aboutsummaryrefslogtreecommitdiff
path: root/mt/am_matmul
diff options
context:
space:
mode:
authorHenry Cook <hcook@eecs.berkeley.edu>2013-06-13 15:30:16 -0700
committerHenry Cook <hcook@eecs.berkeley.edu>2013-06-13 15:30:16 -0700
commit60f056880ec6929c5f23af4d66aea0f0cb7b0245 (patch)
treea2f4cbc9902df362534ede13d65883ee47fba2d8 /mt/am_matmul
parent4412b96c81ca09dcce6305579dd86d4bf3b808da (diff)
downloadriscv-tests-60f056880ec6929c5f23af4d66aea0f0cb7b0245.zip
riscv-tests-60f056880ec6929c5f23af4d66aea0f0cb7b0245.tar.gz
riscv-tests-60f056880ec6929c5f23af4d66aea0f0cb7b0245.tar.bz2
multithreading tests from 152 lab 5
Diffstat (limited to 'mt/am_matmul')
-rwxr-xr-xmt/am_matmul/am_matmul.c216
-rwxr-xr-xmt/am_matmul/dataset.h174
-rw-r--r--mt/am_matmul/matmul2.c73
-rw-r--r--mt/am_matmul/matmul2.c~0
-rwxr-xr-xmt/am_matmul/matmul3.c221
-rwxr-xr-xmt/am_matmul/matmul4.c282
-rwxr-xr-xmt/am_matmul/matmul_gendata.pl200
-rwxr-xr-xmt/am_matmul/matmul_mi.c249
-rwxr-xr-xmt/am_matmul/matmul_mi.c~290
-rwxr-xr-xmt/am_matmul/matmul_msi.c216
-rwxr-xr-xmt/am_matmul/matmul_msi.c~210
11 files changed, 2131 insertions, 0 deletions
diff --git a/mt/am_matmul/am_matmul.c b/mt/am_matmul/am_matmul.c
new file mode 100755
index 0000000..7fe737b
--- /dev/null
+++ b/mt/am_matmul/am_matmul.c
@@ -0,0 +1,216 @@
+//**************************************************************************
+// Multi-threaded Matrix Multiply benchmark
+//--------------------------------------------------------------------------
+// TA : Christopher Celio
+// Student:
+//
+//
+// This benchmark multiplies two 2-D arrays together and writes the results to
+// a third vector. The input data (and reference data) should be generated
+// using the matmul_gendata.pl perl script and dumped to a file named
+// dataset.h.
+
+
+// print out arrays, etc.
+//#define DEBUG
+
+//--------------------------------------------------------------------------
+// Includes
+
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+
+//--------------------------------------------------------------------------
+// Input/Reference Data
+
+typedef float data_t;
+#include "dataset.h"
+
+
+//--------------------------------------------------------------------------
+// Basic Utilities and Multi-thread Support
+
+__thread unsigned long coreid;
+unsigned long ncores;
+
+#include "util.h"
+
+#define stringify_1(s) #s
+#define stringify(s) stringify_1(s)
+#define stats(code) do { \
+ unsigned long _c = -rdcycle(), _i = -rdinstret(); \
+ code; \
+ _c += rdcycle(), _i += rdinstret(); \
+ if (coreid == 0) \
+ printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
+ stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
+ } while(0)
+
+
+//--------------------------------------------------------------------------
+// Helper functions
+
+void printArray( char name[], int n, data_t arr[] )
+{
+ int i;
+ if (coreid != 0)
+ return;
+
+ printf( " %10s :", name );
+ for ( i = 0; i < n; i++ )
+ printf( " %3ld ", (long) arr[i] );
+ printf( "\n" );
+}
+
+void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct)
+{
+ if (coreid != 0)
+ return;
+
+ size_t i;
