stub) + { + /* We don't need the fn_stub; the only references to this symbol + are 16 bit calls. Clobber the size to 0 to prevent it from + being included in the link. */ + h->fn_stub->_raw_size = 0; + h->fn_stub->_cooked_size = 0; + h->fn_stub->flags &= ~SEC_RELOC; + h->fn_stub->reloc_count = 0; + h->fn_stub->flags |= SEC_EXCLUDE; + } + + if (h->call_stub != NULL + && h->root.other == STO_MIPS16) + { + /* We don't need the call_stub; this is a 16 bit function, so + calls from other 16 bit functions are OK. Clobber the size + to 0 to prevent it from being included in the link. */ + h->call_stub->_raw_size = 0; + h->call_stub->_cooked_size = 0; + h->call_stub->flags &= ~SEC_RELOC; + h->call_stub->reloc_count = 0; + h->call_stub->flags |= SEC_EXCLUDE; + } + + if (h->call_fp_stub != NULL + && h->root.other == STO_MIPS16) + { + /* We don't need the call_stub; this is a 16 bit function, so + calls from other 16 bit functions are OK. Clobber the size + to 0 to prevent it from being included in the link. */ + h->call_fp_stub->_raw_size = 0; + h->call_fp_stub->_cooked_size = 0; + h->call_fp_stub->flags &= ~SEC_RELOC; + h->call_fp_stub->reloc_count = 0; + h->call_fp_stub->flags |= SEC_EXCLUDE; + } + + return true; +} + +bfd_reloc_status_type +_bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section, + relocateable, data, gp) + bfd *abfd; + asymbol *symbol; + arelent *reloc_entry; + asection *input_section; + boolean relocateable; + PTR data; + bfd_vma gp; +{ + bfd_vma relocation; + unsigned long insn; + unsigned long val; + + if (bfd_is_com_section (symbol->section)) + relocation = 0; + else + relocation = symbol->value; + + relocation += symbol->section->output_section->vma; + relocation += symbol->section->output_offset; + + if (reloc_entry->address > input_section->_cooked_size) + return bfd_reloc_outofrange; + + insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address); + + /* Set val to the offset into the section or symbol. */ + if (reloc_entry->howto->src_mask == 0) + { + /* This case occurs with the 64-bit MIPS ELF ABI. */ + val = reloc_entry->addend; + } + else + { + val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff; + if (val & 0x8000) + val -= 0x10000; + } + + /* Adjust val for the final section location and GP value. If we + are producing relocateable output, we don't want to do this for + an external symbol. */ + if (! relocateable + || (symbol->flags & BSF_SECTION_SYM) != 0) + val += relocation - gp; + + insn = (insn & ~0xffff) | (val & 0xffff); + bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address); + + if (relocateable) + reloc_entry->address += input_section->output_offset; + + else if ((long) val >= 0x8000 || (long) val < -0x8000) + return bfd_reloc_overflow; + + return bfd_reloc_ok; +} + +/* Swap an entry in a .gptab section. Note that these routines rely + on the equivalence of the two elements of the union. */ + +static void +bfd_mips_elf32_swap_gptab_in (abfd, ex, in) + bfd *abfd; + const Elf32_External_gptab *ex; + Elf32_gptab *in; +{ + in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); + in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); +} + +static void +bfd_mips_elf32_swap_gptab_out (abfd, in, ex) + bfd *abfd; + const Elf32_gptab *in; + Elf32_External_gptab *ex; +{ + H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); + H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); +} + +static void +bfd_elf32_swap_compact_rel_out (abfd, in, ex) + bfd *abfd; + const Elf32_compact_rel *in; + Elf32_External_compact_rel *ex; +{ + H_PUT_32 (abfd, in->id1, ex->id1); + H_PUT_32 (abfd, in->num, ex->num); + H_PUT_32 (abfd, in->id2, ex->id2); + H_PUT_32 (abfd, in->offset, ex->offset); + H_PUT_32 (abfd, in->reserved0, ex->reserved0); + H_PUT_32 (abfd, in->reserved1, ex->reserved1); +} + +static void +bfd_elf32_swap_crinfo_out (abfd, in, ex) + bfd *abfd; + const Elf32_crinfo *in; + Elf32_External_crinfo *ex; +{ + unsigned long l; + + l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) + | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) + | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) + | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); + H_PUT_32 (abfd, l, ex->info); + H_PUT_32 (abfd, in->konst, ex->konst); + H_PUT_32 (abfd, in->vaddr, ex->vaddr); +} + +#if 0 +/* Swap in an MSYM entry. */ + +static void +bfd_mips_elf_swap_msym_in (abfd, ex, in) + bfd *abfd; + const Elf32_External_Msym *ex; + Elf32_Internal_Msym *in; +{ + in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value); + in->ms_info = H_GET_32 (abfd, ex->ms_info); +} +#endif +/* Swap out an MSYM entry. */ + +static void +bfd_mips_elf_swap_msym_out (abfd, in, ex) + bfd *abfd; + const Elf32_Internal_Msym *in; + Elf32_External_Msym *ex; +{ + H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value); + H_PUT_32 (abfd, in->ms_info, ex->ms_info); +} + +/* A .reginfo section holds a single Elf32_RegInfo structure. These + routines swap this structure in and out. They are used outside of + BFD, so they are globally visible. */ + +void +bfd_mips_elf32_swap_reginfo_in (abfd, ex, in) + bfd *abfd; + const Elf32_External_RegInfo *ex; + Elf32_RegInfo *in; +{ + in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); + in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); + in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); + in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); + in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); + in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); +} + +void +bfd_mips_elf32_swap_reginfo_out (abfd, in, ex) + bfd *abfd; + const Elf32_RegInfo *in; + Elf32_External_RegInfo *ex; +{ + H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); + H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); + H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); + H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); + H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); + H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); +} + +/* In the 64 bit ABI, the .MIPS.options section holds register + information in an Elf64_Reginfo structure. These routines swap + them in and out. They are globally visible because they are used + outside of BFD. These routines are here so that gas can call them + without worrying about whether the 64 bit ABI has been included. */ + +void +bfd_mips_elf64_swap_reginfo_in (abfd, ex, in) + bfd *abfd; + const Elf64_External_RegInfo *ex; + Elf64_Internal_RegInfo *in; +{ + in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); + in->ri_pad = H_GET_32 (abfd, ex->ri_pad); + in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); + in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); + in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); + in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); + in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); +} + +void +bfd_mips_elf64_swap_reginfo_out (abfd, in, ex) + bfd *abfd; + const Elf64_Internal_RegInfo *in; + Elf64_External_RegInfo *ex; +{ + H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); + H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); + H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); + H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); + H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); + H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); + H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); +} + +/* Swap in an options header. */ + +void +bfd_mips_elf_swap_options_in (abfd, ex, in) + bfd *abfd; + const Elf_External_Options *ex; + Elf_Internal_Options *in; +{ + in->kind = H_GET_8 (abfd, ex->kind); + in->size = H_GET_8 (abfd, ex->size); + in->section = H_GET_16 (abfd, ex->section); + in->info = H_GET_32 (abfd, ex->info); +} + +/* Swap out an options header. */ + +void +bfd_mips_elf_swap_options_out (abfd, in, ex) + bfd *abfd; + const Elf_Internal_Options *in; + Elf_External_Options *ex; +{ + H_PUT_8 (abfd, in->kind, ex->kind); + H_PUT_8 (abfd, in->size, ex->size); + H_PUT_16 (abfd, in->section, ex->section); + H_PUT_32 (abfd, in->info, ex->info); +} + +/* This function is called via qsort() to sort the dynamic relocation + entries by increasing r_symndx value. */ + +static int +sort_dynamic_relocs (arg1, arg2) + const PTR arg1; + const PTR arg2; +{ + const Elf32_External_Rel *ext_reloc1 = (const Elf32_External_Rel *) arg1; + const Elf32_External_Rel *ext_reloc2 = (const Elf32_External_Rel *) arg2; + + Elf_Internal_Rel int_reloc1; + Elf_Internal_Rel int_reloc2; + + bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc1, &int_reloc1); + bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc2, &int_reloc2); + + return (ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info)); +} + +/* This routine is used to write out ECOFF debugging external symbol + information. It is called via mips_elf_link_hash_traverse. The + ECOFF external symbol information must match the ELF external + symbol information. Unfortunately, at this point we don't know + whether a symbol is required by reloc information, so the two + tables may wind up being different. We must sort out the external + symbol information before we can set the final size of the .mdebug + section, and we must set the size of the .mdebug section before we + can relocate any sections, and we can't know which symbols are + required by relocation until we relocate the sections. + Fortunately, it is relatively unlikely that any symbol will be + stripped but required by a reloc. In particular, it can not happen + when generating a final executable. */ + +static boolean +mips_elf_output_extsym (h, data) + struct mips_elf_link_hash_entry *h; + PTR data; +{ + struct extsym_info *einfo = (struct extsym_info *) data; + boolean strip; + asection *sec, *output_section; + + if (h->root.root.type == bfd_link_hash_warning) + h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; + + if (h->root.indx == -2) + strip = false; + else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 + || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) + && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 + && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) + strip = true; + else if (einfo->info->strip == strip_all + || (einfo->info->strip == strip_some + && bfd_hash_lookup (einfo->info->keep_hash, + h->root.root.root.string, + false, false) == NULL)) + strip = true; + else + strip = false; + + if (strip) + return true; + + if (h->esym.ifd == -2) + { + h->esym.jmptbl = 0; + h->esym.cobol_main = 0; + h->esym.weakext = 0; + h->esym.reserved = 0; + h->esym.ifd = ifdNil; + h->esym.asym.value = 0; + h->esym.asym.st = stGlobal; + + if (h->root.root.type == bfd_link_hash_undefined + || h->root.root.type == bfd_link_hash_undefweak) + { + const char *name; + + /* Use undefined class. Also, set class and type for some + special symbols. */ + name = h->root.root.root.string; + if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 + || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) + { + h->esym.asym.sc = scData; + h->esym.asym.st = stLabel; + h->esym.asym.value = 0; + } + else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) + { + h->esym.asym.sc = scAbs; + h->esym.asym.st = stLabel; + h->esym.asym.value = + mips_elf_hash_table (einfo->info)->procedure_count; + } + else if (strcmp (name, "_gp_disp") == 0) + { + h->esym.asym.sc = scAbs; + h->esym.asym.st = stLabel; + h->esym.asym.value = elf_gp (einfo->abfd); + } + else + h->esym.asym.sc = scUndefined; + } + else if (h->root.root.type != bfd_link_hash_defined + && h->root.root.type != bfd_link_hash_defweak) + h->esym.asym.sc = scAbs; + else + { + const char *name; + + sec = h->root.root.u.def.section; + output_section = sec->output_section; + + /* When making a shared library and symbol h is the one from + the another shared library, OUTPUT_SECTION may be null. */ + if (output_section == NULL) + h->esym.asym.sc = scUndefined; + else + { + name = bfd_section_name (output_section->owner, output_section); + + if (strcmp (name, ".text") == 0) + h->esym.asym.sc = scText; + else if (strcmp (name, ".data") == 0) + h->esym.asym.sc = scData; + else if (strcmp (name, ".sdata") == 0) + h->esym.asym.sc = scSData; + else if (strcmp (name, ".rodata") == 0 + || strcmp (name, ".rdata") == 0) + h->esym.asym.sc = scRData; + else if (strcmp (name, ".bss") == 0) + h->esym.asym.sc = scBss; + else if (strcmp (name, ".sbss") == 0) + h->esym.asym.sc = scSBss; + else if (strcmp (name, ".init") == 0) + h->esym.asym.sc = scInit; + else if (strcmp (name, ".fini") == 0) + h->esym.asym.sc = scFini; + else + h->esym.asym.sc = scAbs; + } + } + + h->esym.asym.reserved = 0; + h->esym.asym.index = indexNil; + } + + if (h->root.root.type == bfd_link_hash_common) + h->esym.asym.value = h->root.root.u.c.size; + else if (h->root.root.type == bfd_link_hash_defined + || h->root.root.type == bfd_link_hash_defweak) + { + if (h->esym.asym.sc == scCommon) + h->esym.asym.sc = scBss; + else if (h->esym.asym.sc == scSCommon) + h->esym.asym.sc = scSBss; + + sec = h->root.root.u.def.section; + output_section = sec->output_section; + if (output_section != NULL) + h->esym.asym.value = (h->root.root.u.def.value + + sec->output_offset + + output_section->vma); + else + h->esym.asym.value = 0; + } + else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) + { + struct mips_elf_link_hash_entry *hd = h; + boolean no_fn_stub = h->no_fn_stub; + + while (hd->root.root.type == bfd_link_hash_indirect) + { + hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; + no_fn_stub = no_fn_stub || hd->no_fn_stub; + } + + if (!no_fn_stub) + { + /* Set type and value for a symbol with a function stub. */ + h->esym.asym.st = stProc; + sec = hd->root.root.u.def.section; + if (sec == NULL) + h->esym.asym.value = 0; + else + { + output_section = sec->output_section; + if (output_section != NULL) + h->esym.asym.value = (hd->root.plt.offset + + sec->output_offset + + output_section->vma); + else + h->esym.asym.value = 0; + } +#if 0 /* FIXME? */ + h->esym.ifd = 0; +#endif + } + } + + if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, + h->root.root.root.string, + &h->esym)) + { + einfo->failed = true; + return false; + } + + return true; +} + +/* A comparison routine used to sort .gptab entries. */ + +static int +gptab_compare (p1, p2) + const PTR p1; + const PTR p2; +{ + const Elf32_gptab *a1 = (const Elf32_gptab *) p1; + const Elf32_gptab *a2 = (const Elf32_gptab *) p2; + + return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; +} + +/* Returns the GOT section for ABFD. */ + +static asection * +mips_elf_got_section (abfd) + bfd *abfd; +{ + return bfd_get_section_by_name (abfd, ".got"); +} + +/* Returns the GOT information associated with the link indicated by + INFO. If SGOTP is non-NULL, it is filled in with the GOT + section. */ + +static struct mips_got_info * +mips_elf_got_info (abfd, sgotp) + bfd *abfd; + asection **sgotp; +{ + asection *sgot; + struct mips_got_info *g; + + sgot = mips_elf_got_section (abfd); + BFD_ASSERT (sgot != NULL); + BFD_ASSERT (elf_section_data (sgot) != NULL); + g = (struct mips_got_info *) elf_section_data (sgot)->tdata; + BFD_ASSERT (g != NULL); + + if (sgotp) + *sgotp = sgot; + return g; +} + +/* Returns the GOT offset at which the indicated address can be found. + If there is not yet a GOT entry for this value, create one. Returns + -1 if no satisfactory GOT offset can be found. */ + +static bfd_vma +mips_elf_local_got_index (abfd, info, value) + bfd *abfd; + struct bfd_link_info *info; + bfd_vma value; +{ + asection *sgot; + struct mips_got_info *g; + bfd_byte *entry; + + g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); + + /* Look to see if we already have an appropriate entry. */ + for (entry = (sgot->contents + + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO); + entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno; + entry += MIPS_ELF_GOT_SIZE (abfd)) + { + bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry); + if (address == value) + return entry - sgot->contents; + } + + return mips_elf_create_local_got_entry (abfd, g, sgot, value); +} + +/* Returns the GOT index for the global symbol indicated by H. */ + +static bfd_vma +mips_elf_global_got_index (abfd, h) + bfd *abfd; + struct elf_link_hash_entry *h; +{ + bfd_vma index; + asection *sgot; + struct mips_got_info *g; + + g = mips_elf_got_info (abfd, &sgot); + + /* Once we determine the global GOT entry with the lowest dynamic + symbol table index, we must put all dynamic symbols with greater + indices into the GOT. That makes it easy to calculate the GOT + offset. */ + BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx); + index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno) + * MIPS_ELF_GOT_SIZE (abfd)); + BFD_ASSERT (index < sgot->_raw_size); + + return index; +} + +/* Find a GOT entry that is within 32KB of the VALUE. These entries + are supposed to be placed at small offsets in the GOT, i.e., + within 32KB of GP. Return the index into the GOT for this page, + and store the offset from this entry to the desired address in + OFFSETP, if it is non-NULL. */ + +static bfd_vma +mips_elf_got_page (abfd, info, value, offsetp) + bfd *abfd; + struct bfd_link_info *info; + bfd_vma value; + bfd_vma *offsetp; +{ + asection *sgot; + struct mips_got_info *g; + bfd_byte *entry; + bfd_byte *last_entry; + bfd_vma index = 0; + bfd_vma address; + + g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); + + /* Look to see if we aleady have an appropriate entry. */ + last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno; + for (entry = (sgot->contents + + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO); + entry != last_entry; + entry += MIPS_ELF_GOT_SIZE (abfd)) + { + address = MIPS_ELF_GET_WORD (abfd, entry); + + if (!mips_elf_overflow_p (value - address, 16)) + { + /* This entry will serve as the page pointer. We can add a + 16-bit number to it to get the actual address. */ + index = entry - sgot->contents; + break; + } + } + + /* If we didn't have an appropriate entry, we create one now. */ + if (entry == last_entry) + index = mips_elf_create_local_got_entry (abfd, g, sgot, value); + + if (offsetp) + { + address = MIPS_ELF_GET_WORD (abfd, entry); + *offsetp = value - address; + } + + return index; +} + +/* Find a GOT entry whose higher-order 16 bits are the same as those + for value. Return the index into the GOT for this entry. */ + +static bfd_vma +mips_elf_got16_entry (abfd, info, value, external) + bfd *abfd; + struct bfd_link_info *info; + bfd_vma value; + boolean external; +{ + asection *sgot; + struct mips_got_info *g; + bfd_byte *entry; + bfd_byte *last_entry; + bfd_vma index = 0; + bfd_vma address; + + if (! external) + { + /* Although the ABI says that it is "the high-order 16 bits" that we + want, it is really the %high value. The complete value is + calculated with a `addiu' of a LO16 relocation, just as with a + HI16/LO16 pair. */ + value = mips_elf_high (value) << 16; + } + + g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); + + /* Look to see if we already have an appropriate entry. */ + last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno; + for (entry = (sgot->contents + + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO); + entry != last_entry; + entry += MIPS_ELF_GOT_SIZE (abfd)) + { + address = MIPS_ELF_GET_WORD (abfd, entry); + if (address == value) + { + /* This entry has the right high-order 16 bits, and the low-order + 16 bits are set to zero. */ + index = entry - sgot->contents; + break; + } + } + + /* If we didn't have an appropriate entry, we create one now. */ + if (entry == last_entry) + index = mips_elf_create_local_got_entry (abfd, g, sgot, value); + + return index; +} + +/* Returns the offset for the entry at the INDEXth position + in the GOT. */ + +static bfd_vma +mips_elf_got_offset_from_index (dynobj, output_bfd, index) + bfd *dynobj; + bfd *output_bfd; + bfd_vma index; +{ + asection *sgot; + bfd_vma gp; + + sgot = mips_elf_got_section (dynobj); + gp = _bfd_get_gp_value (output_bfd); + return (sgot->output_section->vma + sgot->output_offset + index - + gp); +} + +/* Create a local GOT entry for VALUE. Return the index of the entry, + or -1 if it could not be created. */ + +static bfd_vma +mips_elf_create_local_got_entry (abfd, g, sgot, value) + bfd *abfd; + struct mips_got_info *g; + asection *sgot; + bfd_vma value; +{ + if (g->assigned_gotno >= g->local_gotno) + { + /* We didn't allocate enough space in the GOT. */ + (*_bfd_error_handler) + (_("not enough GOT space for local GOT entries")); + bfd_set_error (bfd_error_bad_value); + return (bfd_vma) -1; + } + + MIPS_ELF_PUT_WORD (abfd, value, + (sgot->contents + + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno)); + return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++; +} + +/* Sort the dynamic symbol table so that symbols that need GOT entries + appear towards the end. This reduces the amount of GOT space + required. MAX_LOCAL is used to set the number of local symbols + known to be in the dynamic symbol table. During + _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the + section symbols are added and the count is higher. */ + +static boolean +mips_elf_sort_hash_table (info, max_local) + struct bfd_link_info *info; + unsigned long max_local; +{ + struct mips_elf_hash_sort_data hsd; + struct mips_got_info *g; + bfd *dynobj; + + dynobj = elf_hash_table (info)->dynobj; + + hsd.low = NULL; + hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount; + hsd.max_non_got_dynindx = max_local; + mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) + elf_hash_table (info)), + mips_elf_sort_hash_table_f, + &hsd); + + /* There should have been enough room in the symbol table to + accomodate both the GOT and non-GOT symbols. */ + BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); + + /* Now we know which dynamic symbol has the lowest dynamic symbol + table index in the GOT. */ + g = mips_elf_got_info (dynobj, NULL); + g->global_gotsym = hsd.low; + + return true; +} + +/* If H needs a GOT entry, assign it the highest available dynamic + index. Otherwise, assign it the lowest available dynamic + index. */ + +static boolean +mips_elf_sort_hash_table_f (h, data) + struct mips_elf_link_hash_entry *h; + PTR data; +{ + struct mips_elf_hash_sort_data *hsd + = (struct mips_elf_hash_sort_data *) data; + + if (h->root.root.type == bfd_link_hash_warning) + h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; + + /* Symbols without dynamic symbol table entries aren't interesting + at all. */ + if (h->root.dynindx == -1) + return true; + + if (h->root.got.offset != 1) + h->root.dynindx = hsd->max_non_got_dynindx++; + else + { + h->root.dynindx = --hsd->min_got_dynindx; + hsd->low = (struct elf_link_hash_entry *) h; + } + + return true; +} + +/* If H is a symbol that needs a global GOT entry, but has a dynamic + symbol table index lower than any we've seen to date, record it for + posterity. */ + +static boolean +mips_elf_record_global_got_symbol (h, info, g) + struct elf_link_hash_entry *h; + struct bfd_link_info *info; + struct mips_got_info *g ATTRIBUTE_UNUSED; +{ + /* A global symbol in the GOT must also be in the dynamic symbol + table. */ + if (h->dynindx == -1 + && !bfd_elf32_link_record_dynamic_symbol (info, h)) + return false; + + /* If we've already marked this entry as needing GOT space, we don't + need to do it again. */ + if (h->got.offset != MINUS_ONE) + return true; + + /* By setting this to a value other than -1, we are indicating that + there needs to be a GOT entry for H. Avoid using zero, as the + generic ELF copy_indirect_symbol tests for <= 0. */ + h->got.offset = 1; + + return true; +} + +/* Returns the first relocation of type r_type found, beginning with + RELOCATION. RELEND is one-past-the-end of the relocation table. */ + +static const Elf_Internal_Rela * +mips_elf_next_relocation (abfd, r_type, relocation, relend) + bfd *abfd ATTRIBUTE_UNUSED; + unsigned int r_type; + const Elf_Internal_Rela *relocation; + const Elf_Internal_Rela *relend; +{ + /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be + immediately following. However, for the IRIX6 ABI, the next + relocation may be a composed relocation consisting of several + relocations for the same address. In that case, the R_MIPS_LO16 + relocation may occur as one of these. We permit a similar + extension in general, as that is useful for