aboutsummaryrefslogtreecommitdiff
path: root/mt/mt-matmul/mt-matmul.c
blob: 93f8ea9c41887c69ff2c66e21cef98a0534c071e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
//**************************************************************************
// Multi-threaded Matrix Multiply benchmark
//--------------------------------------------------------------------------
// TA     : Christopher Celio
// Student: 
//
//
// This benchmark multiplies two 2-D arrays together and writes the results to
// a third vector. The input data (and reference data) should be generated
// using the matmul_gendata.pl perl script and dumped to a file named
// dataset.h. 


// print out arrays, etc.
//#define DEBUG

//--------------------------------------------------------------------------
// Includes 

#include <string.h>
#include <stdlib.h>
#include <stdio.h>


//--------------------------------------------------------------------------
// Input/Reference Data

typedef float data_t;
#include "dataset.h"
 
  
//--------------------------------------------------------------------------
// Basic Utilities and Multi-thread Support

__thread unsigned long coreid;
unsigned long ncores;

#include "util.h"
   
#define stringify_1(s) #s
#define stringify(s) stringify_1(s)
#define stats(code) do { \
    unsigned long _c = -rdcycle(), _i = -rdinstret(); \
    code; \
    _c += rdcycle(), _i += rdinstret(); \
    if (coreid == 0) \
      printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
             stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
  } while(0)
 

//--------------------------------------------------------------------------
// Helper functions
    
void printArray( char name[], int n, data_t arr[] )
{
   int i;
   if (coreid != 0)
      return;
  
   printf( " %10s :", name );
   for ( i = 0; i < n; i++ )
      printf( " %3ld ", (long) arr[i] );
   printf( "\n" );
}
      
void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct)
{
   if (coreid != 0)
      return;

   size_t i;
   for (i = 0; i < n; i++)
   {
      if (test[i] != correct[i])
      {
         printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n", 
            i, (long)test[i], i, (long)correct[i]);
         exit(-1);
      }
   }
   
   return;
}
 
//--------------------------------------------------------------------------
// matmul function
 
// single-thread, naive version
void __attribute__((noinline)) matmul_naive(const int lda,  const data_t A[], const data_t B[], data_t C[] )
{
   int i, j, k;

   if (coreid > 0)
      return;
  
   for ( i = 0; i < lda; i++ )
      for ( j = 0; j < lda; j++ )  
      {
         for ( k = 0; k < lda; k++ ) 
         {
            C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
         }
      }

}
 


void __attribute__((noinline)) matmul(const int lda,  const data_t A[], const data_t B[], data_t C[] )
{
   
   // ***************************** //
   // **** ADD YOUR CODE HERE ***** //
   // ***************************** //
   //
   // feel free to make a separate function for MI and MSI versions.
 
}

//--------------------------------------------------------------------------
// Main
//
// all threads start executing thread_entry(). Use their "coreid" to
// differentiate between threads (each thread is running on a separate core).
  
void thread_entry(int cid, int nc)
{
   coreid = cid;
   ncores = nc;

   // static allocates data in the binary, which is visible to both threads
   static data_t results_data[ARRAY_SIZE];


   // Execute the provided, naive matmul
   barrier();
   stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier());
 
   
   // verify
   verify(ARRAY_SIZE, results_data, verify_data);
   
   // clear results from the first trial
   size_t i;
   if (coreid == 0) 
      for (i=0; i < ARRAY_SIZE; i++)
         results_data[i] = 0;
   barrier();

   
   // Execute your faster matmul
   barrier();
   stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier());
 
#ifdef DEBUG
   printArray("results:", ARRAY_SIZE, results_data);
   printArray("verify :", ARRAY_SIZE, verify_data);
#endif
   
   // verify
   verify(ARRAY_SIZE, results_data, verify_data);
   barrier();

   exit(0);
}