+ for (i = 0; i < n; i++)
+ {
+ if (test[i] != correct[i])
+ {
+ printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n",
+ i, (long)test[i], i, (long)correct[i]);
+ exit(-1);
+ }
+ }
+
+ return;
+}
+
+//--------------------------------------------------------------------------
+// matmul function
+
+// single-thread, naive version
+void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] )
+{
+ int i, j, k;
+
+ if (coreid > 0)
+ return;
+
+ for ( i = 0; i < lda; i++ )
+ for ( j = 0; j < lda; j++ )
+ {
+ for ( k = 0; k < lda; k++ )
+ {
+ C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
+ }
+ }
+
+}
+
+
+
+void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] )
+{
+ size_t i, j, k, l;
+ int row,row2, column, column2, column3, column4, column5, column6, column7, column8;
+ size_t max_dim = 32*32;
+ data_t element, element2, element3, element4, element5, element6, element7, element8;
+ data_t temp_mat[32]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ data_t temp_mat2[32]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ //for (i=coreid*max_dim/ncores; i<(max_dim/ncores+coreid*max_dim/ncores); i+=8){
+ for (l=coreid*32/ncores; l<32*(1+coreid)/ncores; l+=2){
+ row=l*32;
+ row2=(l+1)*32;
+ for (i=0; i<lda; i+=4){
+ element = A[row+i];
+ element2 = A[row+i+1];
+ element3 = A[row+i+2];
+ element4 = A[row+i+3];
+ element5 = A[row2+i];
+ element6 = A[row2+i+1];
+ element7 = A[row2+i+2];
+ element8 = A[row2+i+3];
+ column=i*32;
+ column2=(i+1)*32;
+ column3=(i+2)*32;
+ column4=(i+3)*32;
+ for (j=0; j<32; j+=4){
+ temp_mat[j]+=element*B[column+j]+element2*B[column2+j]+element3*B[column3+j]+element4*B[column4+j];
+ temp_mat[j+1]+=element*B[column+j+1]+element2*B[column2+j+1]+element3*B[column3+j+1]+element4*B[column4+j+1];
+ temp_mat[j+2]+=element*B[column+j+2]+element2*B[column2+j+2]+element3*B[column3+j+2]+element4*B[column4+j+2];
+ temp_mat[j+3]+=element*B[column+j+3]+element2*B[column2+j+3]+element3*B[column3+j+3]+element4*B[column4+j+3];
+ temp_mat2[j]+=element5*B[column+j]+element6*B[column2+j]+element7*B[column3+j]+element8*B[column4+j];
+ temp_mat2[j+1]+=element5*B[column+j+1]+element6*B[column2+j+1]+element7*B[column3+j+1]+element8*B[column4+j+1];
+ temp_mat2[j+2]+=element5*B[column+j+2]+element6*B[column2+j+2]+element7*B[column3+j+2]+element8*B[column4+j+2];
+ temp_mat2[j+3]+=element5*B[column+j+3]+element6*B[column2+j+3]+element7*B[column3+j+3]+element8*B[column4+j+3];
+ }
+ /*if (i==28){
+ for(k=0; k<32; k++){
+ C[row+k]=temp_mat[k];
+ C[row2+k]=temp_mat2[k];
+ temp_mat[k]=0;
+ temp_mat2[k]=0;
+ }
+ }*/
+ }
+ for(k=0; k<32; k++){
+ C[row+k]=temp_mat[k];
+ C[row2+k]=temp_mat2[k];
+ temp_mat[k]=0;
+ temp_mat2[k]=0;
+ }
+ }
+
+ // ***************************** //
+ // **** ADD YOUR CODE HERE ***** //
+ // ***************************** //
+ //
+ // feel free to make a separate function for MI and MSI versions.
+
+}
+
+//--------------------------------------------------------------------------
+// Main
+//
+// all threads start executing thread_entry(). Use their "coreid" to
+// differentiate between threads (each thread is running on a separate core).