GCC. */ + while (relocation < relend) + { + if (ELF_R_TYPE (abfd, relocation->r_info) == r_type) + return relocation; + + ++relocation; + } + + /* We didn't find it. */ + bfd_set_error (bfd_error_bad_value); + return NULL; +} + +/* Return whether a relocation is against a local symbol. */ + +static boolean +mips_elf_local_relocation_p (input_bfd, relocation, local_sections, + check_forced) + bfd *input_bfd; + const Elf_Internal_Rela *relocation; + asection **local_sections; + boolean check_forced; +{ + unsigned long r_symndx; + Elf_Internal_Shdr *symtab_hdr; + struct mips_elf_link_hash_entry *h; + size_t extsymoff; + + r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); + symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; + extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; + + if (r_symndx < extsymoff) + return true; + if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) + return true; + + if (check_forced) + { + /* Look up the hash table to check whether the symbol + was forced local. */ + h = (struct mips_elf_link_hash_entry *) + elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; + /* Find the real hash-table entry for this symbol. */ + while (h->root.root.type == bfd_link_hash_indirect + || h->root.root.type == bfd_link_hash_warning) + h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; + if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) + return true; + } + + return false; +} + +/* Sign-extend VALUE, which has the indicated number of BITS. */ + +static bfd_vma +mips_elf_sign_extend (value, bits) + bfd_vma value; + int bits; +{ + if (value & ((bfd_vma) 1 << (bits - 1))) + /* VALUE is negative. */ + value |= ((bfd_vma) - 1) << bits; + + return value; +} + +/* Return non-zero if the indicated VALUE has overflowed the maximum + range expressable by a signed number with the indicated number of + BITS. */ + +static boolean +mips_elf_overflow_p (value, bits) + bfd_vma value; + int bits; +{ + bfd_signed_vma svalue = (bfd_signed_vma) value; + + if (svalue > (1 << (bits - 1)) - 1) + /* The value is too big. */ + return true; + else if (svalue < -(1 << (bits - 1))) + /* The value is too small. */ + return true; + + /* All is well. */ + return false; +} + +/* Calculate the %high function. */ + +static bfd_vma +mips_elf_high (value) + bfd_vma value; +{ + return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; +} + +/* Calculate the %higher function. */ + +static bfd_vma +mips_elf_higher (value) + bfd_vma value ATTRIBUTE_UNUSED; +{ +#ifdef BFD64 + return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; +#else + abort (); + return (bfd_vma) -1; +#endif +} + +/* Calculate the %highest function. */ + +static bfd_vma +mips_elf_highest (value) + bfd_vma value ATTRIBUTE_UNUSED; +{ +#ifdef BFD64 + return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff; +#else + abort (); + return (bfd_vma) -1; +#endif +} + +/* Create the .compact_rel section. */ + +static boolean +mips_elf_create_compact_rel_section (abfd, info) + bfd *abfd; + struct bfd_link_info *info ATTRIBUTE_UNUSED; +{ + flagword flags; + register asection *s; + + if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL) + { + flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED + | SEC_READONLY); + + s = bfd_make_section (abfd, ".compact_rel"); + if (s == NULL + || ! bfd_set_section_flags (abfd, s, flags) + || ! bfd_set_section_alignment (abfd, s, + MIPS_ELF_LOG_FILE_ALIGN (abfd))) + return false; + + s->_raw_size = sizeof (Elf32_External_compact_rel); + } + + return true; +} + +/* Create the .got section to hold the global offset table. */ + +static boolean +mips_elf_create_got_section (abfd, info) + bfd *abfd; + struct bfd_link_info *info; +{ + flagword flags; + register asection *s; + struct elf_link_hash_entry *h; + struct mips_got_info *g; + bfd_size_type amt; + + /* This function may be called more than once. */ + if (mips_elf_got_section (abfd)) + return true; + + flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY + | SEC_LINKER_CREATED); + + s = bfd_make_section (abfd, ".got"); + if (s == NULL + || ! bfd_set_section_flags (abfd, s, flags) + || ! bfd_set_section_alignment (abfd, s, 4)) + return false; + + /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the + linker script because we don't want to define the symbol if we + are not creating a global offset table. */ + h = NULL; + if (! (_bfd_generic_link_add_one_symbol + (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, + (bfd_vma) 0, (const char *) NULL, false, + get_elf_backend_data (abfd)->collect, + (struct bfd_link_hash_entry **) &h))) + return false; + h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; + h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; + h->type = STT_OBJECT; + + if (info->shared + && ! bfd_elf32_link_record_dynamic_symbol (info, h)) + return false; + + /* The first several global offset table entries are reserved. */ + s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd); + + amt = sizeof (struct mips_got_info); + g = (struct mips_got_info *) bfd_alloc (abfd, amt); + if (g == NULL) + return false; + g->global_gotsym = NULL; + g->local_gotno = MIPS_RESERVED_GOTNO; + g->assigned_gotno = MIPS_RESERVED_GOTNO; + if (elf_section_data (s) == NULL) + { + amt = sizeof (struct bfd_elf_section_data); + s->used_by_bfd = (PTR) bfd_zalloc (abfd, amt); + if (elf_section_data (s) == NULL) + return false; + } + elf_section_data (s)->tdata = (PTR) g; + elf_section_data (s)->this_hdr.sh_flags + |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; + + return true; +} + +/* Returns the .msym section for ABFD, creating it if it does not + already exist. Returns NULL to indicate error. */ + +static asection * +mips_elf_create_msym_section (abfd) + bfd *abfd; +{ + asection *s; + + s = bfd_get_section_by_name (abfd, ".msym"); + if (!s) + { + s = bfd_make_section (abfd, ".msym"); + if (!s + || !bfd_set_section_flags (abfd, s, + SEC_ALLOC + | SEC_LOAD + | SEC_HAS_CONTENTS + | SEC_LINKER_CREATED + | SEC_READONLY) + || !bfd_set_section_alignment (abfd, s, + MIPS_ELF_LOG_FILE_ALIGN (abfd))) + return NULL; + } + + return s; +} + +/* Calculate the value produced by the RELOCATION (which comes from + the INPUT_BFD). The ADDEND is the addend to use for this + RELOCATION; RELOCATION->R_ADDEND is ignored. + + The result of the relocation calculation is stored in VALUEP. + REQUIRE_JALXP indicates whether or not the opcode used with this + relocation must be JALX. + + This function returns bfd_reloc_continue if the caller need take no + further action regarding this relocation, bfd_reloc_notsupported if + something goes dramatically wrong, bfd_reloc_overflow if an + overflow occurs, and bfd_reloc_ok to indicate success. */ + +static bfd_reloc_status_type +mips_elf_calculate_relocation (abfd, input_bfd, input_section, info, + relocation, addend, howto, local_syms, + local_sections, valuep, namep, + require_jalxp) + bfd *abfd; + bfd *input_bfd; + asection *input_section; + struct bfd_link_info *info; + const Elf_Internal_Rela *relocation; + bfd_vma addend; + reloc_howto_type *howto; + Elf_Internal_Sym *local_syms; + asection **local_sections; + bfd_vma *valuep; + const char **namep; + boolean *require_jalxp; +{ + /* The eventual value we will return. */ + bfd_vma value; + /* The address of the symbol against which the relocation is + occurring. */ + bfd_vma symbol = 0; + /* The final GP value to be used for the relocatable, executable, or + shared object file being produced. */ + bfd_vma gp = MINUS_ONE; + /* The place (section offset or address) of the storage unit being + relocated. */ + bfd_vma p; + /* The value of GP used to create the relocatable object. */ + bfd_vma gp0 = MINUS_ONE; + /* The offset into the global offset table at which the address of + the relocation entry symbol, adjusted by the addend, resides + during execution. */ + bfd_vma g = MINUS_ONE; + /* The section in which the symbol referenced by the relocation is + located. */ + asection *sec = NULL; + struct mips_elf_link_hash_entry *h = NULL; + /* True if the symbol referred to by this relocation is a local + symbol. */ + boolean local_p; + /* True if the symbol referred to by this relocation is "_gp_disp". */ + boolean gp_disp_p = false; + Elf_Internal_Shdr *symtab_hdr; + size_t extsymoff; + unsigned long r_symndx; + int r_type; + /* True if overflow occurred during the calculation of the + relocation value. */ + boolean overflowed_p; + /* True if this relocation refers to a MIPS16 function. */ + boolean target_is_16_bit_code_p = false; + + /* Parse the relocation. */ + r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); + r_type = ELF_R_TYPE (input_bfd, relocation->r_info); + p = (input_section->output_section->vma + + input_section->output_offset + + relocation->r_offset); + + /* Assume that there will be no overflow. */ + overflowed_p = false; + + /* Figure out whether or not the symbol is local, and get the offset + used in the array of hash table entries. */ + symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; + local_p = mips_elf_local_relocation_p (input_bfd, relocation, + local_sections, false); + if (! elf_bad_symtab (input_bfd)) + extsymoff = symtab_hdr->sh_info; + else + { + /* The symbol table does not follow the rule that local symbols + must come before globals. */ + extsymoff = 0; + } + + /* Figure out the value of the symbol. */ + if (local_p) + { + Elf_Internal_Sym *sym; + + sym = local_syms + r_symndx; + sec = local_sections[r_symndx]; + + symbol = sec->output_section->vma + sec->output_offset; + if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) + symbol += sym->st_value; + + /* MIPS16 text labels should be treated as odd. */ + if (sym->st_other == STO_MIPS16) + ++symbol; + + /* Record the name of this symbol, for our caller. */ + *namep = bfd_elf_string_from_elf_section (input_bfd, + symtab_hdr->sh_link, + sym->st_name); + if (*namep == '\0') + *namep = bfd_section_name (input_bfd, sec); + + target_is_16_bit_code_p = (sym->st_other == STO_MIPS16); + } + else + { + /* For global symbols we look up the symbol in the hash-table. */ + h = ((struct mips_elf_link_hash_entry *) + elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); + /* Find the real hash-table entry for this symbol. */ + while (h->root.root.type == bfd_link_hash_indirect + || h->root.root.type == bfd_link_hash_warning) + h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; + + /* Record the name of this symbol, for our caller. */ + *namep = h->root.root.root.string; + + /* See if this is the special _gp_disp symbol. Note that such a + symbol must always be a global symbol. */ + if (strcmp (h->root.root.root.string, "_gp_disp") == 0 + && ! NEWABI_P (input_bfd)) + { + /* Relocations against _gp_disp are permitted only with + R_MIPS_HI16 and R_MIPS_LO16 relocations. */ + if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16) + return bfd_reloc_notsupported; + + gp_disp_p = true; + } + /* If this symbol is defined, calculate its address. Note that + _gp_disp is a magic symbol, always implicitly defined by the + linker, so it's inappropriate to check to see whether or not + its defined. */ + else if ((h->root.root.type == bfd_link_hash_defined + || h->root.root.type == bfd_link_hash_defweak) + && h->root.root.u.def.section) + { + sec = h->root.root.u.def.section; + if (sec->output_section) + symbol = (h->root.root.u.def.value + + sec->output_section->vma + + sec->output_offset); + else + symbol = h->root.root.u.def.value; + } + else if (h->root.root.type == bfd_link_hash_undefweak) + /* We allow relocations against undefined weak symbols, giving + it the value zero, so that you can undefined weak functions + and check to see if they exist by looking at their + addresses. */ + symbol = 0; + else if (info->shared + && (!info->symbolic || info->allow_shlib_undefined) + && !info->no_undefined + && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) + symbol = 0; + else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 || + strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0) + { + /* If this is a dynamic link, we should have created a + _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol + in in _bfd_mips_elf_create_dynamic_sections. + Otherwise, we should define the symbol with a value of 0. + FIXME: It should probably get into the symbol table + somehow as well. */ + BFD_ASSERT (! info->shared); + BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); + symbol = 0; + } + else + { + if (! ((*info->callbacks->undefined_symbol) + (info, h->root.root.root.string, input_bfd, + input_section, relocation->r_offset, + (!info->shared || info->no_undefined + || ELF_ST_VISIBILITY (h->root.other))))) + return bfd_reloc_undefined; + symbol = 0; + } + + target_is_16_bit_code_p = (h->root.other == STO_MIPS16); + } + + /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we + need to redirect the call to the stub, unless we're already *in* + a stub. */ + if (r_type != R_MIPS16_26 && !info->relocateable + && ((h != NULL && h->fn_stub != NULL) + || (local_p && elf_tdata (input_bfd)->local_stubs != NULL + && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) + && !mips_elf_stub_section_p (input_bfd, input_section)) + { + /* This is a 32- or 64-bit call to a 16-bit function. We should + have already noticed that we were going to need the + stub. */ + if (local_p) + sec = elf_tdata (input_bfd)->local_stubs[r_symndx]; + else + { + BFD_ASSERT (h->need_fn_stub); + sec = h->fn_stub; + } + + symbol = sec->output_section->vma + sec->output_offset; + } + /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we + need to redirect the call to the stub. */ + else if (r_type == R_MIPS16_26 && !info->relocateable + && h != NULL + && (h->call_stub != NULL || h->call_fp_stub != NULL) + && !target_is_16_bit_code_p) + { + /* If both call_stub and call_fp_stub are defined, we can figure + out which one to use by seeing which one appears in the input + file. */ + if (h->call_stub != NULL && h->call_fp_stub != NULL) + { + asection *o; + + sec = NULL; + for (o = input_bfd->sections; o != NULL; o = o->next) + { + if (strncmp (bfd_get_section_name (input_bfd, o), + CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) + { + sec = h->call_fp_stub; + break; + } + } + if (sec == NULL) + sec = h->call_stub; + } + else if (h->call_stub != NULL) + sec = h->call_stub; + else + sec = h->call_fp_stub; + + BFD_ASSERT (sec->_raw_size > 0); + symbol = sec->output_section->vma + sec->output_offset; + } + + /* Calls from 16-bit code to 32-bit code and vice versa require the + special jalx instruction. */ + *require_jalxp = (!info->relocateable + && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p) + || ((r_type == R_MIPS_26) && target_is_16_bit_code_p))); + + local_p = mips_elf_local_relocation_p (input_bfd, relocation, + local_sections, true); + + /* If we haven't already determined the GOT offset, or the GP value, + and we're going to need it, get it now. */ + switch (r_type) + { + case R_MIPS_CALL16: + case R_MIPS_GOT16: + case R_MIPS_GOT_DISP: + case R_MIPS_GOT_HI16: + case R_MIPS_CALL_HI16: + case R_MIPS_GOT_LO16: + case R_MIPS_CALL_LO16: + /* Find the index into the GOT where this value is located. */ + if (!local_p) + { + BFD_ASSERT (addend == 0); + g = mips_elf_global_got_index (elf_hash_table (info)->dynobj, + (struct elf_link_hash_entry *) h); + if (! elf_hash_table(info)->dynamic_sections_created + || (info->shared + && (info->symbolic || h->root.dynindx == -1) + && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) + { + /* This is a static link or a -Bsymbolic link. The + symbol is defined locally, or was forced to be local. + We must initialize this entry in the GOT. */ + bfd *tmpbfd = elf_hash_table (info)->dynobj; + asection *sgot = mips_elf_got_section(tmpbfd); + MIPS_ELF_PUT_WORD (tmpbfd, symbol + addend, sgot->contents + g); + } + } + else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16) + /* There's no need to create a local GOT entry here; the + calculation for a local GOT16 entry does not involve G. */ + break; + else + { + g = mips_elf_local_got_index (abfd, info, symbol + addend); + if (g == MINUS_ONE) + return bfd_reloc_outofrange; + } + + /* Convert GOT indices to actual offsets. */ + g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, + abfd, g); + break; + + case R_MIPS_HI16: + case R_MIPS_LO16: + case R_MIPS16_GPREL: + case R_MIPS_GPREL16: + case R_MIPS_GPREL32: + case R_MIPS_LITERAL: + gp0 = _bfd_get_gp_value (input_bfd); + gp = _bfd_get_gp_value (abfd); + break; + + default: + break; + } + + /* Figure out what kind of relocation is being performed. */ + switch (r_type) + { + case R_MIPS_NONE: + return bfd_reloc_continue; + + case R_MIPS_16: + value = symbol + mips_elf_sign_extend (addend, 16); + overflowed_p = mips_elf_overflow_p (value, 16); + break; + + case R_MIPS_32: + case R_MIPS_REL32: + case R_MIPS_64: + if ((info->shared + || (elf_hash_table (info)->dynamic_sections_created + && h != NULL + && ((h->root.elf_link_hash_flags + & ELF_LINK_HASH_DEF_DYNAMIC) != 0) + && ((h->root.elf_link_hash_flags + & ELF_LINK_HASH_DEF_REGULAR) == 0))) + && r_symndx != 0 + && (input_section->flags & SEC_ALLOC) != 0) + { + /* If we're creating a shared library, or this relocation is + against a symbol in a shared library, then we can't know + where the symbol will end up. So, we create a relocation + record in the output, and leave the job up to the dynamic + linker. */ + value = addend; + if (!mips_elf_create_dynamic_relocation (abfd, + info, + relocation, + h, + sec, + symbol, + &value, + input_section)) + return bfd_reloc_undefined; + } + else + { + if (r_type != R_MIPS_REL32) + value = symbol + addend; + else + value = addend; + } + value &= howto->dst_mask; + break; + + case R_MIPS_PC32: + case R_MIPS_PC64: + case R_MIPS_GNU_REL_LO16: + value = symbol + addend - p; + value &= howto->dst_mask; + break; + + case R_MIPS_GNU_REL16_S2: + value = symbol + mips_elf_sign_extend (addend << 2, 18) - p; + overflowed_p = mips_elf_overflow_p (value, 18); + value = (value >> 2) & howto->dst_mask; + break; + + case R_MIPS_GNU_REL_HI16: + /* Instead of subtracting 'p' here, we should be subtracting the + equivalent value for the LO part of the reloc, since the value + here is relative to that address. Because that's not easy to do, + we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also + the comment there for more information. */ + value = mips_elf_high (addend + symbol - p); + value &= howto->dst_mask; + break; + + case R_MIPS16_26: + /* The calculation for R_MIPS16_26 is just the same as for an + R_MIPS_26. It's only the storage of the relocated field into + the output file that's different. That's handled in + mips_elf_perform_relocation. So, we just fall through to the + R_MIPS_26 case here. */ + case R_MIPS_26: + if (local_p) + value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2; + else + value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2; + value &= howto->dst_mask; + break; + + case R_MIPS_HI16: + if (!gp_disp_p) + { + value = mips_elf_high (addend + symbol); + value &= howto->dst_mask; + } + else + { + value = mips_elf_high (addend + gp - p); + overflowed_p = mips_elf_overflow_p (value, 16); + } + break; + + case R_MIPS_LO16: + if (!gp_disp_p) + value = (symbol + addend) & howto->dst_mask; + else + { + value = addend + gp - p + 4; + /* The MIPS ABI requires checking the R_MIPS_LO16 relocation + for overflow. But, on, say, Irix 5, relocations against + _gp_disp are normally generated from the .cpload + pseudo-op. It generates code that normally looks like + this: + + lui $gp,%hi(_gp_disp) + addiu $gp,$gp,%lo(_gp_disp) + addu $gp,$gp,$t9 + + Here $t9 holds the address of the function being called, + as required by the MIPS ELF ABI. The R_MIPS_LO16 + relocation can easily overflow in this situation, but the + R_MIPS_HI16 relocation will handle the overflow. + Therefore, we consider this a bug in the MIPS ABI, and do + not check for overflow here. */ + } + break; + + case R_MIPS_LITERAL: + /* Because we don't merge literal sections, we can handle this + just like R_MIPS_GPREL16. In the long run, we should merge + shared literals, and then we will need to additional work + here. */ + + /* Fall through. */ + + case R_MIPS16_GPREL: + /* The R_MIPS16_GPREL performs the same calculation as + R_MIPS_GPREL16, but stores the relocated bits in a different + order. We don't need to do anything special here; the + differences are handled in mips_elf_perform_relocation. */ + case R_MIPS_GPREL16: + if (local_p) + value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp; + else + value = mips_elf_sign_extend (addend, 16) + symbol - gp; + overflowed_p = mips_elf_overflow_p (value, 16); + break; + + case R_MIPS_GOT16: + case R_MIPS_CALL16: + if (local_p) + { + boolean forced; + + /* The special case is when the symbol is forced to be local. We + need the full address in the GOT since no R_MIPS_LO16 relocation + follows. */ + forced = ! mips_elf_local_relocation_p (input_bfd, relocation, + local_sections, false); + value = mips_elf_got16_entry (abfd, info, symbol + addend, forced); + if (value == MINUS_ONE) + return bfd_reloc_outofrange; + value + = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, + abfd, + value); + overflowed_p = mips_elf_overflow_p (value, 16); + break; + } + + /* Fall through. */ + + case R_MIPS_GOT_DISP: + value = g; + overflowed_p = mips_elf_overflow_p (value, 16); + break; + + case R_MIPS_GPREL32: + value = (addend + symbol + gp0 - gp) & howto->dst_mask; + break; + + case R_MIPS_PC16: + value = mips_elf_sign_extend (addend, 16) + symbol - p; + overflowed_p = mips_elf_overflow_p (value, 16); + value = (bfd_vma) ((bfd_signed_vma) value / 4); + break; + + case R_MIPS_GOT_HI16: + case R_MIPS_CALL_HI16: + /* We're allowed to handle these two relocations identically. + The dynamic linker is allowed to handle the CALL relocations + differently by creating a lazy evaluation stub. */ + value = g; + value = mips_elf_high (value); + value &= howto->dst_mask; + break; + + case R_MIPS_GOT_LO16: + case R_MIPS_CALL_LO16: + value = g & howto->dst_mask; + break; + + case R_MIPS_GOT_PAGE: + value = mips_elf_got_page (abfd, info, symbol + addend, NULL); + if (value == MINUS_ONE) + return bfd_reloc_outofrange; + value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, + abfd, + value); + overflowed_p = mips_elf_overflow_p (value, 16); + break; + + case R_MIPS_GOT_OFST: + mips_elf_got_page (abfd, info, symbol + addend, &value); + overflowed_p = mips_elf_overflow_p (value, 16); + break; + + case R_MIPS_SUB: + value = symbol - addend; + value &= howto->dst_mask; + break; + + case R_MIPS_HIGHER: + value = mips_elf_higher (addend + symbol); + value &= howto->dst_mask; + break; + + case R_MIPS_HIGHEST: + value = mips_elf_highest (addend + symbol); + value &= howto->dst_mask; + break; + + case R_MIPS_SCN_DISP: + value = symbol + addend - sec->output_offset; + value &= howto->dst_mask; + break; + + case R_MIPS_PJUMP: + case R_MIPS_JALR: + /* Both of these may be ignored. R_MIPS_JALR is an optimization + hint; we could improve performance by honoring that hint. */ + return bfd_reloc_continue; + + case R_MIPS_GNU_VTINHERIT: + case R_MIPS_GNU_VTENTRY: + /* We don't do anything with these at present. */ + return bfd_reloc_continue; + + default: + /* An unrecognized relocation type. */ + return bfd_reloc_notsupported; + } + + /* Store the VALUE for our caller. */ + *valuep = value; + return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; +} + +/* Obtain the field relocated by RELOCATION. */ + +static bfd_vma +mips_elf_obtain_contents (howto, relocation, input_bfd, contents) + reloc_howto_type *howto; + const Elf_Internal_Rela *relocation; + bfd *input_bfd; + bfd_byte *contents; +{ + bfd_vma x; + bfd_byte *location = contents + relocation->r_offset; + + /* Obtain the bytes. */ + x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location); + + if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26 + || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL) + && bfd_little_endian (input_bfd)) + /* The two 16-bit words will be reversed on a little-endian system. + See mips_elf_perform_relocation for more details. */ + x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16)); + + return x; +} + +/* It has been determined that the result of the RELOCATION is the + VALUE. Use HOWTO to place VALUE into the output file at the + appropriate position. The