+
+void thread_entry(int cid, int nc)
+{
+ coreid = cid;
+ ncores = nc;
+
+ // static allocates data in the binary, which is visible to both threads
+ static data_t results_data[ARRAY_SIZE];
+
+
+// // Execute the provided, naive matmul
+// barrier();
+// stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+//
+//
+// // verify
+// verify(ARRAY_SIZE, results_data, verify_data);
+//
+// // clear results from the first trial
+// size_t i;
+// if (coreid == 0)
+// for (i=0; i < ARRAY_SIZE; i++)
+// results_data[i] = 0;
+// barrier();
+
+
+ // Execute your faster matmul
+ barrier();
+ stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+
+#ifdef DEBUG
+ printArray("results:", ARRAY_SIZE, results_data);
+ printArray("verify :", ARRAY_SIZE, verify_data);
+#endif
+
+ // verify
+ verify(ARRAY_SIZE, results_data, verify_data);
+ barrier();
+
+ exit(0);
+}
+
diff --git a/mt/am_matmul/dataset.h b/mt/am_matmul/dataset.h
new file mode 100755
index 0000000..dde3ee4
--- /dev/null
+++ b/mt/am_matmul/dataset.h
@@ -0,0 +1,174 @@
+
+#define ARRAY_SIZE 1024
+
+
+#define DIM_SIZE 32
+
+static data_t input1_data[ARRAY_SIZE] =
+{
+ 0, 3, 2, 0, 3, 1, 0, 3, 2, 3, 2, 0, 3, 3, 1, 2, 3, 0, 0, 1,
+ 1, 1, 2, 3, 1, 2, 3, 1, 1, 3, 2, 2, 0, 1, 3, 2, 2, 2, 0, 0,
+ 1, 0, 1, 3, 3, 0, 3, 3, 3, 3, 0, 3, 2, 1, 2, 2, 0, 0, 3, 0,
+ 1, 1, 0, 3, 3, 1, 2, 3, 3, 0, 1, 2, 1, 0, 1, 2, 2, 1, 0, 3,
+ 1, 0, 2, 2, 1, 1, 1, 1, 1, 1, 2, 0, 3, 1, 1, 2, 2, 3, 3, 1,
+ 3, 2, 0, 0, 0, 3, 3, 3, 2, 1, 2, 3, 1, 0, 0, 0, 0, 1, 2, 2,
+ 1, 1, 3, 3, 3, 1, 1, 2, 3, 1, 3, 3, 2, 3, 2, 1, 2, 3, 0, 2,
+ 2, 1, 1, 0, 0, 0, 0, 0, 1, 3, 3, 1, 1, 1, 2, 2, 3, 2, 1, 1,
+ 1, 1, 3, 0, 2, 2, 1, 3, 2, 1, 2, 2, 1, 3, 1, 3, 1, 3, 2, 3,
+ 1, 2, 1, 3, 2, 2, 0, 1, 0, 0, 1, 2, 3, 3, 1, 0, 0, 0, 3, 1,
+ 2, 3, 2, 3, 2, 0, 0, 0, 0, 0, 3, 1, 3, 0, 0, 0, 3, 1, 1, 1,
+ 1, 2, 1, 2, 3, 2, 0, 0, 2, 2, 3, 0, 3, 0, 0, 3, 0, 3, 1, 3,
+ 3, 1, 1, 1, 2, 2, 1, 3, 0, 3, 3, 1, 0, 0, 3, 2, 1, 3, 3, 3,
+ 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 2, 3, 1, 2, 2, 2, 0, 1, 3, 3,
+ 3, 2, 2, 1, 0, 1, 2, 0, 1, 1, 1, 1, 2, 3, 2, 2, 3, 3, 0, 0,
+ 2, 0, 0, 0, 3, 0, 1, 0, 3, 0, 0, 0, 3, 0, 0, 2, 0, 2, 0, 0,
+ 2, 3, 2, 0, 0, 3, 3, 2, 1, 1, 0, 2, 0, 0, 3, 3, 2, 3, 3, 0,
+ 1, 0, 2, 2, 0, 3, 3, 1, 1, 0, 2, 3, 2, 1, 1, 0, 1, 2, 1, 2,
+ 2, 0, 0, 1, 0, 1, 1, 0, 1, 0, 2, 3, 3, 2, 0, 0, 1, 3, 0, 3,
+ 3, 0, 0, 0, 0, 3, 3, 1, 0, 0, 3, 3, 2, 1, 2, 1, 3, 3, 0, 1,
+ 3, 0, 2, 3, 1, 3, 3, 3, 3, 3, 0, 1, 1, 3, 0, 2, 2, 3, 1, 2,
+ 2, 2, 1, 3, 3, 0, 3, 0, 0, 2, 0, 2, 3, 0, 1, 3, 2, 2, 0, 0,
+ 2, 3, 0, 2, 2, 2, 3, 1, 0, 3, 3, 3, 3, 1, 0, 3, 3, 2, 0, 3,
+ 2, 0, 3, 0, 2, 0, 0, 2, 2, 1, 0, 2, 3, 1, 1, 1, 1, 2, 3, 3,
+ 3, 0, 0, 3, 3, 3, 2, 3, 3, 1, 2, 2, 3, 1, 2, 1, 1, 3, 0, 1,
+ 2, 0, 2, 0, 0, 1, 3, 2, 0, 1, 3, 2, 3, 3, 0, 0, 0, 1, 0, 3,
+ 3, 2, 2, 2, 1, 1, 2, 2, 1, 3, 2, 0, 1, 3, 2, 0, 2, 1, 3, 0,
+ 0, 0, 1, 3, 3, 2, 2, 2, 3, 1, 0, 0, 1, 1, 2, 1, 3, 1, 1, 2,
+ 2, 3, 2, 3, 0, 2, 3, 3, 0, 3, 0, 0, 1, 0, 0, 0, 1, 3, 1, 1,
+ 2, 3, 2, 1, 1, 2, 2, 2, 3, 0, 1, 1, 2, 1, 2, 0, 2, 3, 1, 3,
+ 0, 1, 1, 3, 0, 2, 3, 0, 1, 2, 3, 2, 0, 0, 3, 3, 2, 1, 1, 2,
+ 3, 0, 1, 1, 1, 1, 2, 0, 1, 2, 0, 1, 1, 1, 0, 1, 3, 2, 3, 1,
+ 0, 2, 1, 2, 1, 3, 3, 1, 0, 2, 2, 3, 1, 3, 1, 3, 0, 1, 0, 3,
+ 0, 3, 2, 0, 3, 3, 3, 0, 3, 2, 2, 2, 1, 3, 0, 0, 1, 1, 3, 0,
+ 1, 2, 1, 0, 0, 0, 3, 2, 2, 0, 0, 2, 1, 3, 0, 0, 3, 0, 0, 2,
+ 1, 1, 2, 2, 1, 3, 2, 2, 1, 1, 2, 1, 3, 2, 1, 1, 3, 0, 1, 3,
+ 3, 2, 2, 1, 0, 3, 2, 2, 2, 3, 0, 1, 3, 3, 2, 3, 0, 3, 2, 3,
+ 1, 1, 0, 0, 0, 2, 3, 0, 3, 0, 1, 1, 3, 1, 3, 2, 1, 1, 2, 1,
+ 3, 2, 0, 2, 1, 0, 2, 3, 2, 3, 2, 1, 2, 3, 0, 0, 1, 1, 0, 0,
+ 2, 1, 0, 1, 2, 2, 2, 2, 0, 3, 3, 1, 0, 0, 0, 0, 3, 1, 1, 0,
+ 0, 0, 0, 1, 2, 2, 1, 3, 0, 2, 3, 2, 3, 2, 2, 1, 2, 2, 3, 3,