SECTION is the section to which the + relocation applies. If REQUIRE_JALX is true, then the opcode used + for the relocation must be either JAL or JALX, and it is + unconditionally converted to JALX. + + Returns false if anything goes wrong. */ + +static boolean +mips_elf_perform_relocation (info, howto, relocation, value, input_bfd, + input_section, contents, require_jalx) + struct bfd_link_info *info; + reloc_howto_type *howto; + const Elf_Internal_Rela *relocation; + bfd_vma value; + bfd *input_bfd; + asection *input_section; + bfd_byte *contents; + boolean require_jalx; +{ + bfd_vma x; + bfd_byte *location; + int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); + + /* Figure out where the relocation is occurring. */ + location = contents + relocation->r_offset; + + /* Obtain the current value. */ + x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); + + /* Clear the field we are setting. */ + x &= ~howto->dst_mask; + + /* If this is the R_MIPS16_26 relocation, we must store the + value in a funny way. */ + if (r_type == R_MIPS16_26) + { + /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. + Most mips16 instructions are 16 bits, but these instructions + are 32 bits. + + The format of these instructions is: + + +--------------+--------------------------------+ + ! JALX ! X! Imm 20:16 ! Imm 25:21 ! + +--------------+--------------------------------+ + ! Immediate 15:0 ! + +-----------------------------------------------+ + + JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. + Note that the immediate value in the first word is swapped. + + When producing a relocateable object file, R_MIPS16_26 is + handled mostly like R_MIPS_26. In particular, the addend is + stored as a straight 26-bit value in a 32-bit instruction. + (gas makes life simpler for itself by never adjusting a + R_MIPS16_26 reloc to be against a section, so the addend is + always zero). However, the 32 bit instruction is stored as 2 + 16-bit values, rather than a single 32-bit value. In a + big-endian file, the result is the same; in a little-endian + file, the two 16-bit halves of the 32 bit value are swapped. + This is so that a disassembler can recognize the jal + instruction. + + When doing a final link, R_MIPS16_26 is treated as a 32 bit + instruction stored as two 16-bit values. The addend A is the + contents of the targ26 field. The calculation is the same as + R_MIPS_26. When storing the calculated value, reorder the + immediate value as shown above, and don't forget to store the + value as two 16-bit values. + + To put it in MIPS ABI terms, the relocation field is T-targ26-16, + defined as + + big-endian: + +--------+----------------------+ + | | | + | | targ26-16 | + |31 26|25 0| + +--------+----------------------+ + + little-endian: + +----------+------+-------------+ + | | | | + | sub1 | | sub2 | + |0 9|10 15|16 31| + +----------+--------------------+ + where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is + ((sub1 << 16) | sub2)). + + When producing a relocateable object file, the calculation is + (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) + When producing a fully linked file, the calculation is + let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) + ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */ + + if (!info->relocateable) + /* Shuffle the bits according to the formula above. */ + value = (((value & 0x1f0000) << 5) + | ((value & 0x3e00000) >> 5) + | (value & 0xffff)); + } + else if (r_type == R_MIPS16_GPREL) + { + /* R_MIPS16_GPREL is used for GP-relative addressing in mips16 + mode. A typical instruction will have a format like this: + + +--------------+--------------------------------+ + ! EXTEND ! Imm 10:5 ! Imm 15:11 ! + +--------------+--------------------------------+ + ! Major ! rx ! ry ! Imm 4:0 ! + +--------------+--------------------------------+ + + EXTEND is the five bit value 11110. Major is the instruction + opcode. + + This is handled exactly like R_MIPS_GPREL16, except that the + addend is retrieved and stored as shown in this diagram; that + is, the Imm fields above replace the V-rel16 field. + + All we need to do here is shuffle the bits appropriately. As + above, the two 16-bit halves must be swapped on a + little-endian system. */ + value = (((value & 0x7e0) << 16) + | ((value & 0xf800) << 5) + | (value & 0x1f)); + } + + /* Set the field. */ + x |= (value & howto->dst_mask); + + /* If required, turn JAL into JALX. */ + if (require_jalx) + { + boolean ok; + bfd_vma opcode = x >> 26; + bfd_vma jalx_opcode; + + /* Check to see if the opcode is already JAL or JALX. */ + if (r_type == R_MIPS16_26) + { + ok = ((opcode == 0x6) || (opcode == 0x7)); + jalx_opcode = 0x7; + } + else + { + ok = ((opcode == 0x3) || (opcode == 0x1d)); + jalx_opcode = 0x1d; + } + + /* If the opcode is not JAL or JALX, there's a problem. */ + if (!ok) + { + (*_bfd_error_handler) + (_("%s: %s+0x%lx: jump to stub routine which is not jal"), + bfd_archive_filename (input_bfd), + input_section->name, + (unsigned long) relocation->r_offset); + bfd_set_error (bfd_error_bad_value); + return false; + } + + /* Make this the JALX opcode. */ + x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); + } + + /* Swap the high- and low-order 16 bits on little-endian systems + when doing a MIPS16 relocation. */ + if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26) + && bfd_little_endian (input_bfd)) + x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16)); + + /* Put the value into the output. */ + bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location); + return true; +} + +/* Returns true if SECTION is a MIPS16 stub section. */ + +static boolean +mips_elf_stub_section_p (abfd, section) + bfd *abfd ATTRIBUTE_UNUSED; + asection *section; +{ + const char *name = bfd_get_section_name (abfd, section); + + return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0 + || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0 + || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0); +} + +/* Add room for N relocations to the .rel.dyn section in ABFD. */ + +static void +mips_elf_allocate_dynamic_relocations (abfd, n) + bfd *abfd; + unsigned int n; +{ + asection *s; + + s = bfd_get_section_by_name (abfd, ".rel.dyn"); + BFD_ASSERT (s != NULL); + + if (s->_raw_size == 0) + { + /* Make room for a null element. */ + s->_raw_size += MIPS_ELF_REL_SIZE (abfd); + ++s->reloc_count; + } + s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd); +} + +/* Create a rel.dyn relocation for the dynamic linker to resolve. REL + is the original relocation, which is now being transformed into a + dynamic relocation. The ADDENDP is adjusted if necessary; the + caller should store the result in place of the original addend. */ + +static boolean +mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec, + symbol, addendp, input_section) + bfd *output_bfd; + struct bfd_link_info *info; + const Elf_Internal_Rela *rel; + struct mips_elf_link_hash_entry *h; + asection *sec; + bfd_vma symbol; + bfd_vma *addendp; + asection *input_section; +{ + Elf_Internal_Rel outrel[3]; + boolean skip; + asection *sreloc; + bfd *dynobj; + int r_type; + + r_type = ELF_R_TYPE (output_bfd, rel->r_info); + dynobj = elf_hash_table (info)->dynobj; + sreloc + = bfd_get_section_by_name (dynobj, ".rel.dyn"); + BFD_ASSERT (sreloc != NULL); + BFD_ASSERT (sreloc->contents != NULL); + BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) + < sreloc->_raw_size); + + skip = false; + outrel[0].r_offset = + _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); + outrel[1].r_offset = + _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); + outrel[2].r_offset = + _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); + +#if 0 + /* We begin by assuming that the offset for the dynamic relocation + is the same as for the original relocation. We'll adjust this + later to reflect the correct output offsets. */ + if (elf_section_data (input_section)->sec_info_type != ELF_INFO_TYPE_STABS) + { + outrel[1].r_offset = rel[1].r_offset; + outrel[2].r_offset = rel[2].r_offset; + } + else + { + /* Except that in a stab section things are more complex. + Because we compress stab information, the offset given in the + relocation may not be the one we want; we must let the stabs + machinery tell us the offset. */ + outrel[1].r_offset = outrel[0].r_offset; + outrel[2].r_offset = outrel[0].r_offset; + /* If we didn't need the relocation at all, this value will be + -1. */ + if (outrel[0].r_offset == (bfd_vma) -1) + skip = true; + } +#endif + + if (outrel[0].r_offset == (bfd_vma) -1) + skip = true; + /* FIXME: For -2 runtime relocation needs to be skipped, but + properly resolved statically and installed. */ + BFD_ASSERT (outrel[0].r_offset != (bfd_vma) -2); + + /* If we've decided to skip this relocation, just output an empty + record. Note that R_MIPS_NONE == 0, so that this call to memset + is a way of setting R_TYPE to R_MIPS_NONE. */ + if (skip) + memset (outrel, 0, sizeof (Elf_Internal_Rel) * 3); + else + { + long indx; + bfd_vma section_offset; + + /* We must now calculate the dynamic symbol table index to use + in the relocation. */ + if (h != NULL + && (! info->symbolic || (h->root.elf_link_hash_flags + & ELF_LINK_HASH_DEF_REGULAR) == 0)) + { + indx = h->root.dynindx; + /* h->root.dynindx may be -1 if this symbol was marked to + become local. */ + if (indx == -1) + indx = 0; + } + else + { + if (sec != NULL && bfd_is_abs_section (sec)) + indx = 0; + else if (sec == NULL || sec->owner == NULL) + { + bfd_set_error (bfd_error_bad_value); + return false; + } + else + { + indx = elf_section_data (sec->output_section)->dynindx; + if (indx == 0) + abort (); + } + + /* Figure out how far the target of the relocation is from + the beginning of its section. */ + section_offset = symbol - sec->output_section->vma; + /* The relocation we're building is section-relative. + Therefore, the original addend must be adjusted by the + section offset. */ + *addendp += section_offset; + /* Now, the relocation is just against the section. */ + symbol = sec->output_section->vma; + } + + /* If the relocation was previously an absolute relocation and + this symbol will not be referred to by the relocation, we must + adjust it by the value we give it in the dynamic symbol table. + Otherwise leave the job up to the dynamic linker. */ + if (!indx && r_type != R_MIPS_REL32) + *addendp += symbol; + + /* The relocation is always an REL32 relocation because we don't + know where the shared library will wind up at load-time. */ + outrel[0].r_info = ELF_R_INFO (output_bfd, indx, R_MIPS_REL32); + + /* Adjust the output offset of the relocation to reference the + correct location in the output file. */ + outrel[0].r_offset += (input_section->output_section->vma + + input_section->output_offset); + outrel[1].r_offset += (input_section->output_section->vma + + input_section->output_offset); + outrel[2].r_offset += (input_section->output_section->vma + + input_section->output_offset); + } + + /* Put the relocation back out. We have to use the special + relocation outputter in the 64-bit case since the 64-bit + relocation format is non-standard. */ + if (ABI_64_P (output_bfd)) + { + (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) + (output_bfd, &outrel[0], + (sreloc->contents + + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); + } + else + bfd_elf32_swap_reloc_out (output_bfd, &outrel[0], + (((Elf32_External_Rel *) + sreloc->contents) + + sreloc->reloc_count)); + + /* Record the index of the first relocation referencing H. This + information is later emitted in the .msym section. */ + if (h != NULL + && (h->min_dyn_reloc_index == 0 + || sreloc->reloc_count < h->min_dyn_reloc_index)) + h->min_dyn_reloc_index = sreloc->reloc_count; + + /* We've now added another relocation. */ + ++sreloc->reloc_count; + + /* Make sure the output section is writable. The dynamic linker + will be writing to it. */ + elf_section_data (input_section->output_section)->this_hdr.sh_flags + |= SHF_WRITE; + + /* On IRIX5, make an entry of compact relocation info. */ + if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5) + { + asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel"); + bfd_byte *cr; + + if (scpt) + { + Elf32_crinfo cptrel; + + mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); + cptrel.vaddr = (rel->r_offset + + input_section->output_section->vma + + input_section->output_offset); + if (r_type == R_MIPS_REL32) + mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); + else + mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); + mips_elf_set_cr_dist2to (cptrel, 0); + cptrel.konst = *addendp; + + cr = (scpt->contents + + sizeof (Elf32_External_compact_rel)); + bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, + ((Elf32_External_crinfo *) cr + + scpt->reloc_count)); + ++scpt->reloc_count; + } + } + + return true; +} + +/* Return the ISA for a MIPS e_flags value. */ + +static INLINE int +elf_mips_isa (flags) + flagword flags; +{ + switch (flags & EF_MIPS_ARCH) + { + case E_MIPS_ARCH_1: + return 1; + case E_MIPS_ARCH_2: + return 2; + case E_MIPS_ARCH_3: + return 3; + case E_MIPS_ARCH_4: + return 4; + case E_MIPS_ARCH_5: + return 5; + case E_MIPS_ARCH_32: + return 32; + case E_MIPS_ARCH_64: + return 64; + } + return 4; +} + +/* Return the MACH for a MIPS e_flags value. */ + +unsigned long +_bfd_elf_mips_mach (flags) + flagword flags; +{ + switch (flags & EF_MIPS_MACH) + { + case E_MIPS_MACH_3900: + return bfd_mach_mips3900; + + case E_MIPS_MACH_4010: + return bfd_mach_mips4010; + + case E_MIPS_MACH_4100: + return bfd_mach_mips4100; + + case E_MIPS_MACH_4111: + return bfd_mach_mips4111; + + case E_MIPS_MACH_4650: + return bfd_mach_mips4650; + + case E_MIPS_MACH_SB1: + return bfd_mach_mips_sb1; + + default: + switch (flags & EF_MIPS_ARCH) + { + default: + case E_MIPS_ARCH_1: + return bfd_mach_mips3000; + break; + + case E_MIPS_ARCH_2: + return bfd_mach_mips6000; + break; + + case E_MIPS_ARCH_3: + return bfd_mach_mips4000; + break; + + case E_MIPS_ARCH_4: + return bfd_mach_mips8000; + break; + + case E_MIPS_ARCH_5: + return bfd_mach_mips5; + break; + + case E_MIPS_ARCH_32: + return bfd_mach_mipsisa32; + break; + + case E_MIPS_ARCH_64: + return bfd_mach_mipsisa64; + break; + } + } + + return 0; +} + +/* Return printable name for ABI. */ + +static INLINE char * +elf_mips_abi_name (abfd) + bfd *abfd; +{ + flagword flags; + + flags = elf_elfheader (abfd)->e_flags; + switch (flags & EF_MIPS_ABI) + { + case 0: + if (ABI_N32_P (abfd)) + return "N32"; + else if (ABI_64_P (abfd)) + return "64"; + else + return "none"; + case E_MIPS_ABI_O32: + return "O32"; + case E_MIPS_ABI_O64: + return "O64"; + case E_MIPS_ABI_EABI32: + return "EABI32"; + case E_MIPS_ABI_EABI64: + return "EABI64"; + default: + return "unknown abi"; + } +} + +/* MIPS ELF uses two common sections. One is the usual one, and the + other is for small objects. All the small objects are kept + together, and then referenced via the gp pointer, which yields + faster assembler code. This is what we use for the small common + section. This approach is copied from ecoff.c. */ +static asection mips_elf_scom_section; +static asymbol mips_elf_scom_symbol; +static asymbol *mips_elf_scom_symbol_ptr; + +/* MIPS ELF also uses an acommon section, which represents an + allocated common symbol which may be overridden by a + definition in a shared library. */ +static asection mips_elf_acom_section; +static asymbol mips_elf_acom_symbol; +static asymbol *mips_elf_acom_symbol_ptr; + +/* Handle the special MIPS section numbers that a symbol may use. + This is used for both the 32-bit and the 64-bit ABI. */ + +void +_bfd_mips_elf_symbol_processing (abfd, asym) + bfd *abfd; + asymbol *asym; +{ + elf_symbol_type *elfsym; + + elfsym = (elf_symbol_type *) asym; + switch (elfsym->internal_elf_sym.st_shndx) + { + case SHN_MIPS_ACOMMON: + /* This section is used in a dynamically linked executable file. + It is an allocated common section. The dynamic linker can + either resolve these symbols to something in a shared + library, or it can just leave them here. For our purposes, + we can consider these symbols to be in a new section. */ + if (mips_elf_acom_section.name == NULL) + { + /* Initialize the acommon section. */ + mips_elf_acom_section.name = ".acommon"; + mips_elf_acom_section.flags = SEC_ALLOC; + mips_elf_acom_section.output_section = &mips_elf_acom_section; + mips_elf_acom_section.symbol = &mips_elf_acom_symbol; + mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; + mips_elf_acom_symbol.name = ".acommon"; + mips_elf_acom_symbol.flags = BSF_SECTION_SYM; + mips_elf_acom_symbol.section = &mips_elf_acom_section; + mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; + } + asym->section = &mips_elf_acom_section; + break; + + case SHN_COMMON: + /* Common symbols less than the GP size are automatically + treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ + if (asym->value > elf_gp_size (abfd) + || IRIX_COMPAT (abfd) == ict_irix6) + break; + /* Fall through. */ + case SHN_MIPS_SCOMMON: + if (mips_elf_scom_section.name == NULL) + { + /* Initialize the small common section. */ + mips_elf_scom_section.name = ".scommon"; + mips_elf_scom_section.flags = SEC_IS_COMMON; + mips_elf_scom_section.output_section = &mips_elf_scom_section; + mips_elf_scom_section.symbol = &mips_elf_scom_symbol; + mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; + mips_elf_scom_symbol.name = ".scommon"; + mips_elf_scom_symbol.flags = BSF_SECTION_SYM; + mips_elf_scom_symbol.section = &mips_elf_scom_section; + mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; + } + asym->section = &mips_elf_scom_section; + asym->value = elfsym->internal_elf_sym.st_size; + break; + + case SHN_MIPS_SUNDEFINED: + asym->section = bfd_und_section_ptr; + break; + +#if 0 /* for SGI_COMPAT */ + case SHN_MIPS_TEXT: + asym->section = mips_elf_text_section_ptr; + break; + + case SHN_MIPS_DATA: + asym->section = mips_elf_data_section_ptr; + break; +#endif + } +} + +/* Work over a section just before writing it out. This routine is + used by both the 32-bit and the 64-bit ABI. FIXME: We recognize + sections that need the SHF_MIPS_GPREL flag by name; there has to be + a better way. */ + +boolean +_bfd_mips_elf_section_processing (abfd, hdr) + bfd *abfd; + Elf_Internal_Shdr *hdr; +{ + if (hdr->sh_type == SHT_MIPS_REGINFO + && hdr->sh_size > 0) + { + bfd_byte buf[4]; + + BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); + BFD_ASSERT (hdr->contents == NULL); + + if (bfd_seek (abfd, + hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, + SEEK_SET) != 0) + return false; + H_PUT_32 (abfd, elf_gp (abfd), buf); + if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4) + return false; + } + + if (hdr->sh_type == SHT_MIPS_OPTIONS + && hdr->bfd_section != NULL + && elf_section_data (hdr->bfd_section) != NULL + && elf_section_data (hdr->bfd_section)->tdata != NULL) + { + bfd_byte *contents, *l, *lend; + + /* We stored the section contents in the elf_section_data tdata + field in the set_section_contents routine. We save the + section contents so that we don't have to read them again. + At this point we know that elf_gp is set, so we can look + through the section contents to see if there is an + ODK_REGINFO structure. */ + + contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata; + l = contents; + lend = contents + hdr->sh_size; + while (l + sizeof (Elf_External_Options) <= lend) + { + Elf_Internal_Options intopt; + + bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, + &intopt); + if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) + { + bfd_byte buf[8]; + + if (bfd_seek (abfd, + (hdr->sh_offset + + (l - contents) + + sizeof (Elf_External_Options) + + (sizeof (Elf64_External_RegInfo) - 8)), + SEEK_SET) != 0) + return false; + H_PUT_64 (abfd, elf_gp (abfd), buf); + if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8) + return false; + } + else if (intopt.kind == ODK_REGINFO) + { + bfd_byte buf[4]; + + if (bfd_seek (abfd, + (hdr->sh_offset + + (l - contents) + + sizeof (Elf_External_Options) + + (sizeof (Elf32_External_RegInfo) - 4)), + SEEK_SET) != 0) + return false; + H_PUT_32 (abfd, elf_gp (abfd), buf); + if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4) + return false; + } + l += intopt.size; + } + } + + if (hdr->bfd_section != NULL) + { + const char *name = bfd_get_section_name (abfd, hdr->bfd_section); + + if (strcmp (name, ".sdata") == 0 + || strcmp (name, ".lit8") == 0 + || strcmp (name, ".lit4") == 0) + { + hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; + hdr->sh_type = SHT_PROGBITS; + } + else if (strcmp (name, ".sbss") == 0) + { + hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; + hdr->sh_type = SHT_NOBITS; + } + else if (strcmp (name, ".srdata") == 0) + { + hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; + hdr->sh_type = SHT_PROGBITS; + } + else if (strcmp (name, ".compact_rel") == 0) + { + hdr->sh_flags = 0; + hdr->sh_type = SHT_PROGBITS; + } + else if (strcmp (name, ".rtproc") == 0) + { + if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) + { + unsigned int adjust; + + adjust = hdr->sh_size % hdr->sh_addralign; + if (adjust != 0) + hdr->sh_size += hdr->sh_addralign - adjust; + } + } + } + + return true; +} + +/* Handle a MIPS specific section when reading an object file. This + is called when elfcode.h finds a section with an unknown type. + This routine supports both the 32-bit and 64-bit ELF ABI. + + FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure + how to. */ + +boolean +_bfd_mips_elf_section_from_shdr (abfd, hdr, name) + bfd *abfd; + Elf_Internal_Shdr *hdr; + char *name; +{ + flagword flags = 0; + + /* There ought to be a place to keep ELF backend specific flags, but + at the moment there isn't one. We just keep track of the + sections by their name, instead. Fortunately, the ABI gives + suggested names for all the MIPS specific sections, so we will + probably get away with this. */ + switch (hdr->sh_type) + { + case SHT_MIPS_LIBLIST: + if (strcmp (name, ".liblist") != 0) + return false; + break; + case SHT_MIPS_MSYM: + if (strcmp (name, ".msym") != 0) + return false; + break; + case SHT_MIPS_CONFLICT: + if (strcmp (name, ".conflict") != 0) + return false; + break; + case SHT_MIPS_GPTAB: + if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0) + return false; + break; + case SHT_MIPS_UCODE: + if (strcmp (name, ".ucode") != 0) + return false; + break; + case SHT_MIPS_DEBUG: + if (strcmp (name, ".mdebug") != 0) + return false; + flags = SEC_DEBUGGING; + break; + case SHT_MIPS_REGINFO: + if (strcmp (name, ".reginfo") != 0 + || hdr->sh_size != sizeof (Elf32_External_RegInfo)) + return false; + flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); + break; + case SHT_MIPS_IFACE: + if (strcmp (name, ".MIPS.interfaces") != 0) + return false; + break; + case SHT_MIPS_CONTENT: + if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0) + return false; + break; + case SHT_MIPS_OPTIONS: + if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0) + return false; + break; + case SHT_MIPS_DWARF: + if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0) + return false; + break; + case SHT_MIPS_SYMBOL_LIB: + if (strcmp (name, ".MIPS.symlib") != 0) + return false; + break; + case SHT_MIPS_EVENTS: + if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0 + && strncmp (name, ".MIPS.post_rel", + sizeof ".MIPS.post_rel" - 1) != 0) + return false; + break; + default: + return false; + } + + if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name)) + return false; + + if (flags) + { + if (! bfd_set_section_flags (abfd, hdr->bfd_section, + (bfd_get_section_flags (abfd, + hdr->bfd_section) + | flags))) + return false; + } + + /* FIXME: We should record sh_info for a .gptab section. */ + + /* For a .reginfo section, set the gp value in the tdata information + from the contents of this section. We need the gp value while + processing relocs, so we just get it now. The .reginfo section + is not used in the 64-bit MIPS ELF ABI. */ + if (hdr->sh_type == SHT_MIPS_REGINFO) + { + Elf32_External_RegInfo ext; + Elf32_RegInfo s; + + if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext, + (file_ptr) 0, + (bfd_size_type) sizeof ext)) + return false; + bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); + elf_gp (abfd) = s.ri_gp_value; + } + + /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and + set the gp value based on what we find. We may see both + SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, + they should agree. */ + if (hdr->sh_type == SHT_MIPS_OPTIONS) + { + bfd_byte *contents, *l, *lend; + + contents = (bfd_byte *) bfd_malloc (hdr->sh_size); + if (contents == NULL) + return false; + if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, + (file_ptr) 0, hdr->sh_size)) + { + free (contents); + return false; + } + l = contents; + lend = contents + hdr->sh_size; + while (l + sizeof (Elf_External_Options) <= lend) + { + Elf_Internal_Options intopt; + + bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, + &intopt); + if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) + { + Elf64_Internal_RegInfo intreg; + + bfd_mips_elf64_swap_reginfo_in + (abfd, + ((Elf64_External_RegInfo *) + (l + sizeof (Elf_External_Options))), + &intreg); + elf_gp (abfd) = intreg.ri_gp_value; + } + else if (intopt.kind == ODK_REGINFO) + { + Elf32_RegInfo intreg; + + bfd_mips_elf32_swap_reginfo_in + (abfd, + ((Elf32_External_RegInfo *) + (l + sizeof (Elf_External_Options))), + &intreg); + elf_gp (abfd) = intreg.ri_gp_value; + } + l += intopt.size; + } + free (contents); + } + + return true; +} + +/* Set the correct type for a MIPS ELF section. We do this by the + section name, which is a hack, but ought to work. This routine is + used by both the 32-bit and the 64-bit ABI. */ + +boolean +_bfd_mips_elf_fake_sections (abfd, hdr, sec) + bfd *abfd; + Elf32_Internal_Shdr *hdr; + asection *sec; +{ + register const char *name; + + name = bfd_get_section_name (abfd, sec); + + if (strcmp (name, ".liblist") == 0) + { + hdr->sh_type = SHT_MIPS_LIBLIST; + hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib); + /* The sh_link field is set in final_write_processing. */ + } + else if (strcmp (name, ".conflict") == 0) + hdr->sh_type = SHT_MIPS_CONFLICT; + else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0) + { + hdr->sh_type = SHT_MIPS_GPTAB; + hdr->sh_entsize = sizeof (Elf32_External_gptab); + /* The sh_info field is set in final_write_processing. */ + } + else if (strcmp (name, ".ucode") == 0) + hdr->sh_type = SHT_MIPS_UCODE; + else if (strcmp (name, ".mdebug") == 0) + { + hdr->sh_type = SHT_MIPS_DEBUG; + /* In a shared object on Irix 5.3, the .mdebug section has an + entsize of 0. FIXME: Does this matter? */ + if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) + hdr->sh_entsize = 0; + else + hdr->sh_entsize = 1; + } + else if (strcmp (name, ".reginfo") == 0) + { + hdr->sh_type = SHT_MIPS_REGINFO; + /* In a shared object on Irix 5.3, the .reginfo section has an + entsize of 0x18. FIXME: Does this matter? */ + if (SGI_COMPAT (abfd)) + { + if ((abfd->flags & DYNAMIC) != 0) + hdr->sh_entsize = sizeof (Elf32_External_RegInfo); + else + hdr->sh_entsize = 1; + } + else + hdr->sh_entsize = sizeof (Elf32_External_RegInfo); + } + else if (SGI_COMPAT (abfd) + && (strcmp (name, ".hash") == 0 + || strcmp (name, ".dynamic") == 0 + || strcmp (name, ".dynstr") == 0)) + { + if (SGI_COMPAT (abfd)) + hdr->sh_entsize = 0; +#if 0 + /* This isn't how the Irix 6 linker behaves. */ + hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; +#endif + } + else if (strcmp (name, ".got") == 0 + || strcmp (name, ".srdata") == 0 + || strcmp (name, ".sdata") == 0 + || strcmp (name, ".sbss") == 0 + || strcmp (name, ".lit4") == 0 + || strcmp (name, ".lit8") == 0) + hdr->sh_flags |= SHF_MIPS_GPREL; + else if (strcmp (name, ".MIPS.interfaces") == 0) + { + hdr->sh_type = SHT_MIPS_IFACE; + hdr->sh_flags |= SHF_MIPS_NOSTRIP; + } + else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0) + { + hdr->sh_type = SHT_MIPS_CONTENT; + hdr->sh_flags |= SHF_MIPS_NOSTRIP; + /* The sh_info field is set in final_write_processing. */ + } + else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0) + { + hdr->sh_type = SHT_MIPS_OPTIONS; + hdr->sh_entsize = 1; + hdr->sh_flags |= SHF_MIPS_NOSTRIP; + } + else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0) + hdr->sh_type = SHT_MIPS_DWARF; + else if (strcmp (name, ".MIPS.symlib") == 0) + { + hdr->sh_type = SHT_MIPS_SYMBOL_LIB; + /* The sh_link and sh_info fields are set in + final_write_processing. */ + } + else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0 + || strncmp (name, ".MIPS.post_rel", + sizeof ".MIPS.post_rel" - 1) == 0) + { + hdr->sh_type = SHT_MIPS_EVENTS; + hdr->sh_flags |= SHF_MIPS_NOSTRIP; + /* The sh_link field is set in final_write_processing. */ + } + else if (strcmp (name, ".msym") == 0) + { + hdr->sh_type = SHT_MIPS_MSYM; + hdr->sh_flags |= SHF_ALLOC; + hdr->sh_entsize = 8; + } + + /* The generic elf_fake_sections will set up REL_HDR using the + default kind of relocations. But, we may actually need both + kinds of relocations, so we set up the second header here. + + This is not necessary for the O32 ABI since that only uses Elf32_Rel + relocations (cf. System V ABI, MIPS RISC Processor Supplement, + 3rd Edition, p. 4-17). It breaks the IRIX 5/6 32-bit ld, since one + of the resulting empty .rela.<section> sections starts with + sh_offset == object size, and ld doesn't allow that. While the check + is arguably bogus for empty or SHT_NOBITS sections, it can easily be + avoided by not emitting those useless sections in the first place. */ + if (IRIX_COMPAT (abfd) != ict_irix5 && (sec->flags & SEC_RELOC) != 0) + { + struct bfd_elf_section_data *esd; + bfd_size_type amt = sizeof (Elf_Internal_Shdr); + + esd = elf_section_data (sec); + BFD_ASSERT (esd->rel_hdr2 == NULL); + esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt); + if (!esd->rel_hdr2) + return false; + _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec, + !elf_section_data (sec)->use_rela_p); + } + + return true; +} + +/* Given a BFD section, try to locate the corresponding ELF section + index. This is used by both the 32-bit and the 64-bit ABI. + Actually, it's not clear to me that the 64-bit ABI supports these, + but for non-PIC objects we will certainly want support for at least + the .scommon section. */ + +boolean +_bfd_mips_elf_section_from_bfd_section (abfd, sec, retval) + bfd *abfd ATTRIBUTE_UNUSED; + asection *sec; + int *retval; +{ + if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) + { + *retval = SHN_MIPS_SCOMMON; + return true; + } + if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) + { + *retval = SHN_MIPS_ACOMMON; + return true; + } + return false; +} + +/* Hook called by the linker routine which adds symbols from an object + file. We must handle the special MIPS section numbers here. */ + +boolean +_bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp) + bfd *abfd; + struct bfd_link_info *info; + const Elf_Internal_Sym *sym; + const char **namep; + flagword *flagsp ATTRIBUTE_UNUSED; + asection **secp; + bfd_vma *valp; +{ + if (SGI_COMPAT (abfd) + && (abfd->flags & DYNAMIC) != 0 + && strcmp (*namep, "_rld_new_interface") == 0) + { + /* Skip Irix 5 rld entry name. */ + *namep = NULL; + return true; + } + + switch (sym->st_shndx) + { + case SHN_COMMON: + /* Common symbols less than the GP size are automatically + treated as SHN_MIPS_SCOMMON symbols. */ + if (sym->st_size > elf_gp_size (abfd) + || IRIX_COMPAT (abfd) == ict_irix6) + break; + /* Fall through. */ + case SHN_MIPS_SCOMMON: + *secp = bfd_make_section_old_way (abfd, ".scommon"); + (*secp)->flags |= SEC_IS_COMMON; + *valp = sym->st_size; + break; + + case SHN_MIPS_TEXT: + /* This section is used in a shared object. */ + if (elf_tdata (abfd)->elf_text_section == NULL) + { + asymbol *elf_text_symbol; + asection *elf_text_section; + bfd_size_type amt = sizeof (asection); + + elf_text_section = bfd_zalloc (abfd, amt); + if (elf_text_section == NULL) + return false; + + amt = sizeof (asymbol); + elf_text_symbol = bfd_zalloc (abfd, amt); + if (elf_text_symbol == NULL) + return false; + + /* Initialize the section. */ + + elf_tdata (abfd)->elf_text_section = elf_text_section; + elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; + + elf_text_section->symbol = elf_text_symbol; + elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol; + + elf_text_section->name = ".text"; + elf_text_section->flags = SEC_NO_FLAGS; + elf_text_section->output_section = NULL; + elf_text_section->owner = abfd; + elf_text_symbol->name = ".text"; + elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; + elf_text_symbol->section = elf_text_section; + } + /* This code used to do *secp = bfd_und_section_ptr if + info->shared. I don't know why, and that doesn't make sense, + so I took it out. */ + *secp = elf_tdata (abfd)->elf_text_section; + break; + + case SHN_MIPS_ACOMMON: + /* Fall through. XXX Can we treat this as allocated data? */ + case SHN_MIPS_DATA: + /* This section is used in a shared object. */ + if (elf_tdata (abfd)->elf_data_section == NULL) + { + asymbol *elf_data_symbol; + asection *elf_data_section; + bfd_size_type amt = sizeof (asection); + + elf_data_section = bfd_zalloc (abfd, amt); + if (elf_data_section == NULL) + return false; + + amt = sizeof (asymbol); + elf_data_symbol = bfd_zalloc (abfd, amt); + if (elf_data_symbol == NULL) + return false; + + /* Initialize the section. */ + + elf_tdata (abfd)->elf_data_section = elf_data_section; + elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; + + elf_data_section->symbol = elf_data_symbol; + elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol; + + elf_data_section->name = ".data"; + elf_data_section->flags = SEC_NO_FLAGS; + elf_data_section->output_section = NULL; + elf_data_section->owner = abfd; + elf_data_symbol->name = ".data"; + elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; + elf_data_symbol->section = elf_data_section; + } + /* This code used to do *secp = bfd_und_section_ptr if + info->shared. I don't know why, and that doesn't make sense, + so I took it out. */ + *secp = elf_tdata (abfd)->elf_data_section; + break; + + case SHN_MIPS_SUNDEFINED: + *secp = bfd_und_section_ptr; + break; + } + + if (SGI_COMPAT (abfd) + && ! info->shared + && info->hash->creator == abfd->xvec + && strcmp (*namep, "__rld_obj_head") == 0) + { + struct elf_link_hash_entry *h; + + /* Mark __rld_obj_head as dynamic. */ + h = NULL; + if (! (_bfd_generic_link_add_one_symbol + (info, abfd, *namep, BSF_GLOBAL, *secp, + (bfd_vma) *valp, (const char *) NULL, false, + get_elf_backend_data (abfd)->collect, + (struct bfd_link_hash_entry **) &h))) + return false; + h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; + h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; + h->type = STT_OBJECT; + + if (! bfd_elf32_link_record_dynamic_symbol (info, h)) + return false; + + mips_elf_hash_table (info)->use_rld_obj_head = true; + } + + /* If this is a mips16 text symbol, add 1 to the value to make it + odd. This will cause something like .word SYM to come up with + the right value when it is loaded into the PC. */ + if (sym->st_other == STO_MIPS16) + ++*valp; + + return true; +} + +/* This hook function is called before the linker writes out a global + symbol. We mark symbols as small common if appropriate. This is + also where we undo the increment of the value for a mips16 symbol. */ + +boolean +_bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec) + bfd *abfd ATTRIBUTE_UNUSED; + struct bfd_link_info *info ATTRIBUTE_UNUSED; + const char *name ATTRIBUTE_UNUSED; + Elf_Internal_Sym *sym; + asection *input_sec; +{ + /* If we see a common symbol, which implies a relocatable link, then + if a symbol was small common in an input file, mark it as small + common in the output file. */ + if (sym->st_shndx == SHN_COMMON + && strcmp (input_sec->name, ".scommon") == 0) + sym->st_shndx = SHN_MIPS_SCOMMON; + + if (sym->st_other == STO_MIPS16 + && (sym->st_value & 1) != 0) + --sym->st_value; + + return true; +} + +/* Functions for the dynamic linker. */ + +/* Create dynamic sections when linking against a dynamic object. */ + +boolean +_bfd_mips_elf_create_dynamic_sections (abfd, info) + bfd *abfd; + struct bfd_link_info *info; +{ + struct elf_link_hash_entry *h; + flagword flags; + register asection *s; + const char * const *namep; + + flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY + | SEC_LINKER_CREATED | SEC_READONLY); + + /* Mips ABI requests the .dynamic section to be read only. */ + s = bfd_get_section_by_name (abfd, ".dynamic"); + if (s != NULL) + { + if (! bfd_set_section_flags (abfd, s, flags)) + return false; + } + + /* We need to create .got section. */ + if (! mips_elf_create_got_section (abfd, info)) + return false; + + /* Create the .msym section on IRIX6. It is used by the dynamic + linker to speed up dynamic relocations, and to avoid computing + the ELF hash for symbols. */ + if (IRIX_COMPAT (abfd) == ict_irix6 + && !mips_elf_create_msym_section (abfd)) + return false; + + /* Create .stub section. */ + if (bfd_get_section_by_name (abfd, + MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL) + { + s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd)); + if (s == NULL + || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE) + || ! bfd_set_section_alignment (abfd, s, + MIPS_ELF_LOG_FILE_ALIGN (abfd))) + return false; + } + + if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none) + && !info->shared + && bfd_get_section_by_name (abfd, ".rld_map") == NULL) + { + s = bfd_make_section (abfd, ".rld_map"); + if (s == NULL + || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY) + || ! bfd_set_section_alignment (abfd, s, + MIPS_ELF_LOG_FILE_ALIGN (abfd))) + return false; + } + + /* On IRIX5, we adjust add some additional symbols and change the + alignments of several sections. There is no ABI documentation + indicating that this is necessary on IRIX6, nor any evidence that + the linker takes such action. */ + if (IRIX_COMPAT (abfd) == ict_irix5) + { + for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) + { + h = NULL; + if (! (_bfd_generic_link_add_one_symbol + (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, + (bfd_vma) 0, (const char *) NULL, false, + get_elf_backend_data (abfd)->collect, + (struct bfd_link_hash_entry **) &h))) + return false; + h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; + h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; + h->type = STT_SECTION; + + if (! bfd_elf32_link_record_dynamic_symbol (info, h)) + return false; + } + + /* We need to create a .compact_rel section. */ + if (SGI_COMPAT (abfd)) + { + if (!mips_elf_create_compact_rel_section (abfd, info)) + return false; + } + + /* Change aligments of some sections. */ + s = bfd_get_section_by_name (abfd, ".hash"); + if (s != NULL) + bfd_set_section_alignment (abfd, s, 4); + s = bfd_get_section_by_name (abfd, ".dynsym"); + if (s != NULL) + bfd_set_section_alignment (abfd, s, 4); + s = bfd_get_section_by_name (abfd, ".dynstr"); + if (s != NULL) + bfd_set_section_alignment (abfd, s, 4); + s = bfd_get_section_by_name (abfd, ".reginfo"); + if (s != NULL) + bfd_set_section_alignment (abfd, s, 4); + s = bfd_get_section_by_name (abfd, ".dynamic"); + if (s != NULL) + bfd_set_section_alignment (abfd, s, 4); + } + + if (!info->shared) + { + h = NULL; + if (SGI_COMPAT (abfd)) + { + if (!(_bfd_generic_link_add_one_symbol + (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr, + (bfd_vma) 0, (const char *) NULL, false, + get_elf_backend_data (abfd)->collect, + (struct bfd_link_hash_entry **) &h))) + return false; + } + else + { + /* For normal mips it is _DYNAMIC_LINKING. */ + if (!(_bfd_generic_link_add_one_symbol + (info, abfd, "_DYNAMIC_LINKING", BSF_GLOBAL, + bfd_abs_section_ptr, (bfd_vma) 0, (const char *) NULL, false, + get_elf_backend_data (abfd)->collect, + (struct bfd_link_hash_entry **) &h))) + return false; + } + h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; + h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; + h->type = STT_SECTION; + + if (! bfd_elf32_link_record_dynamic_symbol (info, h)) + return false; + + if (! mips_elf_hash_table (info)->use_rld_obj_head) + { + /* __rld_map is a four byte word located in the .data section + and is filled in by the rtld to contain a pointer to + the _r_debug structure. Its symbol value will be set in + _bfd_mips_elf_finish_dynamic_symbol. */ + s = bfd_get_section_by_name (abfd, ".rld_map"); + BFD_ASSERT (s != NULL); + + h = NULL; + if (SGI_COMPAT (abfd)) + { + if (!(_bfd_generic_link_add_one_symbol + (info, abfd, "__rld_map", BSF_GLOBAL, s, + (bfd_vma) 0, (const char *) NULL, false, + get_elf_backend_data (abfd)->collect, + (struct bfd_link_hash_entry **) &h))) + return false; + } + else + { + /* For normal mips the symbol is __RLD_MAP. */ + if (!(_bfd_generic_link_add_one_symbol + (info, abfd, "__RLD_MAP", BSF_GLOBAL, s, + (bfd_vma) 0, (const char *) NULL, false, + get_elf_backend_data (abfd)->collect, + (struct bfd_link_hash_entry **) &h))) + return false; + } + h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; + h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; + h->type = STT_OBJECT; + + if (! bfd_elf32_link_record_dynamic_symbol (info, h)) + return false; + } + } + + return true; +} + +/* Look through the relocs for a section during the first phase, and + allocate space in the global offset table. */ + +boolean +_bfd_mips_elf_check_relocs (abfd, info, sec, relocs) + bfd *abfd; + struct bfd_link_info *info; + asection *sec; + const Elf_Internal_Rela *relocs; +{ + const char *name; + bfd *dynobj; + Elf_Internal_Shdr *symtab_hdr; + struct elf_link_hash_entry **sym_hashes; + struct mips_got_info *g; + size_t extsymoff; + const Elf_Internal_Rela *rel; + const Elf_Internal_Rela *rel_end; + asection *sgot; + asection *sreloc; + struct elf_backend_data *bed; + + if (info->relocateable) + return true; + + dynobj = elf_hash_table (info)->dynobj; + symtab_hdr = &elf_tdata (abfd)->symtab_hdr; + sym_hashes = elf_sym_hashes (abfd); + extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; + + /* Check for the mips16 stub sections. */ + + name = bfd_get_section_name (abfd, sec); + if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0) + { + unsigned long r_symndx; + + /* Look at the relocation information to figure out which symbol + this is for. */ + + r_symndx = ELF_R_SYM (abfd, relocs->r_info); + + if (r_symndx < extsymoff + || sym_hashes[r_symndx - extsymoff] == NULL) + { + asection *o; + + /* This stub is for a local symbol. This stub will only be + needed if there is some relocation in this BFD, other + than a 16 bit function call, which refers to this symbol. */ + for (o = abfd->sections; o != NULL; o = o->next) + { + Elf_Internal_Rela *sec_relocs; + const Elf_Internal_Rela *r, *rend; + + /* We can ignore stub sections when looking for relocs. */ + if ((o->flags & SEC_RELOC) == 0 + || o->reloc_count == 0 + || strncmp (bfd_get_section_name (abfd, o), FN_STUB, + sizeof FN_STUB - 1) == 0 + || strncmp (bfd_get_section_name (abfd, o), CALL_STUB, + sizeof CALL_STUB - 1) == 0 + || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB, + sizeof CALL_FP_STUB - 1) == 0) + continue; + + sec_relocs = (_bfd_elf32_link_read_relocs + (abfd, o, (PTR) NULL, + (Elf_Internal_Rela *) NULL, + info->keep_memory)); + if (sec_relocs == NULL) + return false; + + rend = sec_relocs + o->reloc_count; + for (r = sec_relocs; r < rend; r++) + if (ELF_R_SYM (abfd, r->r_info) == r_symndx + && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26) + break; + + if (! info->keep_memory) + free (sec_relocs); + + if (r < rend) + break; + } + + if (o == NULL) + { + /* There is no non-call reloc for this stub, so we do + not need it. Since this function is called before + the linker maps input sections to output sections, we + can easily discard it by setting the SEC_EXCLUDE + flag. */ + sec->flags |= SEC_EXCLUDE; + return true; + } + + /* Record this stub in an array of local symbol stubs for + this BFD. */ + if (elf_tdata (abfd)->local_stubs == NULL) + { + unsigned long symcount; + asection **n; + bfd_size_type amt; + + if (elf_bad_symtab (abfd)) + symcount = NUM_SHDR_ENTRIES (symtab_hdr); + else + symcount = symtab_hdr->sh_info; + amt = symcount * sizeof (asection *); + n = (asection **) bfd_zalloc (abfd, amt); + if (n == NULL) + return false; + elf_tdata (abfd)->local_stubs = n; + } + + elf_tdata (abfd)->local_stubs[r_symndx] = sec; + + /* We don't need to set mips16_stubs_seen in this case. + That flag is used to see whether we need to look through + the global symbol table for stubs. We don't need to set + it here, because we just have a local stub. */ + } + else + { + struct mips_elf_link_hash_entry *h; + + h = ((struct mips_elf_link_hash_entry *) + sym_hashes[r_symndx - extsymoff]); + + /* H is the symbol this stub is for. */ + + h->fn_stub = sec; + mips_elf_hash_table (info)->mips16_stubs_seen = true; + } + } + else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0 + || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) + { + unsigned long r_symndx; + struct mips_elf_link_hash_entry *h; + asection **loc; + + /* Look at the relocation information to figure out which symbol + this is for. */ + + r_symndx = ELF_R_SYM (abfd, relocs->r_info); + + if (r_symndx < extsymoff + || sym_hashes[r_symndx - extsymoff] == NULL) + { + /* This stub was actually built for a static symbol defined + in the same file. We assume that all static symbols in + mips16 code are themselves mips16, so we can simply + discard this stub. Since this function is called before + the linker maps input sections to output sections, we can + easily discard it by setting the SEC_EXCLUDE flag. */ + sec->flags |= SEC_EXCLUDE; + return true; + } + + h = ((struct mips_elf_link_hash_entry *) + sym_hashes[r_symndx - extsymoff]); + + /* H is the symbol this stub is for. */ + + if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) + loc = &h->call_fp_stub; + else + loc = &h->call_stub; + + /* If we already have an appropriate stub for this function, we + don't need another one, so we can discard this one. Since + this function is called before the linker maps input sections + to output sections, we can easily discard it by setting the + SEC_EXCLUDE flag. We can also discard this section if we + happen to already know that this is a mips16 function; it is + not necessary to check this here, as it is checked later, but + it is slightly faster to check now. */ + if (*loc != NULL || h->root.other == STO_MIPS16) + { + sec->flags |= SEC_EXCLUDE; + return true; + } + + *loc = sec; + mips_elf_hash_table (info)->mips16_stubs_seen = true; + } + + if (dynobj == NULL) + { + sgot = NULL; + g = NULL; + } + else + { + sgot = mips_elf_got_section (dynobj); + if (sgot == NULL) + g = NULL; + else + { + BFD_ASSERT (elf_section_data (sgot) != NULL); + g = (struct mips_got_info *) elf_section_data (sgot)->tdata; + BFD_ASSERT (g != NULL); + } + } + + sreloc = NULL; + bed = get_elf_backend_data (abfd); + rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; + for (rel = relocs; rel < rel_end; ++rel) + { + unsigned long r_symndx; + unsigned int r_type; + struct elf_link_hash_entry *h; + + r_symndx = ELF_R_SYM (abfd, rel->r_info); + r_type = ELF_R_TYPE (abfd, rel->r_info); + + if (r_symndx < extsymoff) + h = NULL; + else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) + { + (*_bfd_error_handler) + (_("%s: Malformed reloc detected for section %s"), + bfd_archive_filename (abfd), name); + bfd_set_error (bfd_error_bad_value); + return false; + } + else + { + h = sym_hashes[r_symndx - extsymoff]; + + /* This may be an indirect symbol created because of a version. */ + if (h != NULL) + { + while (h->root.type == bfd_link_hash_indirect) + h = (struct elf_link_hash_entry *) h->root.u.i.link; + } + } + + /* Some relocs require a global offset table. */ + if (dynobj == NULL || sgot == NULL) + { + switch (r_type) + { + case R_MIPS_GOT16: + case R_MIPS_CALL16: + case R_MIPS_CALL_HI16: + case R_MIPS_CALL_LO16: + case R_MIPS_GOT_HI16: + case R_MIPS_GOT_LO16: + case R_MIPS_GOT_PAGE: + case R_MIPS_GOT_OFST: + case R_MIPS_GOT_DISP: + if (dynobj == NULL) + elf_hash_table (info)->dynobj = dynobj = abfd; + if (! mips_elf_create_got_section (dynobj, info)) + return false; + g = mips_elf_got_info (dynobj, &sgot); + break; + + case R_MIPS_32: + case R_MIPS_REL32: + case R_MIPS_64: + if (dynobj == NULL + && (info->shared || h != NULL) + && (sec->flags & SEC_ALLOC) != 0) + elf_hash_table (info)->dynobj = dynobj = abfd; + break; + + default: + break; + } + } + + if (!h && (r_type == R_MIPS_CALL_LO16 + || r_type == R_MIPS_GOT_LO16 + || r_type == R_MIPS_GOT_DISP)) + { + /* We may need a local GOT entry for this relocation. We + don't count R_MIPS_GOT_PAGE because we can estimate the + maximum number of pages needed by looking at the size of + the segment. Similar comments apply to R_MIPS_GOT16 and + R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or + R_MIPS_CALL_HI16 because these are always followed by an + R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. + + This estimation is very conservative since we can merge + duplicate entries in the GOT. In order to be less + conservative, we could actually build the GOT here, + rather than in relocate_section. */ + g->local_gotno++; + sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj); + } + + switch (r_type) + { + case R_MIPS_CALL16: + if (h == NULL) + { + (*_bfd_error_handler) + (_("%s: CALL16 reloc at 0x%lx not against global symbol"), + bfd_archive_filename (abfd), (unsigned long) rel->r_offset); + bfd_set_error (bfd_error_bad_value); + return false; + } + /* Fall through. */ + + case R_MIPS_CALL_HI16: + case R_MIPS_CALL_LO16: + if (h != NULL) + { + /* This symbol requires a global offset table entry. */ + if (! mips_elf_record_global_got_symbol (h, info, g)) + return false; + + /* We need a stub, not a plt entry for the undefined + function. But we record it as if it needs plt. See + elf_adjust_dynamic_symbol in elflink.h. */ + h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; + h->type = STT_FUNC; + } + break; + + case R_MIPS_GOT16: + case R_MIPS_GOT_HI16: + case R_MIPS_GOT_LO16: + case R_MIPS_GOT_DISP: + /* This symbol requires a global offset table entry. */ + if (h && ! mips_elf_record_global_got_symbol (h, info, g)) + return false; + break; + + case R_MIPS_32: + case R_MIPS_REL32: + case R_MIPS_64: + if ((info->shared || h != NULL) + && (sec->flags & SEC_ALLOC) != 0) + { + if (sreloc == NULL) + { + const char *dname = ".rel.dyn"; + + sreloc = bfd_get_section_by_name (dynobj, dname); + if (sreloc == NULL) + { + sreloc = bfd_make_section (dynobj, dname); + if (sreloc == NULL + || ! bfd_set_section_flags (dynobj, sreloc, + (SEC_ALLOC + | SEC_LOAD + | SEC_HAS_CONTENTS + | SEC_IN_MEMORY + | SEC_LINKER_CREATED + | SEC_READONLY)) + || ! bfd_set_section_alignment (dynobj, sreloc, + 4)) + return false; + } + } +#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY) + if (info->shared) + { + /* When creating a shared object, we must copy these + reloc types into the output file as R_MIPS_REL32 + relocs. We make room for this reloc in the + .rel.dyn reloc section. */ + mips_elf_allocate_dynamic_relocations (dynobj, 1); + if ((sec->flags & MIPS_READONLY_SECTION) + == MIPS_READONLY_SECTION) + /* We tell the dynamic linker that there are + relocations against the text segment. */ + info->flags |= DF_TEXTREL; + } + else + { + struct mips_elf_link_hash_entry *hmips; + + /* We only need to copy this reloc if the symbol is + defined in a dynamic object. */ + hmips = (struct mips_elf_link_hash_entry *) h; + ++hmips->possibly_dynamic_relocs; + if ((sec->flags & MIPS_READONLY_SECTION) + == MIPS_READONLY_SECTION) + /* We need it to tell the dynamic linker if there + are relocations against the text segment. */ + hmips->readonly_reloc = true; + } + + /* Even though we don't directly need a GOT entry for + this symbol, a symbol must have a dynamic symbol + table index greater that DT_MIPS_GOTSYM if there are + dynamic relocations against it. */ + if (h != NULL + && ! mips_elf_record_global_got_symbol (h, info, g)) + return false; + } + + if (SGI_COMPAT (abfd)) + mips_elf_hash_table (info)->compact_rel_size += + sizeof (Elf32_External_crinfo); + break; + + case R_MIPS_26: + case R_MIPS_GPREL16: + case R_MIPS_LITERAL: + case R_MIPS_GPREL32: + if (SGI_COMPAT (abfd)) + mips_elf_hash_table (info)->compact_rel_size += + sizeof (Elf32_External_crinfo); + break; + + /* This relocation describes the C++ object vtable hierarchy. + Reconstruct it for later use during GC. */ + case R_MIPS_GNU_VTINHERIT: + if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) + return false; + break; + + /* This relocation describes which C++ vtable entries are actually + used. Record for later use during GC. */ + case R_MIPS_GNU_VTENTRY: + if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset)) + return false; + break; + + default: + break; + } + + /* We must not create a stub for a symbol that has relocations + related to taking the function's address. */ + switch (r_type) + { + default: + if (h != NULL) + { + struct mips_elf_link_hash_entry *mh; + + mh = (struct mips_elf_link_hash_entry *) h; + mh->no_fn_stub = true; + } + break; + case R_MIPS_CALL16: + case R_MIPS_CALL_HI16: + case R_MIPS_CALL_LO16: + break; + } + + /* If this reloc is not a 16 bit call, and it has a global + symbol, then we will need the fn_stub if there is one. + References from a stub section do not count. */ + if (h != NULL + && r_type != R_MIPS16_26 + && strncmp (bfd_get_section_name (abfd, sec), FN_STUB, + sizeof FN_STUB - 1) != 0 + && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB, + sizeof CALL_STUB - 1) != 0 + && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB, + sizeof CALL_FP_STUB - 1) != 0) + { + struct mips_elf_link_hash_entry *mh; + + mh = (struct mips_elf_link_hash_entry *) h; + mh->need_fn_stub = true; + } + } + + return true; +} + +/* Adjust a symbol defined by a dynamic object and referenced by a + regular object. The current definition is in some section of the + dynamic object, but we're not including those sections. We have to + change the definition to something the rest of the link can + understand. */ + +boolean +_bfd_mips_elf_adjust_dynamic_symbol (info, h) + struct bfd_link_info *info; + struct elf_link_hash_entry *h; +{ + bfd *dynobj; + struct mips_elf_link_hash_entry *hmips; + asection *s; + + dynobj = elf_hash_table (info)->dynobj; + + /* Make sure we know what is going on here. */ + BFD_ASSERT (dynobj != NULL + && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) + || h->weakdef != NULL + || ((h->elf_link_hash_flags + & ELF_LINK_HASH_DEF_DYNAMIC) != 0 + && (h->elf_link_hash_flags + & ELF_LINK_HASH_REF_REGULAR) != 0 + && (h->elf_link_hash_flags + & ELF_LINK_HASH_DEF_REGULAR) == 0))); + + /* If this symbol is defined in a dynamic object, we need to copy + any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output + file. */ + hmips = (struct mips_elf_link_hash_entry *) h; + if (! info->relocateable + && hmips->possibly_dynamic_relocs != 0 + && (h->root.type == bfd_link_hash_defweak + || (h->elf_link_hash_flags + & ELF_LINK_HASH_DEF_REGULAR) == 0)) + { + mips_elf_allocate_dynamic_relocations (dynobj, + hmips->possibly_dynamic_relocs); + if (hmips->readonly_reloc) + /* We tell the dynamic linker that there are relocations + against the text segment. */ + info->flags |= DF_TEXTREL; + } + + /* For a function, create a stub, if allowed. */ + if (! hmips->no_fn_stub + && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) + { + if (! elf_hash_table (info)->dynamic_sections_created) + return true; + + /* If this symbol is not defined in a regular file, then set + the symbol to the stub location. This is required to make + function pointers compare as equal between the normal + executable and the shared library. */ + if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) + { + /* We need .stub section. */ + s = bfd_get_section_by_name (dynobj, + MIPS_ELF_STUB_SECTION_NAME (dynobj)); + BFD_ASSERT (s != NULL); + + h->root.u.def.section = s; + h->root.u.def.value = s->_raw_size; + + /* XXX Write this stub address somewhere. */ + h->plt.offset = s->_raw_size; + + /* Make room for this stub code. */ + s->_raw_size += MIPS_FUNCTION_STUB_SIZE; + + /* The last half word of the stub will be filled with the index + of this symbol in .dynsym section. */ + return true; + } + } + else if ((h->type == STT_FUNC) + && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0) + { + /* This will set the entry for this symbol in the GOT to 0, and + the dynamic linker will take care of this. */ + h->root.u.def.value = 0; + return true; + } + + /* If this is a weak symbol, and there is a real definition, the + processor independent code will have arranged for us to see the + real definition first, and we can just use the same value. */ + if (h->weakdef != NULL) + { + BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined + || h->weakdef->root.type == bfd_link_hash_defweak); + h->root.u.def.section = h->weakdef->root.u.def.section; + h->root.u.def.value = h->weakdef->root.u.def.value; + return true; + } + + /* This is a reference to a symbol defined by a dynamic object which + is not a function. */ + + return true; +} + +/* This function is called after all the input files have been read, + and the input sections have been assigned to output sections. We + check for any mips16 stub sections that we can discard. */ + +boolean +_bfd_mips_elf_always_size_sections (output_bfd, info) + bfd *output_bfd; + struct bfd_link_info *info; +{ + asection *ri; + + /* The .reginfo section has a fixed size. */ + ri = bfd_get_section_by_name (output_bfd, ".reginfo"); + if (ri != NULL) + bfd_set_section_size (output_bfd, ri, + (bfd_size_type) sizeof (Elf32_External_RegInfo)); + + if (info->relocateable + || ! mips_elf_hash_table (info)->mips16_stubs_seen) + return true; + + mips_elf_link_hash_traverse (mips_elf_hash_table (info), + mips_elf_check_mips16_stubs, + (PTR) NULL); + + return true; +} + +/* Set the sizes of the dynamic sections. */ + +boolean +_bfd_mips_elf_size_dynamic_sections (output_bfd, info) + bfd *output_bfd; + struct bfd_link_info *info; +{ + bfd *dynobj; + asection *s; + boolean reltext; + struct mips_got_info *g = NULL; + + dynobj = elf_hash_table (info)->dynobj; + BFD_ASSERT (dynobj != NULL); + + if (elf_hash_table (info)->dynamic_sections_created) + { + /* Set the contents of the .interp section to the interpreter. */ + if (! info->shared) + { + s = bfd_get_section_by_name (dynobj, ".interp"); + BFD_ASSERT (s != NULL); + s->_raw_size + = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; + s->contents + = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); + } + } + + /* The check_relocs and adjust_dynamic_symbol entry points have + determined the sizes of the various dynamic sections. Allocate + memory for them. */ + reltext = false; + for (s = dynobj->sections; s != NULL; s = s->next) + { + const char *name; + boolean strip; + + /* It's OK to base decisions on the section name, because none + of the dynobj section names depend upon the input files. */ + name = bfd_get_section_name (dynobj, s); + + if ((s->flags & SEC_LINKER_CREATED) == 0) + continue; + + strip = false; + + if (strncmp (name, ".rel", 4) == 0) + { + if (s->_raw_size == 0) + { + /* We only strip the section if the output section name + has the same name. Otherwise, there might be several + input sections for this output section. FIXME: This + code is probably not needed these days anyhow, since + the linker now does not create empty output sections. */ + if (s->output_section != NULL + && strcmp (name, + bfd_get_section_name (s->output_section->owner, + s->output_section)) == 0) + strip = true; + } + else + { + const char *outname; + asection *target; + + /* If this relocation section applies to a read only + section, then we probably need a DT_TEXTREL entry. + If the relocation section is .rel.dyn, we always + assert a DT_TEXTREL entry rather than testing whether + there exists a relocation to a read only section or + not. */ + outname = bfd_get_section_name (output_bfd, + s->output_section); + target = bfd_get_section_by_name (output_bfd, outname + 4); + if ((target != NULL + && (target->flags & SEC_READONLY) != 0 + && (target->flags & SEC_ALLOC) != 0) + || strcmp (outname, ".rel.dyn") == 0) + reltext = true; + + /* We use the reloc_count field as a counter if we need + to copy relocs into the output file. */ + if (strcmp (name, ".rel.dyn") != 0) + s->reloc_count = 0; + } + } + else if (strncmp (name, ".got", 4) == 0) + { + int i; + bfd_size_type loadable_size = 0; + bfd_size_type local_gotno; + bfd *sub; + + BFD_ASSERT (elf_section_data (s) != NULL); + g = (struct mips_got_info *) elf_section_data (s)->tdata; + BFD_ASSERT (g != NULL); + + /* Calculate the total loadable size of the output. That + will give us the maximum number of GOT_PAGE entries + required. */ + for (sub = info->input_bfds; sub; sub = sub->link_next) + { + asection *subsection; + + for (subsection = sub->sections; + subsection; + subsection = subsection->next) + { + if ((subsection->flags & SEC_ALLOC) == 0) + continue; + loadable_size += ((subsection->_raw_size + 0xf) + &~ (bfd_size_type) 0xf); + } + } + loadable_size += MIPS_FUNCTION_STUB_SIZE; + + /* Assume there are two loadable segments consisting of + contiguous sections. Is 5 enough? */ + local_gotno = (loadable_size >> 16) + 5; + if (IRIX_COMPAT (output_bfd) == ict_irix6) + /* It's possible we will need GOT_PAGE entries as well as + GOT16 entries. Often, these will be able to share GOT + entries, but not always. */ + local_gotno *= 2; + + g->local_gotno += local_gotno; + s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj); + + /* There has to be a global GOT entry for every symbol with + a dynamic symbol table index of DT_MIPS_GOTSYM or + higher. Therefore, it make sense to put those symbols + that need GOT entries at the end of the symbol table. We + do that here. */ + if (! mips_elf_sort_hash_table (info, 1)) + return false; + + if (g->global_gotsym != NULL) + i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx; + else + /* If there are no global symbols, or none requiring + relocations, then GLOBAL_GOTSYM will be NULL. */ + i = 0; + g->global_gotno = i; + s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj); + } + else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0) + { + /* Irix rld assumes that the function stub isn't at the end + of .text section. So put a dummy. XXX */ + s->_raw_size += MIPS_FUNCTION_STUB_SIZE; + } + else if (! info->shared + && ! mips_elf_hash_table (info)->use_rld_obj_head + && strncmp (name, ".rld_map", 8) == 0) + { + /* We add a room for __rld_map. It will be filled in by the + rtld to contain a pointer to the _r_debug structure. */ + s->_raw_size += 4; + } + else if (SGI_COMPAT (output_bfd) + && strncmp (name, ".compact_rel", 12) == 0) + s->_raw_size += mips_elf_hash_table (info)->compact_rel_size; + else if (strcmp (name, ".msym") == 0) + s->_raw_size = (sizeof (Elf32_External_Msym) + * (elf_hash_table (info)->dynsymcount + + bfd_count_sections (output_bfd))); + else if (strncmp (name, ".init", 5) != 0) + { + /* It's not one of our sections, so don't allocate space. */ + continue; + } + + if (strip) + { + _bfd_strip_section_from_output (info, s); + continue; + } + + /* Allocate memory for the section contents. */ + s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size); + if (s->contents == NULL && s->_raw_size != 0) + { + bfd_set_error (bfd_error_no_memory); + return false; + } + } + + if (elf_hash_table (info)->dynamic_sections_created) + { + /* Add some entries to the .dynamic section. We fill in the + values later, in _bfd_mips_elf_finish_dynamic_sections, but we + must add the entries now so that we get the correct size for + the .dynamic section. The DT_DEBUG entry is filled in by the + dynamic linker and used by the debugger. */ + if (! info->shared) + { + /* SGI object has the equivalence of DT_DEBUG in the + DT_MIPS_RLD_MAP entry. */ + if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) + return false; + if (!SGI_COMPAT (output_bfd)) + { + if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) + return false; + } + } + else + { + /* Shared libraries on traditional mips have DT_DEBUG. */ + if (!SGI_COMPAT (output_bfd)) + { + if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) + return false; + } + } + + if (reltext && SGI_COMPAT (output_bfd)) + info->flags |= DF_TEXTREL; + + if ((info->flags & DF_TEXTREL) != 0) + { + if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) + return false; + } + + if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) + return false; + + if (bfd_get_section_by_name (dynobj, ".rel.dyn")) + { + if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) + return false; + + if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) + return false; + + if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) + return false; + } + + if (SGI_COMPAT (output_bfd)) + { + if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0)) + return false; + } + + if (SGI_COMPAT (output_bfd)) + { + if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0)) + return false; + } + + if (bfd_get_section_by_name (dynobj, ".conflict") != NULL) + { + if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0)) + return false; + + s = bfd_get_section_by_name (dynobj, ".liblist"); + BFD_ASSERT (s != NULL); + + if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0)) + return false; + } + + if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) + return false; + + if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) + return false; + +#if 0 + /* Time stamps in executable files are a bad idea. */ + if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0)) + return false; +#endif + +#if 0 /* FIXME */ + if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0)) + return false; +#endif + +#if 0 /* FIXME */ + if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0)) + return false; +#endif + + if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) + return false; + + if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) + return false; + + if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) + return false; + + if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) + return false; + + if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) + return false; + + if (IRIX_COMPAT (dynobj) == ict_irix5 + && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) + return false; + + if (IRIX_COMPAT (dynobj) == ict_irix6 + && (bfd_get_section_by_name + (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) + && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) + return false; + + if (bfd_get_section_by_name (dynobj, ".msym") + && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0)) + return false; + } + + return true; +} + +/* Relocate a MIPS ELF section. */ + +boolean +_bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section, + contents, relocs, local_syms, local_sections) + bfd *output_bfd; + struct bfd_link_info *info; + bfd *input_bfd; + asection *input_section; + bfd_byte *contents; + Elf_Internal_Rela *relocs; + Elf_Internal_Sym *local_syms; + asection **local_sections; +{ + Elf_Internal_Rela *rel; + const Elf_Internal_Rela *relend; + bfd_vma addend = 0; + boolean use_saved_addend_p = false; + struct elf_backend_data *bed; + + bed = get_elf_backend_data (output_bfd); + relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; + for (rel = relocs; rel < relend; ++rel) + { + const char *name; + bfd_vma value; + reloc_howto_type *howto; + boolean require_jalx; + /* True if the relocation is a RELA relocation, rather than a + REL relocation. */ + boolean rela_relocation_p = true; + unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); + const char * msg = (const char *) NULL; + + /* Find the relocation howto for this relocation. */ + if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)) + { + /* Some 32-bit code uses R_MIPS_64. In particular, people use + 64-bit code, but make sure all their addresses are in the + lowermost or uppermost 32-bit section of the 64-bit address + space. Thus, when they use an R_MIPS_64 they mean what is + usually meant by R_MIPS_32, with the exception that the + stored value is sign-extended to 64 bits. */ + howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, + NEWABI_P (input_bfd)); + + /* On big-endian systems, we need to lie about the position + of the reloc. */ + if (bfd_big_endian (input_bfd)) + rel->r_offset += 4; + } + else + /* NewABI defaults to RELA relocations. */ + howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, + NEWABI_P (input_bfd)); + + if (!use_saved_addend_p) + { + Elf_Internal_Shdr *rel_hdr; + + /* If these relocations were originally of the REL variety, + we must pull the addend out of the field that will be + relocated. Otherwise, we simply use the contents of the + RELA relocation. To determine which flavor or relocation + this is, we depend on the fact that the INPUT_SECTION's + REL_HDR is read before its REL_HDR2. */ + rel_hdr = &elf_section_data (input_section)->rel_hdr; + if ((size_t) (rel - relocs) + >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel)) + rel_hdr = elf_section_data (input_section)->rel_hdr2; + if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd)) + { + /* Note that this is a REL relocation. */ + rela_relocation_p = false; + + /* Get the addend, which is stored in the input file. */ + addend = mips_elf_obtain_contents (howto, rel, input_bfd, + contents); + addend &= howto->src_mask; + + /* For some kinds of relocations, the ADDEND is a + combination of the addend stored in two different + relocations. */ + if (r_type == R_MIPS_HI16 + || r_type == R_MIPS_GNU_REL_HI16 + || (r_type == R_MIPS_GOT16 + && mips_elf_local_relocation_p (input_bfd, rel, + local_sections, false))) + { + bfd_vma l; + const Elf_Internal_Rela *lo16_relocation; + reloc_howto_type *lo16_howto; + unsigned int lo; + + /* The combined value is the sum of the HI16 addend, + left-shifted by sixteen bits, and the LO16 + addend, sign extended. (Usually, the code does + a `lui' of the HI16 value, and then an `addiu' of + the LO16 value.) + + Scan ahead to find a matching LO16 relocation. */ + if (r_type == R_MIPS_GNU_REL_HI16) + lo = R_MIPS_GNU_REL_LO16; + else + lo = R_MIPS_LO16; + lo16_relocation = mips_elf_next_relocation (input_bfd, lo, + rel, relend); + if (lo16_relocation == NULL) + return false; + + /* Obtain the addend kept there. */ + lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, + rela_relocation_p); + l = mips_elf_obtain_contents (lo16_howto, lo16_relocation, + input_bfd, contents); + l &= lo16_howto->src_mask; + l = mips_elf_sign_extend (l, 16); + + addend <<= 16; + + /* Compute the combined addend. */ + addend += l; + + /* If PC-relative, subtract the difference between the + address of the LO part of the reloc and the address of + the HI part. The relocation is relative to the LO + part, but mips_elf_calculate_relocation() doesn't + know its address or the difference from the HI part, so + we subtract that difference here. See also the + comment in mips_elf_calculate_relocation(). */ + if (r_type == R_MIPS_GNU_REL_HI16) + addend -= (lo16_relocation->r_offset - rel->r_offset); + } + else if (r_type == R_MIPS16_GPREL) + { + /* The addend is scrambled in the object file. See + mips_elf_perform_relocation for details on the + format. */ + addend = (((addend & 0x1f0000) >> 5) + | ((addend & 0x7e00000) >> 16) + | (addend & 0x1f)); + } + } + else + addend = rel->r_addend; + } + + if (info->relocateable) + { + Elf_Internal_Sym *sym; + unsigned long r_symndx; + + if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd) + && bfd_big_endian (input_bfd)) + rel->r_offset -= 4; + + /* Since we're just relocating, all we need to do is copy + the relocations back out to the object file, unless + they're against a section symbol, in which case we need + to adjust by the section offset, or unless they're GP + relative in which case we need to adjust by the amount + that we're adjusting GP in this relocateable object. */ + + if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections, + false)) + /* There's nothing to do for non-local relocations. */ + continue; + + if (r_type == R_MIPS16_GPREL + || r_type == R_MIPS_GPREL16 + || r_type == R_MIPS_GPREL32 + || r_type == R_MIPS_LITERAL) + addend -= (_bfd_get_gp_value (output_bfd) + - _bfd_get_gp_value (input_bfd)); + else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26 + || r_type == R_MIPS_GNU_REL16_S2) + /* The addend is stored without its two least + significant bits (which are always zero.) In a + non-relocateable link, calculate_relocation will do + this shift; here, we must do it ourselves. */ + addend <<= 2; + + r_symndx = ELF_R_SYM (output_bfd, rel->r_info); + sym = local_syms + r_symndx; + if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) + /* Adjust the addend appropriately. */ + addend += local_sections[r_symndx]->output_offset; + + /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16, + then we only want to write out the high-order 16 bits. + The subsequent R_MIPS_LO16 will handle the low-order bits. */ + if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16 + || r_type == R_MIPS_GNU_REL_HI16) + addend = mips_elf_high (addend); + else if (r_type == R_MIPS_HIGHER) + addend = mips_elf_higher (addend); + else if (r_type == R_MIPS_HIGHEST) + addend = mips_elf_highest (addend); + + /* If the relocation is for an R_MIPS_26 relocation, then + the two low-order bits are not stored in the object file; + they are implicitly zero. */ + else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26 + || r_type == R_MIPS_GNU_REL16_S2) + addend >>= 2; + + if (rela_relocation_p) + /* If this is a RELA relocation, just update the addend. + We have to cast away constness for REL. */ + rel->r_addend = addend; + else + { + /* Otherwise, we have to write the value back out. Note + that we use the source mask, rather than the + destination mask because the place to which we are + writing will be source of the addend in the final + link. */ + addend &= howto->src_mask; + + if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)) + /* See the comment above about using R_MIPS_64 in the 32-bit + ABI. Here, we need to update the addend. It would be + possible to get away with just using the R_MIPS_32 reloc + but for endianness. */ + { + bfd_vma sign_bits; + bfd_vma low_bits; + bfd_vma high_bits; + + if (addend & ((bfd_vma) 1 << 31)) +#ifdef BFD64 + sign_bits = ((bfd_vma) 1 << 32) - 1; +#else + sign_bits = -1; +#endif + else + sign_bits = 0; + + /* If we don't know that we have a 64-bit type, + do two separate stores. */ + if (bfd_big_endian (input_bfd)) + { + /* Store the sign-bits (which are most significant) + first. */ + low_bits = sign_bits; + high_bits = addend; + } + else + { + low_bits = addend; + high_bits = sign_bits; + } + bfd_put_32 (input_bfd, low_bits, + contents + rel->r_offset); + bfd_put_32 (input_bfd, high_bits, + contents + rel->r_offset + 4); + continue; + } + + if (! mips_elf_perform_relocation (info, howto, rel, addend, + input_bfd, input_section, + contents, false)) + return false; + } + + /* Go on to the next relocation. */ + continue; + } + + /* In the N32 and 64-bit ABIs there may be multiple consecutive + relocations for the same offset. In that case we are + supposed to treat the output of each relocation as the addend + for the next. */ + if (rel + 1 < relend + && rel->r_offset == rel[1].r_offset + && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) + use_saved_addend_p = true; + else + use_saved_addend_p = false; + + /* Figure out what value we are supposed to relocate. */ + switch (mips_elf_calculate_relocation (output_bfd, input_bfd, + input_section, info, rel, + addend, howto, local_syms, + local_sections, &value, + &name, &require_jalx)) + { + case bfd_reloc_continue: + /* There's nothing to do. */ + continue; + + case bfd_reloc_undefined: + /* mips_elf_calculate_relocation already called the + undefined_symbol callback. There's no real point in + trying to perform the relocation at this point, so we + just skip ahead to the next relocation. */ + continue; + + case bfd_reloc_notsupported: + msg = _("internal error: unsupported relocation error"); + info->callbacks->warning + (info, msg, name, input_bfd, input_section, rel->r_offset); + return false; + + case bfd_reloc_overflow: + if (use_saved_addend_p) + /* Ignore overflow until we reach the last relocation for + a given location. */ + ; + else + { + BFD_ASSERT (name != NULL); + if (! ((*info->callbacks->reloc_overflow) + (info, name, howto->name, (bfd_vma) 0, + input_bfd, input_section, rel->r_offset))) + return false; + } + break; + + case bfd_reloc_ok: + break; + + default: + abort (); + break; + } + + /* If we've got another relocation for the address, keep going + until we reach the last one. */ + if (use_saved_addend_p) + { + addend = value; + continue; + } + + if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)) + /* See the comment above about using R_MIPS_64 in the 32-bit + ABI. Until now, we've been using the HOWTO for R_MIPS_32; + that calculated the right value. Now, however, we + sign-extend the 32-bit result to 64-bits, and store it as a + 64-bit value. We are especially generous here in that we + go to extreme lengths to support this usage on systems with + only a 32-bit VMA. */ + { + bfd_vma sign_bits; + bfd_vma low_bits; + bfd_vma high_bits; + + if (value & ((bfd_vma) 1 << 31)) +#ifdef BFD64 + sign_bits = ((bfd_vma) 1 << 32) - 1; +#else + sign_bits = -1; +#endif + else + sign_bits = 0; + + /* If we don't know that we have a 64-bit type, + do two separate stores. */ + if (bfd_big_endian (input_bfd)) + { + /* Undo what we did above. */ + rel->r_offset -= 4; + /* Store the sign-bits (which are most significant) + first. */ + low_bits = sign_bits; + high_bits = value; + } + else + { + low_bits = value; + high_bits = sign_bits; + } + bfd_put_32 (input_bfd, low_bits, + contents + rel->r_offset); + bfd_put_32 (input_bfd, high_bits, + contents + rel->r_offset + 4); + continue; + } + + /* Actually perform the relocation. */ + if (! mips_elf_perform_relocation (info, howto, rel, value, + input_bfd, input_section, + contents, require_jalx)) + return false; + } + + return true; +} + +/* If NAME is one of the special IRIX6 symbols defined by the linker, + adjust it appropriately now. */ + +static void +mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym) + bfd *abfd ATTRIBUTE_UNUSED; + const char *name; + Elf_Internal_Sym *sym; +{ + /* The linker script takes care of providing names and values for + these, but we must place them into the right sections. */ + static const char* const text_section_symbols[] = { + "_ftext", + "_etext", + "__dso_displacement", + "__elf_header", + "__program_header_table", + NULL + }; + + static const char* const data_section_symbols[] = { + "_fdata", + "_edata", + "_end", + "_fbss", + NULL + }; + + const char* const *p; + int i; + + for (i = 0; i < 2; ++i) + for (p = (i == 0) ? text_section_symbols : data_section_symbols; + *p; + ++p) + if (strcmp (*p, name) == 0) + { + /* All of these symbols are given type STT_SECTION by the + IRIX6 linker. */ + sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); + + /* The IRIX linker puts these symbols in special sections. */ + if (i == 0) + sym->st_shndx = SHN_MIPS_TEXT; + else + sym->st_shndx = SHN_MIPS_DATA; + + break; + } +} + +/* Finish up dynamic symbol handling. We set the contents of various + dynamic sections here. */ + +boolean +_bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym) + bfd *output_bfd; + struct bfd_link_info *info; + struct elf_link_hash_entry *h; + Elf_Internal_Sym *sym; +{ + bfd *dynobj; + bfd_vma gval; + asection *sgot; + asection *smsym; + struct mips_got_info *g; + const char *name; + struct mips_elf_link_hash_entry *mh; + + dynobj = elf_hash_table (info)->dynobj; + gval = sym->st_value; + mh = (struct mips_elf_link_hash_entry *) h; + + if (h->plt.offset != (bfd_vma) -1) + { + asection *s; + bfd_byte stub[MIPS_FUNCTION_STUB_SIZE]; + + /* This symbol has a stub. Set it up. */ + + BFD_ASSERT (h->dynindx != -1); + + s = bfd_get_section_by_name (dynobj, + MIPS_ELF_STUB_SECTION_NAME (dynobj)); + BFD_ASSERT (s != NULL); + + /* FIXME: Can h->dynindex be more than 64K? */ + if (h->dynindx & 0xffff0000) + return false; + + /* Fill the stub. */ + bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub); + bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4); + bfd_put_32 (output_bfd, STUB_JALR, stub + 8); + bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12); + + BFD_ASSERT (h->plt.offset <= s->_raw_size); + memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE); + + /* Mark the symbol as undefined. plt.offset != -1 occurs + only for the referenced symbol. */ + sym->st_shndx = SHN_UNDEF; + + /* The run-time linker uses the st_value field of the symbol + to reset the global offset table entry for this external + to its stub address when unlinking a shared object. */ + gval = s->output_section->vma + s->output_offset + h->plt.offset; + sym->st_value = gval; + } + + BFD_ASSERT (h->dynindx != -1 + || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0); + + sgot = mips_elf_got_section (dynobj); + BFD_ASSERT (sgot != NULL); + BFD_ASSERT (elf_section_data (sgot) != NULL); + g = (struct mips_got_info *) elf_section_data (sgot)->tdata; + BFD_ASSERT (g != NULL); + + /* Run through the global symbol table, creating GOT entries for all + the symbols that need them. */ + if (g->global_gotsym != NULL + && h->dynindx >= g->global_gotsym->dynindx) + { + bfd_vma offset; + bfd_vma value; + + if (sym->st_value) + value = sym->st_value; + else + { + /* For an entity defined in a shared object, this will be + NULL. (For functions in shared objects for + which we have created stubs, ST_VALUE will be non-NULL. + That's because such the functions are now no longer defined + in a shared object.) */ + + if (info->shared && h->root.type == bfd_link_hash_undefined) + value = 0; + else + value = h->root.u.def.value; + } + offset = mips_elf_global_got_index (dynobj, h); + MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); + } + + /* Create a .msym entry, if appropriate. */ + smsym = bfd_get_section_by_name (dynobj, ".msym"); + if (smsym) + { + Elf32_Internal_Msym msym; + + msym.ms_hash_value = bfd_elf_hash (h->root.root.string); + /* It is undocumented what the `1' indicates, but IRIX6 uses + this value. */ + msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1); + bfd_mips_elf_swap_msym_out + (dynobj, &msym, + ((Elf32_External_Msym *) smsym->contents) + h->dynindx); + } + + /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ + name = h->root.root.string; + if (strcmp (name, "_DYNAMIC") == 0 + || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0) + sym->st_shndx = SHN_ABS; + else if (strcmp (name, "_DYNAMIC_LINK") == 0 + || strcmp (name, "_DYNAMIC_LINKING") == 0) + { + sym->st_shndx = SHN_ABS; + sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); + sym->st_value = 1; + } + else if (strcmp (name, "_gp_disp") == 0) + { + sym->st_shndx = SHN_ABS; + sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); + sym->st_value = elf_gp (output_bfd); + } + else if (SGI_COMPAT (output_bfd)) + { + if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 + || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) + { + sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); + sym->st_other = STO_PROTECTED; + sym->st_value = 0; + sym->st_shndx = SHN_MIPS_DATA; + } + else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) + { + sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); + sym->st_other = STO_PROTECTED; + sym->st_value = mips_elf_hash_table (info)->procedure_count; + sym->st_shndx = SHN_ABS; + } + else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) + { + if (h->type == STT_FUNC) + sym->st_shndx = SHN_MIPS_TEXT; + else if (h->type == STT_OBJECT) + sym->st_shndx = SHN_MIPS_DATA; + } + } + + /* Handle the IRIX6-specific symbols. */ + if (IRIX_COMPAT (output_bfd) == ict_irix6) + mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); + + if (! info->shared) + { + if (! mips_elf_hash_table (info)->use_rld_obj_head + && (strcmp (name, "__rld_map") == 0 + || strcmp (name, "__RLD_MAP") == 0)) + { + asection *s = bfd_get_section_by_name (dynobj, ".rld_map"); + BFD_ASSERT (s != NULL); + sym->st_value = s->output_section->vma + s->output_offset; + bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents); + if (mips_elf_hash_table (info)->rld_value == 0) + mips_elf_hash_table (info)->rld_value = sym->st_value; + } + else if (mips_elf_hash_table (info)->use_rld_obj_head + && strcmp (name, "__rld_obj_head") == 0) + { + /* IRIX6 does not use a .rld_map section. */ + if (IRIX_COMPAT (output_bfd) == ict_irix5 + || IRIX_COMPAT (output_bfd) == ict_none) + BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map") + != NULL); + mips_elf_hash_table (info)->rld_value = sym->st_value; + } + } + + /* If this is a mips16 symbol, force the value to be even. */ + if (sym->st_other == STO_MIPS16 + && (sym->st_value & 1) != 0) + --sym->st_value; + + return true; +} + +/* Finish up the dynamic sections. */ + +boolean +_bfd_mips_elf_finish_dynamic_sections (output_bfd, info) + bfd *output_bfd; + struct bfd_link_info *info; +{ + bfd *dynobj; + asection *sdyn; + asection *sgot; + struct mips_got_info *g; + + dynobj = elf_hash_table (info)->dynobj; + + sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); + + sgot = bfd_get_section_by_name (dynobj, ".got"); + if (sgot == NULL) + g = NULL; + else + { + BFD_ASSERT (elf_section_data (sgot) != NULL); + g = (struct mips_got_info *) elf_section_data (sgot)->tdata; + BFD_ASSERT (g != NULL); + } + + if (elf_hash_table (info)->dynamic_sections_created) + { + bfd_byte *b; + + BFD_ASSERT (sdyn != NULL); + BFD_ASSERT (g != NULL); + + for (b = sdyn->contents; + b < sdyn->contents + sdyn->_raw_size; + b += MIPS_ELF_DYN_SIZE (dynobj)) + { + Elf_Internal_Dyn dyn; + const char *name; + size_t elemsize; + asection *s; + boolean swap_out_p; + + /* Read in the current dynamic entry. */ + (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); + + /* Assume that we're going to modify it and write it out. */ + swap_out_p = true; + + switch (dyn.d_tag) + { + case DT_RELENT: + s = (bfd_get_section_by_name (dynobj, ".rel.dyn")); + BFD_ASSERT (s != NULL); + dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); + break; + + case DT_STRSZ: + /* Rewrite DT_STRSZ. */ + dyn.d_un.d_val = + _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); + break; + + case DT_PLTGOT: + name = ".got"; + goto get_vma; + case DT_MIPS_CONFLICT: + name = ".conflict"; + goto get_vma; + case DT_MIPS_LIBLIST: + name = ".liblist"; + get_vma: + s = bfd_get_section_by_name (output_bfd, name); + BFD_ASSERT (s != NULL); + dyn.d_un.d_ptr = s->vma; + break; + + case DT_MIPS_RLD_VERSION: + dyn.d_un.d_val = 1; /* XXX */ + break; + + case DT_MIPS_FLAGS: + dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ + break; + + case DT_MIPS_CONFLICTNO: + name = ".conflict"; + elemsize = sizeof (Elf32_Conflict); + goto set_elemno; + + case DT_MIPS_LIBLISTNO: + name = ".liblist"; + elemsize = sizeof (Elf32_Lib); + set_elemno: + s = bfd_get_section_by_name (output_bfd, name); + if (s != NULL) + { + if (s->_cooked_size != 0) + dyn.d_un.d_val = s->_cooked_size / elemsize; + else + dyn.d_un.d_val = s->_raw_size / elemsize; + } + else + dyn.d_un.d_val = 0; + break; + + case DT_MIPS_TIME_STAMP: + time ((time_t *) &dyn.d_un.d_val); + break; + + case DT_MIPS_ICHECKSUM: + /* XXX FIXME: */ + swap_out_p = false; + break; + + case DT_MIPS_IVERSION: + /* XXX FIXME: */ + swap_out_p = false; + break; + + case DT_MIPS_BASE_ADDRESS: + s = output_bfd->sections; + BFD_ASSERT (s != NULL); + dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; + break; + + case DT_MIPS_LOCAL_GOTNO: + dyn.d_un.d_val = g->local_gotno; + break; + + case DT_MIPS_UNREFEXTNO: + /* The index into the dynamic symbol table which is the + entry of the first external symbol that is not + referenced within the same object. */ + dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; + break; + + case DT_MIPS_GOTSYM: + if (g->global_gotsym) + { + dyn.d_un.d_val = g->global_gotsym->dynindx; + break; + } + /* In case if we don't have global got symbols we default + to setting DT_MIPS_GOTSYM to the same value as + DT_MIPS_SYMTABNO, so we just fall through. */ + + case DT_MIPS_SYMTABNO: + name = ".dynsym"; + elemsize = MIPS_ELF_SYM_SIZE (output_bfd); + s = bfd_get_section_by_name (output_bfd, name); + BFD_ASSERT (s != NULL); + + if (s->_cooked_size != 0) + dyn.d_un.d_val = s->_cooked_size / elemsize; + else + dyn.d_un.d_val = s->_raw_size / elemsize; + break; + + case DT_MIPS_HIPAGENO: + dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO; + break; + + case DT_MIPS_RLD_MAP: + dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value; + break; + + case DT_MIPS_OPTIONS: + s = (bfd_get_section_by_name + (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); + dyn.d_un.d_ptr = s->vma; + break; + + case DT_MIPS_MSYM: + s = (bfd_get_section_by_name (output_bfd, ".msym")); + dyn.d_un.d_ptr = s->vma; + break; + + default: + swap_out_p = false; + break; + } + + if (swap_out_p) + (*get_elf_backend_data (dynobj)->s->swap_dyn_out) + (dynobj, &dyn, b); + } + } + + /* The first entry of the global offset table will be filled at + runtime. The second entry will be used by some runtime loaders. + This isn't the case of Irix rld. */ + if (sgot != NULL && sgot->_raw_size > 0) + { + MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); + MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, + sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); + } + + if (sgot != NULL) + elf_section_data (sgot->output_section)->this_hdr.sh_entsize + = MIPS_ELF_GOT_SIZE (output_bfd); + + { + asection *smsym; + asection *s; + Elf32_compact_rel cpt; + + /* ??? The section symbols for the output sections were set up in + _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these + symbols. Should we do so? */ + + smsym = bfd_get_section_by_name (dynobj, ".msym"); + if (smsym != NULL) + { + Elf32_Internal_Msym msym; + + msym.ms_hash_value = 0; + msym.ms_info = ELF32_MS_INFO (0, 1); + + for (s = output_bfd->sections; s != NULL; s = s->next) + { + long dynindx = elf_section_data (s)->dynindx; + + bfd_mips_elf_swap_msym_out + (output_bfd, &msym, + (((Elf32_External_Msym *) smsym->contents) + + dynindx)); + } + } + + if (SGI_COMPAT (output_bfd)) + { + /* Write .compact_rel section out. */ + s = bfd_get_section_by_name (dynobj, ".compact_rel"); + if (s != NULL) + { + cpt.id1 = 1; + cpt.num = s->reloc_count; + cpt.id2 = 2; + cpt.offset = (s->output_section->filepos + + sizeof (Elf32_External_compact_rel)); + cpt.reserved0 = 0; + cpt.reserved1 = 0; + bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, + ((Elf32_External_compact_rel *) + s->contents)); + + /* Clean up a dummy stub function entry in .text. */ + s = bfd_get_section_by_name (dynobj, + MIPS_ELF_STUB_SECTION_NAME (dynobj)); + if (s != NULL) + { + file_ptr dummy_offset; + + BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE); + dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE; + memset (s->contents + dummy_offset, 0, + MIPS_FUNCTION_STUB_SIZE); + } + } + } + + /* We need to sort the entries of the dynamic relocation section. */ + + if (!ABI_64_P (output_bfd)) + { + asection *reldyn; + + reldyn = bfd_get_section_by_name (dynobj, ".rel.dyn"); + if (reldyn != NULL && reldyn->reloc_count > 2) + { + reldyn_sorting_bfd = output_bfd; + qsort ((Elf32_External_Rel *) reldyn->contents + 1, + (size_t) reldyn->reloc_count - 1, + sizeof (Elf32_External_Rel), sort_dynamic_relocs); + } + } + + /* Clean up a first relocation in .rel.dyn. */ + s = bfd_get_section_by_name (dynobj, ".rel.dyn"); + if (s != NULL && s->_raw_size > 0) + memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj)); + } + + return true; +} + +/* The final processing done just before writing out a MIPS ELF object + file. This gets the MIPS architecture right based on the machine + number. This is used by both the 32-bit and the 64-bit ABI. */ + +void +_bfd_mips_elf_final_write_processing (abfd, linker) + bfd *abfd; + boolean linker ATTRIBUTE_UNUSED; +{ + unsigned long val; + unsigned int i; + Elf_Internal_Shdr **hdrpp; + const char *name; + asection *sec; + + switch (bfd_get_mach (abfd)) + { + default: + case bfd_mach_mips3000: + val = E_MIPS_ARCH_1; + break; + + case bfd_mach_mips3900: + val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; + break; + + case bfd_mach_mips6000: + val = E_MIPS_ARCH_2; + break; + + case bfd_mach_mips4000: + case bfd_mach_mips4300: + case bfd_mach_mips4400: + case bfd_mach_mips4600: + val = E_MIPS_ARCH_3; + break; + + case bfd_mach_mips4010: + val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; + break; + + case bfd_mach_mips4100: + val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; + break; + + case bfd_mach_mips4111: + val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; + break; + + case bfd_mach_mips4650: + val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; + break; + + case bfd_mach_mips5000: + case bfd_mach_mips8000: + case bfd_mach_mips10000: + case bfd_mach_mips12000: + val = E_MIPS_ARCH_4; + break; + + case bfd_mach_mips5: + val = E_MIPS_ARCH_5; + break; + + case bfd_mach_mips_sb1: + val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; + break; + + case bfd_mach_mipsisa32: + val = E_MIPS_ARCH_32; + break; + + case bfd_mach_mipsisa64: + val = E_MIPS_ARCH_64; + } + + elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); + elf_elfheader (abfd)->e_flags |= val; + + /* Set the sh_info field for .gptab sections and other appropriate + info for each special section. */ + for (i = 1, hdrpp = elf_elfsections (abfd) + 1; + i < elf_numsections (abfd); + i++, hdrpp++) + { + switch ((*hdrpp)->sh_type) + { + case SHT_MIPS_MSYM: + case SHT_MIPS_LIBLIST: + sec = bfd_get_section_by_name (abfd, ".dynstr"); + if (sec != NULL) + (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; + break; + + case SHT_MIPS_GPTAB: + BFD_ASSERT ((*hdrpp)->bfd_section != NULL); + name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); + BFD_ASSERT (name != NULL + && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0); + sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); + BFD_ASSERT (sec != NULL); + (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; + break; + + case SHT_MIPS_CONTENT: + BFD_ASSERT ((*hdrpp)->bfd_section != NULL); + name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); + BFD_ASSERT (name != NULL + && strncmp (name, ".MIPS.content", + sizeof ".MIPS.content" - 1) == 0); + sec = bfd_get_section_by_name (abfd, + name + sizeof ".MIPS.content" - 1); + BFD_ASSERT (sec != NULL); + (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; + break; + + case SHT_MIPS_SYMBOL_LIB: + sec = bfd_get_section_by_name (abfd, ".dynsym"); + if (sec != NULL) + (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; + sec = bfd_get_section_by_name (abfd, ".liblist"); + if (sec != NULL) + (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; + break; + + case SHT_MIPS_EVENTS: + BFD_ASSERT ((*hdrpp)->bfd_section != NULL); + name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); + BFD_ASSERT (name != NULL); + if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0) + sec = bfd_get_section_by_name (abfd, + name + sizeof ".MIPS.events" - 1); + else + { + BFD_ASSERT (strncmp (name, ".MIPS.post_rel", + sizeof ".MIPS.post_rel" - 1) == 0); + sec = bfd_get_section_by_name (abfd, + (name + + sizeof ".MIPS.post_rel" - 1)); + } + BFD_ASSERT (sec != NULL); + (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; + break; + + } + } +} + +/* When creating an Irix 5 executable, we need REGINFO and RTPROC + segments. */ + +int +_bfd_mips_elf_additional_program_headers (abfd) + bfd *abfd; +{ + asection *s; + int ret = 0; + + /* See if we need a PT_MIPS_REGINFO segment. */ + s = bfd_get_section_by_name (abfd, ".reginfo"); + if (s && (s->flags & SEC_LOAD)) + ++ret; + + /* See if we need a PT_MIPS_OPTIONS segment. */ + if (IRIX_COMPAT (abfd) == ict_irix6 + && bfd_get_section_by_name (abfd, + MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) + ++ret; + + /* See if we need a PT_MIPS_RTPROC segment. */ + if (IRIX_COMPAT (abfd) == ict_irix5 + && bfd_get_section_by_name (abfd, ".dynamic") + && bfd_get_section_by_name (abfd, ".mdebug")) + ++ret; + + return ret; +} + +/* Modify the segment map for an Irix 5 executable. */ + +boolean +_bfd_mips_elf_modify_segment_map (abfd) + bfd *abfd; +{ + asection *s; + struct elf_segment_map *m, **pm; + bfd_size_type amt; + + /* If there is a .reginfo section, we need a PT_MIPS_REGINFO + segment. */ + s = bfd_get_section_by_name (abfd, ".reginfo"); + if (s != NULL && (s->flags & SEC_LOAD) != 0) + { + for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) + if (m->p_type == PT_MIPS_REGINFO) + break; + if (m == NULL) + { + amt = sizeof *m; + m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); + if (m == NULL) + return false; + + m->p_type = PT_MIPS_REGINFO; + m->count = 1; + m->sections[0] = s; + + /* We want to put it after the PHDR and INTERP segments. */ + pm = &elf_tdata (abfd)->segment_map; + while (*pm != NULL + && ((*pm)->p_type == PT_PHDR + || (*pm)->p_type == PT_INTERP)) + pm = &(*pm)->next; + + m->next = *pm; + *pm = m; + } + } + + /* For IRIX 6, we don't have .mdebug sections, nor does anything but + .dynamic end up in PT_DYNAMIC. However, we do have to insert a + PT_OPTIONS segement immediately following the program header + table. */ + if (IRIX_COMPAT (abfd) == ict_irix6) + { + for (s = abfd->sections; s; s = s->next) + if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) + break; + + if (s) + { + struct elf_segment_map *options_segment; + + /* Usually, there's a program header table. But, sometimes + there's not (like when running the `ld' testsuite). So, + if there's no program header table, we just put the + options segement at the end. */ + for (pm = &elf_tdata (abfd)->segment_map; + *pm != NULL; + pm = &(*pm)->next) + if ((*pm)->p_type == PT_PHDR) + break; + + amt = sizeof (struct elf_segment_map); + options_segment = bfd_zalloc (abfd, amt); + options_segment->next = *pm; + options_segment->p_type = PT_MIPS_OPTIONS; + options_segment->p_flags = PF_R; + options_segment->p_flags_valid = true; + options_segment->count = 1; + options_segment->sections[0] = s; + *pm = options_segment; + } + } + else + { + if (IRIX_COMPAT (abfd) == ict_irix5) + { + /* If there are .dynamic and .mdebug sections, we make a room + for the RTPROC header. FIXME: Rewrite without section names. */ + if (bfd_get_section_by_name (abfd, ".interp") == NULL + && bfd_get_section_by_name (abfd, ".dynamic") != NULL + && bfd_get_section_by_name (abfd, ".mdebug") != NULL) + { + for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) + if (m->p_type == PT_MIPS_RTPROC) + break; + if (m == NULL) + { + amt = sizeof *m; + m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); + if (m == NULL) + return false; + + m->p_type = PT_MIPS_RTPROC; + + s = bfd_get_section_by_name (abfd, ".rtproc"); + if (s == NULL) + { + m->count = 0; + m->p_flags = 0; + m->p_flags_valid = 1; + } + else + { + m->count = 1; + m->sections[0] = s; + } + + /* We want to put it after the DYNAMIC segment. */ + pm = &elf_tdata (abfd)->segment_map; + while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) + pm = &(*pm)->next; + if (*pm != NULL) + pm = &(*pm)->next; + + m->next = *pm; + *pm = m; + } + } + } + /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic, + .dynstr, .dynsym, and .hash sections, and everything in + between. */ + for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; + pm = &(*pm)->next) + if ((*pm)->p_type == PT_DYNAMIC) + break; + m = *pm; + if (m != NULL && IRIX_COMPAT (abfd) == ict_none) + { + /* For a normal mips executable the permissions for the PT_DYNAMIC + segment are read, write and execute. We do that here since + the code in elf.c sets only the read permission. This matters + sometimes for the dynamic linker. */ + if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) + { + m->p_flags = PF_R | PF_W | PF_X; + m->p_flags_valid = 1; + } + } + if (m != NULL + && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0) + { + static const char *sec_names[] = + { + ".dynamic", ".dynstr", ".dynsym", ".hash" + }; + bfd_vma low, high; + unsigned int i, c; + struct elf_segment_map *n; + + low = 0xffffffff; + high = 0; + for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) + { + s = bfd_get_section_by_name (abfd, sec_names[i]); + if (s != NULL && (s->flags & SEC_LOAD) != 0) + { + bfd_size_type sz; + + if (low > s->vma) + low = s->vma; + sz = s->_cooked_size; + if (sz == 0) + sz = s->_raw_size; + if (high < s->vma + sz) + high = s->vma + sz; + } + } + + c = 0; + for (s = abfd->sections; s != NULL; s = s->next) + if ((s->flags & SEC_LOAD) != 0 + && s->vma >= low + && ((s->vma + + (s->_cooked_size != + 0 ? s->_cooked_size : s->_raw_size)) <= high)) + ++c; + + amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *); + n = (struct elf_segment_map *) bfd_zalloc (abfd, amt); + if (n == NULL) + return false; + *n = *m; + n->count = c; + + i = 0; + for (s = abfd->sections; s != NULL; s = s->next) + { + if ((s->flags & SEC_LOAD) != 0 + && s->vma >= low + && ((s->vma + + (s->_cooked_size != 0 ? + s->_cooked_size : s->_raw_size)) <= high)) + { + n->sections[i] = s; + ++i; + } + } + + *pm = n; + } + } + + return true; +} + +/* Return the section that should be marked against GC for a given + relocation. */ + +asection * +_bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym) + bfd *abfd; + struct bfd_link_info *info ATTRIBUTE_UNUSED; + Elf_Internal_Rela *rel; + struct elf_link_hash_entry *h; + Elf_Internal_Sym *sym; +{ + /* ??? Do mips16 stub sections need to be handled special? */ + + if (h != NULL) + { + switch (ELF_R_TYPE (abfd, rel->r_info)) + { + case R_MIPS_GNU_VTINHERIT: + case R_MIPS_GNU_VTENTRY: + break; + + default: + switch (h->root.type) + { + case bfd_link_hash_defined: + case bfd_link_hash_defweak: + return h->root.u.def.section; + + case bfd_link_hash_common: + return h->root.u.c.p->section; + + default: + break; + } + } + } + else + { + return bfd_section_from_elf_index (abfd, sym->st_shndx); + } + + return NULL; +} + +/* Update the got entry reference counts for the section being removed. */ + +boolean +_bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs) + bfd *abfd ATTRIBUTE_UNUSED; + struct bfd_link_info *info ATTRIBUTE_UNUSED; + asection *sec ATTRIBUTE_UNUSED; + const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED; +{ +#if 0 + Elf_Internal_Shdr *symtab_hdr; + struct elf_link_hash_entry **sym_hashes; + bfd_signed_vma *local_got_refcounts; + const Elf_Internal_Rela *rel, *relend; + unsigned long r_symndx; + struct elf_link_hash_entry *h; + + symtab_hdr = &elf_tdata (abfd)->symtab_hdr; + sym_hashes = elf_sym_hashes (abfd); + local_got_refcounts = elf_local_got_refcounts (abfd); + + relend = relocs + sec->reloc_count; + for (rel = relocs; rel < relend; rel++) + switch (ELF_R_TYPE (abfd, rel->r_info)) + { + case R_MIPS_GOT16: + case R_MIPS_CALL16: + case R_MIPS_CALL_HI16: + case R_MIPS_CALL_LO16: + case R_MIPS_GOT_HI16: + case R_MIPS_GOT_LO16: + /* ??? It would seem that the existing MIPS code does no sort + of reference counting or whatnot on its GOT and PLT entries, + so it is not possible to garbage collect them at this time. */ + break; + + default: + break; + } +#endif + + return true; +} + +/* Copy data from a MIPS ELF indirect symbol to its direct symbol, + hiding the old indirect symbol. Process additional relocation + information. Also called for weakdefs, in which case we just let + _bfd_elf_link_hash_copy_indirect copy the flags for us. */ + +void +_bfd_mips_elf_copy_indirect_symbol (dir, ind) + struct elf_link_hash_entry *dir, *ind; +{ + struct mips_elf_link_hash_entry *dirmips, *indmips; + + _bfd_elf_link_hash_copy_indirect (dir, ind); + + if (ind->root.type != bfd_link_hash_indirect) + return; + + dirmips = (struct mips_elf_link_hash_entry *) dir; + indmips = (struct mips_elf_link_hash_entry *) ind; + dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; + if (indmips->readonly_reloc) + dirmips->readonly_reloc = true; + if (dirmips->min_dyn_reloc_index == 0 + || (indmips->min_dyn_reloc_index != 0 + && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index)) + dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index; + if (indmips->no_fn_stub) + dirmips->no_fn_stub = true; +} + +void +_bfd_mips_elf_hide_symbol (info, entry, force_local) + struct bfd_link_info *info; + struct elf_link_hash_entry *entry; + boolean force_local; +{ + bfd *dynobj; + asection *got; + struct mips_got_info *g; + struct mips_elf_link_hash_entry *h; + h = (struct mips_elf_link_hash_entry *) entry; + dynobj = elf_hash_table (info)->dynobj; + got = bfd_get_section_by_name (dynobj, ".got"); + g = (struct mips_got_info *) elf_section_data (got)->tdata; + + _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local); + + /* FIXME: Do we allocate too much GOT space here? */ + g->local_gotno++; + got->_raw_size += MIPS_ELF_GOT_SIZE (dynobj); +} + +/* MIPS ELF uses a special find_nearest_line routine in order the + handle the ECOFF debugging information. */ + +struct mips_elf_find_line +{ + struct ecoff_debug_info d; + struct ecoff_find_line i; +}; + +boolean +_bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr, + functionname_ptr, line_ptr) + bfd *abfd; + asection *section; + asymbol **symbols; + bfd_vma offset; + const char **filename_ptr; + const char **functionname_ptr; + unsigned int *line_ptr; +{ + asection *msec; + + if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset, + filename_ptr, functionname_ptr, + line_ptr)) + return true; + + if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset, + filename_ptr, functionname_ptr, + line_ptr, + (unsigned) (ABI_64_P (abfd) ? 8 : 0), + &elf_tdata (abfd)->dwarf2_find_line_info)) + return true; + + msec = bfd_get_section_by_name (abfd, ".mdebug"); + if (msec != NULL) + { + flagword origflags; + struct mips_elf_find_line *fi; + const struct ecoff_debug_swap * const swap = + get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; + + /* If we are called during a link, mips_elf_final_link may have + cleared the SEC_HAS_CONTENTS field. We force it back on here + if appropriate (which it normally will be). */ + origflags = msec->flags; + if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) + msec->flags |= SEC_HAS_CONTENTS; + + fi = elf_tdata (abfd)->find_line_info; + if (fi == NULL) + { + bfd_size_type external_fdr_size; + char *fraw_src; + char *fraw_end; + struct fdr *fdr_ptr; + bfd_size_type amt = sizeof (struct mips_elf_find_line); + + fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt); + if (fi == NULL) + { + msec->flags = origflags; + return false; + } + + if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) + { + msec->flags = origflags; + return false; + } + + /* Swap in the FDR information. */ + amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); + fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt); + if (fi->d.fdr == NULL) + { + msec->flags = origflags; + return false; + } + external_fdr_size = swap->external_fdr_size; + fdr_ptr = fi->d.fdr; + fraw_src = (char *) fi->d.external_fdr; + fraw_end = (fraw_src + + fi->d.symbolic_header.ifdMax * external_fdr_size); + for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) + (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr); + + elf_tdata (abfd)->find_line_info = fi; + + /* Note that we don't bother to ever free this information. + find_nearest_line is either called all the time, as in + objdump -l, so the information should be saved, or it is + rarely called, as in ld error messages, so the memory + wasted is unimportant. Still, it would probably be a + good idea for free_cached_info to throw it away. */ + } + + if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, + &fi->i, filename_ptr, functionname_ptr, + line_ptr)) + { + msec->flags = origflags; + return true; + } + + msec->flags = origflags; + } + + /* Fall back on the generic ELF find_nearest_line routine. */ + + return _bfd_elf_find_nearest_line (abfd, section, symbols, offset, + filename_ptr, functionname_ptr, + line_ptr); +} + +/* When are writing out the .options or .MIPS.options section, + remember the bytes we are writing out, so that we can install the + GP value in the section_processing routine. */ + +boolean +_bfd_mips_elf_set_section_contents (abfd, section, location, offset, count) + bfd *abfd; + sec_ptr section; + PTR location; + file_ptr offset; + bfd_size_type count; +{ + if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0) + { + bfd_byte *c; + + if (elf_section_data (section) == NULL) + { + bfd_size_type amt = sizeof (struct bfd_elf_section_data); + section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt); + if (elf_section_data (section) == NULL) + return false; + } + c = (bfd_byte *) elf_section_data (section)->tdata; + if (c == NULL) + { + bfd_size_type size; + + if (section->_cooked_size != 0) + size = section->_cooked_size; + else + size = section->_raw_size; + c = (bfd_byte *) bfd_zalloc (abfd, size); + if (c == NULL) + return false; + elf_section_data (section)->tdata = (PTR) c; + } + + memcpy (c + offset, location, (size_t) count); + } + + return _bfd_elf_set_section_contents (abfd, section, location, offset, + count); +} + +/* This is almost identical to bfd_generic_get_... except that some + MIPS relocations need to be handled specially. Sigh. */ + +bfd_byte * +_bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order, + data, relocateable, symbols) + bfd *abfd; + struct bfd_link_info *link_info; + struct bfd_link_order *link_order; + bfd_byte *data; + boolean relocateable; + asymbol **symbols; +{ + /* Get enough memory to hold the stuff */ + bfd *input_bfd = link_order->u.indirect.section->owner; + asection *input_section = link_order->u.indirect.section; + + long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); + arelent **reloc_vector = NULL; + long reloc_count; + + if (reloc_size < 0) + goto error_return; + + reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size); + if (reloc_vector == NULL && reloc_size != 0) + goto error_return; + + /* read in the section */ + if (!bfd_get_section_contents (input_bfd, + input_section, + (PTR) data, + (file_ptr) 0, + input_section->_raw_size)) + goto error_return; + + /* We're not relaxing the section, so just copy the size info */ + input_section->_cooked_size = input_section->_raw_size; + input_section->reloc_done = true; + + reloc_count = bfd_canonicalize_reloc (input_bfd, + input_section, + reloc_vector, + symbols); + if (reloc_count < 0) + goto error_return; + + if (reloc_count > 0) + { + arelent **parent; + /* for mips */ + int gp_found; + bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ + + { + struct bfd_hash_entry *h; + struct bfd_link_hash_entry *lh; + /* Skip all this stuff if we aren't mixing formats. */ + if (abfd && input_bfd + && abfd->xvec == input_bfd->xvec) + lh = 0; + else + { + h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false); + lh = (struct bfd_link_hash_entry *) h; + } + lookup: + if (lh) + { + switch (lh->type) + { + case bfd_link_hash_undefined: + case bfd_link_hash_undefweak: + case bfd_link_hash_common: + gp_found = 0; + break; + case bfd_link_hash_defined: + case bfd_link_hash_defweak: + gp_found = 1; + gp = lh->u.def.value; + break; + case bfd_link_hash_indirect: + case bfd_link_hash_warning: + lh = lh->u.i.link; + /* @@FIXME ignoring warning for now */ + goto lookup; + case bfd_link_hash_new: + default: + abort (); + } + } + else + gp_found = 0; + } + /* end mips */ + for (parent = reloc_vector; *parent != (arelent *) NULL; + parent++) + { + char *error_message = (char *) NULL; + bfd_reloc_status_type r; + + /* Specific to MIPS: Deal with relocation types that require + knowing the gp of the output bfd. */ + asymbol *sym = *(*parent)->sym_ptr_ptr; + if (bfd_is_abs_section (sym->section) && abfd) + { + /* The special_function wouldn't get called anyways. */ + } + else if (!gp_found) + { + /* The gp isn't there; let the special function code + fall over on its own. */ + } + else if ((*parent)->howto->special_function + == _bfd_mips_elf32_gprel16_reloc) + { + /* bypass special_function call */ + r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent, + input_section, relocateable, + (PTR) data, gp); + goto skip_bfd_perform_relocation; + } + /* end mips specific stuff */ + + r = bfd_perform_relocation (input_bfd, + *parent, + (PTR) data, + input_section, + relocateable ? abfd : (bfd *) NULL, + &error_message); + skip_bfd_perform_relocation: + + if (relocateable) + { + asection *os = input_section->output_section; + + /* A partial link, so keep the relocs */ + os->orelocation[os->reloc_count] = *parent; + os->reloc_count++; + } + + if (r != bfd_reloc_ok) + { + switch (r) + { + case bfd_reloc_undefined: + if (!((*link_info->callbacks->undefined_symbol) + (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), + input_bfd, input_section, (*parent)->address, + true))) + goto error_return; + break; + case bfd_reloc_dangerous: + BFD_ASSERT (error_message != (char *) NULL); + if (!((*link_info->callbacks->reloc_dangerous) + (link_info, error_message, input_bfd, input_section, + (*parent)->address))) + goto error_return; + break; + case bfd_reloc_overflow: + if (!((*link_info->callbacks->reloc_overflow) + (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), + (*parent)->howto->name, (*parent)->addend, + input_bfd, input_section, (*parent)->address))) + goto error_return; + break; + case bfd_reloc_outofrange: + default: + abort (); + break; + } + + } + } + } + if (reloc_vector != NULL) + free (reloc_vector); + return data; + +error_return: + if (reloc_vector != NULL) + free (reloc_vector); + return NULL; +} + +/* Create a MIPS ELF linker hash table. */ + +struct bfd_link_hash_table * +_bfd_mips_elf_link_hash_table_create (abfd) + bfd *abfd; +{ + struct mips_elf_link_hash_table *ret; + bfd_size_type amt = sizeof (struct mips_elf_link_hash_table); + + ret = (struct mips_elf_link_hash_table *) bfd_alloc (abfd, amt); + if (ret == (struct mips_elf_link_hash_table *) NULL) + return NULL; + + if (! _bfd_elf_link_hash_table_init (&ret->root, abfd, + mips_elf_link_hash_newfunc)) + { + bfd_release (abfd, ret); + return NULL; + } + +#if 0 + /* We no longer use this. */ + for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++) + ret->dynsym_sec_strindex[i] = (bfd_size_type) -1; +#endif + ret->procedure_count = 0; + ret->compact_rel_size = 0; + ret->use_rld_obj_head = false; + ret->rld_value = 0; + ret->mips16_stubs_seen = false; + + return &ret->root.root; +} + +/* We need to use a special link routine to handle the .reginfo and + the .mdebug sections. We need to merge all instances of these + sections together, not write them all out sequentially. */ + +boolean +_bfd_mips_elf_final_link (abfd, info) + bfd *abfd; + struct bfd_link_info *info; +{ + asection **secpp; + asection *o; + struct bfd_link_order *p; + asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; + asection *rtproc_sec; + Elf32_RegInfo reginfo; + struct ecoff_debug_info debug; + const struct ecoff_debug_swap *swap + = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; + HDRR *symhdr = &debug.symbolic_header; + PTR mdebug_handle = NULL; + asection *s; + EXTR esym; + unsigned int i; + bfd_size_type amt; + + static const char * const secname[] = + { + ".text", ".init", ".fini", ".data", + ".rodata", ".sdata", ".sbss", ".bss" + }; + static const int sc[] = + { + scText, scInit, scFini, scData, + scRData, scSData, scSBss, scBss + }; + + /* If all the things we linked together were PIC, but we're + producing an executable (rather than a shared object), then the + resulting file is CPIC (i.e., it calls PIC code.) */ + if (!info->shared + && !info->relocateable + && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) + { + elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC; + elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC; + } + + /* We'd carefully arranged the dynamic symbol indices, and then the + generic size_dynamic_sections renumbered them out from under us. + Rather than trying somehow to prevent the renumbering, just do + the sort again. */ + if (elf_hash_table (info)->dynamic_sections_created) + { + bfd *dynobj; + asection *got; + struct mips_got_info *g; + + /* When we resort, we must tell mips_elf_sort_hash_table what + the lowest index it may use is. That's the number of section + symbols we're going to add. The generic ELF linker only + adds these symbols when building a shared object. Note that + we count the sections after (possibly) removing the .options + section above. */ + if (! mips_elf_sort_hash_table (info, (info->shared + ? bfd_count_sections (abfd) + 1 + : 1))) + return false; + + /* Make sure we didn't grow the global .got region. */ + dynobj = elf_hash_table (info)->dynobj; + got = bfd_get_section_by_name (dynobj, ".got"); + g = (struct mips_got_info *) elf_section_data (got)->tdata; + + if (g->global_gotsym != NULL) + BFD_ASSERT ((elf_hash_table (info)->dynsymcount + - g->global_gotsym->dynindx) + <= g->global_gotno); + } + + /* On IRIX5, we omit the .options section. On IRIX6, however, we + include it, even though we don't process it quite right. (Some + entries are supposed to be merged.) Empirically, we seem to be + better off including it then not. */ + if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none) + for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next) + { + if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0) + { + for (p = (*secpp)->link_order_head; p != NULL; p = p->next) + if (p->type == bfd_indirect_link_order) + p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS; + (*secpp)->link_order_head = NULL; + bfd_section_list_remove (abfd, secpp); + --abfd->section_count; + + break; + } + } + + /* We include .MIPS.options, even though we don't process it quite right. + (Some entries are supposed to be merged.) At IRIX6 empirically we seem + to be better off including it than not. */ + for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next) + { + if (strcmp ((*secpp)->name, ".MIPS.options") == 0) + { + for (p = (*secpp)->link_order_head; p != NULL; p = p->next) + if (p->type == bfd_indirect_link_order) + p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS; + (*secpp)->link_order_head = NULL; + bfd_section_list_remove (abfd, secpp); + --abfd->section_count; + + break; + } + } + + /* Get a value for the GP register. */ + if (elf_gp (abfd) == 0) + { + struct bfd_link_hash_entry *h; + + h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true); + if (h != (struct bfd_link_hash_entry *) NULL + && h->type == bfd_link_hash_defined) + elf_gp (abfd) = (h->u.def.value + + h->u.def.section->output_section->vma + + h->u.def.section->output_offset); + else if (info->relocateable) + { + bfd_vma lo = MINUS_ONE; + + /* Find the GP-relative section with the lowest offset. */ + for (o = abfd->sections; o != (asection *) NULL; o = o->next) + if (o->vma < lo + && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) + lo = o->vma; + + /* And calculate GP relative to that. */ + elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd); + } + else + { + /* If the relocate_section function needs to do a reloc + involving the GP value, it should make a reloc_dangerous + callback to warn that GP is not defined. */ + } + } + + /* Go through the sections and collect the .reginfo and .mdebug + information. */ + reginfo_sec = NULL; + mdebug_sec = NULL; + gptab_data_sec = NULL; + gptab_bss_sec = NULL; + for (o = abfd->sections; o != (asection *) NULL; o = o->next) + { + if (strcmp (o->name, ".reginfo") == 0) + { + memset (®info, 0, sizeof reginfo); + + /* We have found the .reginfo section in the output file. + Look through all the link_orders comprising it and merge + the information together. */ + for (p = o->link_order_head; + p != (struct bfd_link_order *) NULL; + p = p->next) + { + asection *input_section; + bfd *input_bfd; + Elf32_External_RegInfo ext; + Elf32_RegInfo sub; + + if (p->type != bfd_indirect_link_order) + { + if (p->type == bfd_data_link_order) + continue; + abort (); + } + + input_section = p->u.indirect.section; + input_bfd = input_section->owner; + + /* The linker emulation code has probably clobbered the + size to be zero bytes. */ + if (input_section->_raw_size == 0) + input_section->_raw_size = sizeof (Elf32_External_RegInfo); + + if (! bfd_get_section_contents (input_bfd, input_section, + (PTR) &ext, + (file_ptr) 0, + (bfd_size_type) sizeof ext)) + return false; + + bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); + + reginfo.ri_gprmask |= sub.ri_gprmask; + reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; + reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; + reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; + reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; + + /* ri_gp_value is set by the function + mips_elf32_section_processing when the section is + finally written out. */ + + /* Hack: reset the SEC_HAS_CONTENTS flag so that + elf_link_input_bfd ignores this section. */ + input_section->flags &= ~SEC_HAS_CONTENTS; + } + + /* Size has been set in _bfd_mips_elf_always_size_sections. */ + BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo)); + + /* Skip this section later on (I don't think this currently + matters, but someday it might). */ + o->link_order_head = (struct bfd_link_order *) NULL; + + reginfo_sec = o; + } + + if (strcmp (o->name, ".mdebug") == 0) + { + struct extsym_info einfo; + bfd_vma last; + + /* We have found the .mdebug section in the output file. + Look through all the link_orders comprising it and merge + the information together. */ + symhdr->magic = swap->sym_magic; + /* FIXME: What should the version stamp be? */ + symhdr->vstamp = 0; + symhdr->ilineMax = 0; + symhdr->cbLine = 0; + symhdr->idnMax = 0; + symhdr->ipdMax = 0; + symhdr->isymMax = 0; + symhdr->ioptMax = 0; + symhdr->iauxMax = 0; + symhdr->issMax = 0; + symhdr->issExtMax = 0; + symhdr->ifdMax = 0; + symhdr->crfd = 0; + symhdr->iextMax = 0; + + /* We accumulate the debugging information itself in the + debug_info structure. */ + debug.line = NULL; + debug.external_dnr = NULL; + debug.external_pdr = NULL; + debug.external_sym = NULL; + debug.external_opt = NULL; + debug.external_aux = NULL; + debug.ss = NULL; + debug.ssext = debug.ssext_end = NULL; + debug.external_fdr = NULL; + debug.external_rfd = NULL; + debug.external_ext = debug.external_ext_end = NULL; + + mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); + if (mdebug_handle == (PTR) NULL) + return false; + + esym.jmptbl = 0; + esym.cobol_main = 0; + esym.weakext = 0; + esym.reserved = 0; + esym.ifd = ifdNil; + esym.asym.iss = issNil; + esym.asym.st = stLocal; + esym.asym.reserved = 0; + esym.asym.index = indexNil; + last = 0; + for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) + { + esym.asym.sc = sc[i]; + s = bfd_get_section_by_name (abfd, secname[i]); + if (s != NULL) + { + esym.asym.value = s->vma; + last = s->vma + s->_raw_size; + } + else + esym.asym.value = last; + if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, + secname[i], &esym)) + return false; + } + + for (p = o->link_order_head; + p != (struct bfd_link_order *) NULL; + p = p->next) + { + asection *input_section; + bfd *input_bfd; + const struct ecoff_debug_swap *input_swap; + struct ecoff_debug_info input_debug; + char *eraw_src; + char *eraw_end; + + if (p->type != bfd_indirect_link_order) + { + if (p->type == bfd_data_link_order) + continue; + abort (); + } + + input_section = p->u.indirect.section; + input_bfd = input_section->owner; + + if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour + || (get_elf_backend_data (input_bfd) + ->elf_backend_ecoff_debug_swap) == NULL) + { + /* I don't know what a non MIPS ELF bfd would be + doing with a .mdebug section, but I don't really + want to deal with it. */ + continue; + } + + input_swap = (get_elf_backend_data (input_bfd) + ->elf_backend_ecoff_debug_swap); + + BFD_ASSERT (p->size == input_section->_raw_size); + + /* The ECOFF linking code expects that we have already + read in the debugging information and set up an + ecoff_debug_info structure, so we do that now. */ + if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, + &input_debug)) + return false; + + if (! (bfd_ecoff_debug_accumulate + (mdebug_handle, abfd, &debug, swap, input_bfd, + &input_debug, input_swap, info))) + return false; + + /* Loop through the external symbols. For each one with + interesting information, try to find the symbol in + the linker global hash table and save the information + for the output external symbols. */ + eraw_src = input_debug.external_ext; + eraw_end = (eraw_src + + (input_debug.symbolic_header.iextMax + * input_swap->external_ext_size)); + for (; + eraw_src < eraw_end; + eraw_src += input_swap->external_ext_size) + { + EXTR ext; + const char *name; + struct mips_elf_link_hash_entry *h; + + (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext); + if (ext.asym.sc == scNil + || ext.asym.sc == scUndefined + || ext.asym.sc == scSUndefined) + continue; + + name = input_debug.ssext + ext.asym.iss; + h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), + name, false, false, true); + if (h == NULL || h->esym.ifd != -2) + continue; + + if (ext.ifd != -1) + { + BFD_ASSERT (ext.ifd + < input_debug.symbolic_header.ifdMax); + ext.ifd = input_debug.ifdmap[ext.ifd]; + } + + h->esym = ext; + } + + /* Free up the information we just read. */ + free (input_debug.line); + free (input_debug.external_dnr); + free (input_debug.external_pdr); + free (input_debug.external_sym); + free (input_debug.external_opt); + free (input_debug.external_aux); + free (input_debug.ss); + free (input_debug.ssext); + free (input_debug.external_fdr); + free (input_debug.external_rfd); + free (input_debug.external_ext); + + /* Hack: reset the SEC_HAS_CONTENTS flag so that + elf_link_input_bfd ignores this section. */ + input_section->flags &= ~SEC_HAS_CONTENTS; + } + + if (SGI_COMPAT (abfd) && info->shared) + { + /* Create .rtproc section. */ + rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); + if (rtproc_sec == NULL) + { + flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY + | SEC_LINKER_CREATED | SEC_READONLY); + + rtproc_sec = bfd_make_section (abfd, ".rtproc"); + if (rtproc_sec == NULL + || ! bfd_set_section_flags (abfd, rtproc_sec, flags) + || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) + return false; + } + + if (! mips_elf_create_procedure_table (mdebug_handle, abfd, + info, rtproc_sec, + &debug)) + return false; + } + + /* Build the external symbol information. */ + einfo.abfd = abfd; + einfo.info = info; + einfo.debug = &debug; + einfo.swap = swap; + einfo.failed = false; + mips_elf_link_hash_traverse (mips_elf_hash_table (info), + mips_elf_output_extsym, + (PTR) &einfo); + if (einfo.failed) + return false; + + /* Set the size of the .mdebug section. */ + o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap); + + /* Skip this section later on (I don't think this currently + matters, but someday it might). */ + o->link_order_head = (struct bfd_link_order *) NULL; + + mdebug_sec = o; + } + + if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0) + { + const char *subname; + unsigned int c; + Elf32_gptab *tab; + Elf32_External_gptab *ext_tab; + unsigned int j; + + /* The .gptab.sdata and .gptab.sbss sections hold + information describing how the small data area would + change depending upon the -G switch. These sections + not used in executables files. */ + if (! info->relocateable) + { + for (p = o->link_order_head; + p != (struct bfd_link_order *) NULL; + p = p->next) + { + asection *input_section; + + if (p->type != bfd_indirect_link_order) + { + if (p->type == bfd_data_link_order) + continue; + abort (); + } + + input_section = p->u.indirect.section; + + /* Hack: reset the SEC_HAS_CONTENTS flag so that + elf_link_input_bfd ignores this section. */ + input_section->flags &= ~SEC_HAS_CONTENTS; + } + + /* Skip this section later on (I don't think this + currently matters, but someday it might). */ + o->link_order_head = (struct bfd_link_order *) NULL; + + /* Really remove the section. */ + for (secpp = &abfd->sections; + *secpp != o; + secpp = &(*secpp)->next) + ; + bfd_section_list_remove (abfd, secpp); + --abfd->section_count; + + continue; + } + + /* There is one gptab for initialized data, and one for + uninitialized data. */ + if (strcmp (o->name, ".gptab.sdata") == 0) + gptab_data_sec = o; + else if (strcmp (o->name, ".gptab.sbss") == 0) + gptab_bss_sec = o; + else + { + (*_bfd_error_handler) + (_("%s: illegal section name `%s'"), + bfd_get_filename (abfd), o->name); + bfd_set_error (bfd_error_nonrepresentable_section); + return false; + } + + /* The linker script always combines .gptab.data and + .gptab.sdata into .gptab.sdata, and likewise for + .gptab.bss and .gptab.sbss. It is possible that there is + no .sdata or .sbss section in the output file, in which + case we must change the name of the output section. */ + subname = o->name + sizeof ".gptab" - 1; + if (bfd_get_section_by_name (abfd, subname) == NULL) + { + if (o == gptab_data_sec) + o->name = ".gptab.data"; + else + o->name = ".gptab.bss"; + subname = o->name + sizeof ".gptab" - 1; + BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); + } + + /* Set up the first entry. */ + c = 1; + amt = c * sizeof (Elf32_gptab); + tab = (Elf32_gptab *) bfd_malloc (amt); + if (tab == NULL) + return false; + tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); + tab[0].gt_header.gt_unused = 0; + + /* Combine the input sections. */ + for (p = o->link_order_head; + p != (struct bfd_link_order *) NULL; + p = p->next) + { + asection *input_section; + bfd *input_bfd; + bfd_size_type size; + unsigned long last; + bfd_size_type gpentry; + + if (p->type != bfd_indirect_link_order) + { + if (p->type == bfd_data_link_order) + continue; + abort (); + } + + input_section = p->u.indirect.section; + input_bfd = input_section->owner; + + /* Combine the gptab entries for this input section one + by one. We know that the input gptab entries are + sorted by ascending -G value. */ + size = bfd_section_size (input_bfd, input_section); + last = 0; + for (gpentry = sizeof (Elf32_External_gptab); + gpentry < size; + gpentry += sizeof (Elf32_External_gptab)) + { + Elf32_External_gptab ext_gptab; + Elf32_gptab int_gptab; + unsigned long val; + unsigned long add; + boolean exact; + unsigned int look; + + if (! (bfd_get_section_contents + (input_bfd, input_section, (PTR) &ext_gptab, + (file_ptr) gpentry, + (bfd_size_type) sizeof (Elf32_External_gptab)))) + { + free (tab); + return false; + } + + bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, + &int_gptab); + val = int_gptab.gt_entry.gt_g_value; + add = int_gptab.gt_entry.gt_bytes - last; + + exact = false; + for (look = 1; look < c; look++) + { + if (tab[look].gt_entry.gt_g_value >= val) + tab[look].gt_entry.gt_bytes += add; + + if (tab[look].gt_entry.gt_g_value == val) + exact = true; + } + + if (! exact) + { + Elf32_gptab *new_tab; + unsigned int max; + + /* We need a new table entry. */ + amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); + new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt); + if (new_tab == NULL) + { + free (tab); + return false; + } + tab = new_tab; + tab[c].gt_entry.gt_g_value = val; + tab[c].gt_entry.gt_bytes = add; + + /* Merge in the size for the next smallest -G + value, since that will be implied by this new + value. */ + max = 0; + for (look = 1; look < c; look++) + { + if (tab[look].gt_entry.gt_g_value < val + && (max == 0 + || (tab[look].gt_entry.gt_g_value + > tab[max].gt_entry.gt_g_value))) + max = look; + } + if (max != 0) + tab[c].gt_entry.gt_bytes += + tab[max].gt_entry.gt_bytes; + + ++c; + } + + last = int_gptab.gt_entry.gt_bytes; + } + + /* Hack: reset the SEC_HAS_CONTENTS flag so that + elf_link_input_bfd ignores this section. */ + input_section->flags &= ~SEC_HAS_CONTENTS; + } + + /* The table must be sorted by -G value. */ + if (c > 2) + qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); + + /* Swap out the table. */ + amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); + ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt); + if (ext_tab == NULL) + { + free (tab); + return false; + } + + for (j = 0; j < c; j++) + bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); + free (tab); + + o->_raw_size = c * sizeof (Elf32_External_gptab); + o->contents = (bfd_byte *) ext_tab; + + /* Skip this section later on (I don't think this currently + matters, but someday it might). */ + o->link_order_head = (struct bfd_link_order *) NULL; + } + } + + /* Invoke the regular ELF backend linker to do all the work. */ + if (ABI_64_P (abfd)) + { +#ifdef BFD64 + if (!bfd_elf64_bfd_final_link (abfd, info)) + return false; +#else + abort (); + return false; +#endif /* BFD64 */ + } + else if (!bfd_elf32_bfd_final_link (abfd, info)) + return false; + + /* Now write out the computed sections. */ + + if (reginfo_sec != (asection *) NULL) + { + Elf32_External_RegInfo ext; + + bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); + if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext, + (file_ptr) 0, + (bfd_size_type) sizeof ext)) + return false; + } + + if (mdebug_sec != (asection *) NULL) + { + BFD_ASSERT (abfd->output_has_begun); + if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, + swap, info, + mdebug_sec->filepos)) + return false; + + bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); + } + + if (gptab_data_sec != (asection *) NULL) + { + if (! bfd_set_section_contents (abfd, gptab_data_sec, + gptab_data_sec->contents, + (file_ptr) 0, + gptab_data_sec->_raw_size)) + return false; + } + + if (gptab_bss_sec != (asection *) NULL) + { + if (! bfd_set_section_contents (abfd, gptab_bss_sec, + gptab_bss_sec->contents, + (file_ptr) 0, + gptab_bss_sec->_raw_size)) + return false; + } + + if (SGI_COMPAT (abfd)) + { + rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); + if (rtproc_sec != NULL) + { + if (! bfd_set_section_contents (abfd, rtproc_sec, + rtproc_sec->contents, + (file_ptr) 0, + rtproc_sec->_raw_size)) + return false; + } + } + + return true; +} + +/* Merge backend specific data from an object file to the output + object file when linking. */ + +boolean +_bfd_mips_elf_merge_private_bfd_data (ibfd, obfd) + bfd *ibfd; + bfd *obfd; +{ + flagword old_flags; + flagword new_flags; + boolean ok; + boolean null_input_bfd = true; + asection *sec; + + /* Check if we have the same endianess */ + if (_bfd_generic_verify_endian_match (ibfd, obfd) == false) + return false; + + if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour + || bfd_get_flavour (obfd) != bfd_target_elf_flavour) + return true; + + new_flags = elf_elfheader (ibfd)->e_flags; + elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; + old_flags = elf_elfheader (obfd)->e_flags; + + if (! elf_flags_init (obfd)) + { + elf_flags_init (obfd) = true; + elf_elfheader (obfd)->e_flags = new_flags; + elf_elfheader (obfd)->e_ident[EI_CLASS] + = elf_elfheader (ibfd)->e_ident[EI_CLASS]; + + if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) + && bfd_get_arch_info (obfd)->the_default) + { + if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), + bfd_get_mach (ibfd))) + return false; + } + + return true; + } + + /* Check flag compatibility. */ + + new_flags &= ~EF_MIPS_NOREORDER; + old_flags &= ~EF_MIPS_NOREORDER; + + if (new_flags == old_flags) + return true; + + /* Check to see if the input BFD actually contains any sections. + If not, its flags may not have been initialised either, but it cannot + actually cause any incompatibility. */ + for (sec = ibfd->sections; sec != NULL; sec = sec->next) + { + /* Ignore synthetic sections and empty .text, .data and .bss sections + which are automatically generated by gas. */ + if (strcmp (sec->name, ".reginfo") + && strcmp (sec->name, ".mdebug") + && ((!strcmp (sec->name, ".text") + || !strcmp (sec->name, ".data") + || !strcmp (sec->name, ".bss")) + && sec->_raw_size != 0)) + { + null_input_bfd = false; + break; + } + } + if (null_input_bfd) + return true; + + ok = true; + + if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC)) + { + new_flags &= ~EF_MIPS_PIC; + old_flags &= ~EF_MIPS_PIC; + (*_bfd_error_handler) + (_("%s: linking PIC files with non-PIC files"), + bfd_archive_filename (ibfd)); + ok = false; + } + + if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC)) + { + new_flags &= ~EF_MIPS_CPIC; + old_flags &= ~EF_MIPS_CPIC; + (*_bfd_error_handler) + (_("%s: linking abicalls files with non-abicalls files"), + bfd_archive_filename (ibfd)); + ok = false; + } + + /* Compare the ISA's. */ + if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)) + != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))) + { + int new_mach = new_flags & EF_MIPS_MACH; + int old_mach = old_flags & EF_MIPS_MACH; + int new_isa = elf_mips_isa (new_flags); + int old_isa = elf_mips_isa (old_flags); + + /* If either has no machine specified, just compare the general isa's. + Some combinations of machines are ok, if the isa's match. */ + if (! new_mach + || ! old_mach + || new_mach == old_mach + ) + { + /* Don't warn about mixing code using 32-bit ISAs, or mixing code + using 64-bit ISAs. They will normally use the same data sizes + and calling conventions. */ + + if (( (new_isa == 1 || new_isa == 2 || new_isa == 32) + ^ (old_isa == 1 || old_isa == 2 || old_isa == 32)) != 0) + { + (*_bfd_error_handler) + (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"), + bfd_archive_filename (ibfd), new_isa, old_isa); + ok = false; + } + else + { + /* Do we need to update the mach field? */ + if (old_mach == 0 && new_mach != 0) + elf_elfheader (obfd)->e_flags |= new_mach; + + /* Do we need to update the ISA field? */ + if (new_isa > old_isa) + { + elf_elfheader (obfd)->e_flags &= ~EF_MIPS_ARCH; + elf_elfheader (obfd)->e_flags + |= new_flags & EF_MIPS_ARCH; + } + } + } + else + { + (*_bfd_error_handler) + (_("%s: ISA mismatch (%d) with previous modules (%d)"), + bfd_archive_filename (ibfd), + _bfd_elf_mips_mach (new_flags), + _bfd_elf_mips_mach (old_flags)); + ok = false; + } + + new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); + old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); + } + + /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it + does set EI_CLASS differently from any 32-bit ABI. */ + if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) + || (elf_elfheader (ibfd)->e_ident[EI_CLASS] + != elf_elfheader (obfd)->e_ident[EI_CLASS])) + { + /* Only error if both are set (to different values). */ + if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) + || (elf_elfheader (ibfd)->e_ident[EI_CLASS] + != elf_elfheader (obfd)->e_ident[EI_CLASS])) + { + (*_bfd_error_handler) + (_("%s: ABI mismatch: linking %s module with previous %s modules"), + bfd_archive_filename (ibfd), + elf_mips_abi_name (ibfd), + elf_mips_abi_name (obfd)); + ok = false; + } + new_flags &= ~EF_MIPS_ABI; + old_flags &= ~EF_MIPS_ABI; + } + + /* Warn about any other mismatches */ + if (new_flags != old_flags) + { + (*_bfd_error_handler) + (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), + bfd_archive_filename (ibfd), (unsigned long) new_flags, + (unsigned long) old_flags); + ok = false; + } + + if (! ok) + { + bfd_set_error (bfd_error_bad_value); + return false; + } + + return true; +} + +/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ + +boolean +_bfd_mips_elf_set_private_flags (abfd, flags) + bfd *abfd; + flagword flags; +{ + BFD_ASSERT (!elf_flags_init (abfd) + || elf_elfheader (abfd)->e_flags == flags); + + elf_elfheader (abfd)->e_flags = flags; + elf_flags_init (abfd) = true; + return true; +} + +boolean +_bfd_mips_elf_print_private_bfd_data (abfd, ptr) + bfd *abfd; + PTR ptr; +{ + FILE *file = (FILE *) ptr; + + BFD_ASSERT (abfd != NULL && ptr != NULL); + + /* Print normal ELF private data. */ + _bfd_elf_print_private_bfd_data (abfd, ptr); + + /* xgettext:c-format */ + fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); + + if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) + fprintf (file, _(" [abi=O32]")); + else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) + fprintf (file, _(" [abi=O64]")); + else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) + fprintf (file, _(" [abi=EABI32]")); + else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) + fprintf (file, _(" [abi=EABI64]")); + else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) + fprintf (file, _(" [abi unknown]")); + else if (ABI_N32_P (abfd)) + fprintf (file, _(" [abi=N32]")); + else if (ABI_64_P (abfd)) + fprintf (file, _(" [abi=64]")); + else + fprintf (file, _(" [no abi set]")); + + if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) + fprintf (file, _(" [mips1]")); + else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) + fprintf (file, _(" [mips2]")); + else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) + fprintf (file, _(" [mips3]")); + else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) + fprintf (file, _(" [mips4]")); + else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) + fprintf (file, _(" [mips5]")); + else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) + fprintf (file, _(" [mips32]")); + else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) + fprintf (file, _(" [mips64]")); + else + fprintf (file, _(" [unknown ISA]")); + + if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) + fprintf (file, _(" [32bitmode]")); + else + fprintf (file, _(" [not 32bitmode]")); + + fputc ('\n', file); + + return true; +} diff --git a/bfd/elfxx-mips.h b/bfd/elfxx-mips.h new file mode 100644 index 0000000..959bfa6 --- /dev/null +++ b/bfd/elfxx-mips.h @@ -0,0 +1,100 @@ +/* MIPS ELF specific backend routines. + Copyright 2002 Free Software Foundation, Inc. + +This file is part of BFD, the Binary File Descriptor library. + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or +(at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with this program; if not, write to the Free Software +Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ + +#include "elf/common.h" +#include "elf/internal.h" + +extern void _bfd_mips_elf_symbol_processing + PARAMS ((bfd *, asymbol *)); +extern boolean _bfd_mips_elf_section_processing + PARAMS ((bfd *, Elf_Internal_Shdr *)); +extern boolean _bfd_mips_elf_section_from_shdr + PARAMS ((bfd *, Elf_Internal_Shdr *, char *)); +extern boolean _bfd_mips_elf_fake_sections + PARAMS ((bfd *, Elf_Internal_Shdr *, asection *)); +extern boolean _bfd_mips_elf_section_from_bfd_section + PARAMS ((bfd *, asection *, int *)); +extern boolean _bfd_mips_elf_add_symbol_hook + PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *, + const char **, flagword *, asection **, bfd_vma *)); +extern boolean _bfd_mips_elf_link_output_symbol_hook + PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *, + asection *)); +extern boolean _bfd_mips_elf_create_dynamic_sections + PARAMS ((bfd *, struct bfd_link_info *)); +extern boolean _bfd_mips_elf_check_relocs + PARAMS ((bfd *, struct bfd_link_info *, asection *, + const Elf_Internal_Rela *)); +extern boolean _bfd_mips_elf_adjust_dynamic_symbol + PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); +extern boolean _bfd_mips_elf_always_size_sections + PARAMS ((bfd *, struct bfd_link_info *)); +extern boolean _bfd_mips_elf_size_dynamic_sections + PARAMS ((bfd *, struct bfd_link_info *)); +extern boolean _bfd_mips_elf_relocate_section + PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, + Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); +extern boolean _bfd_mips_elf_finish_dynamic_symbol + PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, + Elf_Internal_Sym *)); +extern boolean _bfd_mips_elf_finish_dynamic_sections + PARAMS ((bfd *, struct bfd_link_info *)); +extern void _bfd_mips_elf_final_write_processing + PARAMS ((bfd *, boolean)); +extern int _bfd_mips_elf_additional_program_headers + PARAMS ((bfd *)); +extern boolean _bfd_mips_elf_modify_segment_map + PARAMS ((bfd *)); +extern asection * _bfd_mips_elf_gc_mark_hook + PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *, + struct elf_link_hash_entry *, Elf_Internal_Sym *)); +extern boolean _bfd_mips_elf_gc_sweep_hook + PARAMS ((bfd *, struct bfd_link_info *, asection *, + const Elf_Internal_Rela *)); +extern void _bfd_mips_elf_copy_indirect_symbol + PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *)); +extern void _bfd_mips_elf_hide_symbol + PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, boolean)); +extern boolean _bfd_mips_elf_find_nearest_line + PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **, + const char **, unsigned int *)); +extern boolean _bfd_mips_elf_set_section_contents + PARAMS ((bfd *, asection *, PTR, file_ptr, bfd_size_type)); +extern bfd_byte *_bfd_elf_mips_get_relocated_section_contents + PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *, + bfd_byte *, boolean, asymbol **)); +extern struct bfd_link_hash_table *_bfd_mips_elf_link_hash_table_create + PARAMS ((bfd *)); +extern boolean _bfd_mips_elf_final_link + PARAMS ((bfd *, struct bfd_link_info *)); +extern boolean _bfd_mips_elf_merge_private_bfd_data + PARAMS ((bfd *, bfd *)); +extern boolean _bfd_mips_elf_set_private_flags + PARAMS ((bfd *, flagword)); +extern boolean _bfd_mips_elf_print_private_bfd_data + PARAMS ((bfd *, PTR)); + +extern boolean _bfd_mips_elf_read_ecoff_info + PARAMS ((bfd *, asection *, struct ecoff_debug_info *)); +extern bfd_reloc_status_type _bfd_mips_elf_gprel16_with_gp + PARAMS ((bfd *, asymbol *, arelent *, asection *, boolean, PTR, bfd_vma)); +extern bfd_reloc_status_type _bfd_mips_elf32_gprel16_reloc + PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); +extern unsigned long _bfd_elf_mips_mach + PARAMS ((flagword)); |