+ 1, 3, 0, 2, 2, 3, 3, 1, 2, 2, 2, 3, 1, 1, 1, 0, 0, 0, 3, 0,
+ 1, 0, 3, 1, 1, 3, 0, 1, 2, 2, 0, 0, 3, 3, 3, 3, 2, 1, 0, 0,
+ 1, 0, 2, 0, 1, 1, 0, 0, 3, 3, 2, 1, 1, 1, 0, 1, 1, 2, 2, 1,
+ 1, 2, 0, 3, 1, 3, 1, 0, 3, 0, 3, 1, 1, 1, 0, 2, 0, 3, 1, 0,
+ 1, 0, 2, 0, 2, 3, 3, 3, 1, 2, 3, 2, 2, 0, 1, 1, 0, 3, 3, 1,
+ 3, 3, 2, 0, 2, 0, 2, 2, 3, 3, 3, 0, 2, 3, 3, 1, 3, 2, 2, 2,
+ 0, 2, 3, 0, 2, 0, 3, 2, 2, 1, 1, 0, 2, 2, 2, 0, 2, 2, 0, 1,
+ 3, 2, 1, 3, 2, 2, 0, 3, 3, 1, 2, 2, 0, 0, 3, 2, 1, 2, 2, 1,
+ 3, 1, 2, 0, 0, 1, 1, 2, 1, 3, 2, 2, 3, 0, 2, 1, 3, 2, 1, 3,
+ 2, 3, 3, 1, 2, 1, 2, 2, 0, 0, 0, 3, 0, 2, 3, 1, 0, 0, 2, 3,
+ 3, 2, 2, 1
+};
+
+static data_t input2_data[ARRAY_SIZE] =
+{
+ 1, 1, 0, 3, 1, 2, 0, 0, 0, 0, 0, 2, 1, 2, 3, 0, 0, 3, 3, 2,
+ 2, 1, 2, 3, 3, 0, 2, 2, 1, 1, 2, 2, 0, 2, 2, 1, 2, 3, 2, 2,
+ 3, 3, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 3, 0, 0, 3, 2, 3,
+ 2, 3, 1, 2, 1, 1, 2, 2, 0, 1, 0, 3, 2, 1, 1, 1, 2, 0, 1, 2,
+ 2, 0, 2, 1, 3, 3, 2, 3, 2, 0, 3, 1, 3, 3, 2, 0, 1, 0, 1, 1,
+ 2, 2, 1, 1, 2, 2, 1, 2, 3, 3, 1, 3, 2, 2, 2, 3, 3, 1, 0, 2,
+ 1, 0, 0, 0, 1, 1, 2, 0, 3, 2, 3, 3, 0, 2, 3, 1, 0, 0, 2, 1,
+ 2, 0, 2, 1, 1, 2, 3, 1, 3, 2, 1, 0, 0, 0, 0, 0, 2, 2, 0, 2,
+ 1, 2, 0, 3, 2, 2, 0, 0, 3, 2, 1, 1, 3, 0, 2, 0, 0, 1, 0, 2,
+ 3, 3, 1, 3, 3, 0, 0, 2, 2, 0, 0, 0, 1, 0, 0, 1, 3, 0, 2, 1,
+ 3, 2, 2, 1, 3, 2, 0, 1, 2, 2, 3, 2, 1, 1, 1, 1, 3, 0, 1, 3,
+ 2, 2, 3, 1, 1, 2, 0, 2, 1, 1, 2, 3, 1, 0, 1, 0, 1, 1, 0, 0,
+ 2, 0, 3, 0, 3, 0, 3, 2, 2, 3, 3, 2, 1, 0, 2, 2, 1, 1, 0, 3,
+ 3, 2, 2, 0, 0, 3, 0, 1, 0, 0, 1, 2, 0, 1, 3, 0, 1, 2, 2, 0,
+ 0, 3, 0, 3, 0, 1, 1, 2, 0, 0, 0, 3, 0, 0, 2, 1, 1, 1, 0, 2,
+ 1, 3, 1, 2, 0, 3, 0, 3, 1, 3, 0, 0, 2, 2, 2, 2, 3, 3, 2, 1,
+ 2, 2, 1, 1, 2, 2, 2, 2, 0, 3, 0, 0, 2, 0, 1, 2, 0, 3, 2, 3,
+ 2, 0, 2, 1, 2, 1, 0, 2, 1, 1, 3, 2, 2, 3, 1, 0, 3, 3, 1, 0,
+ 3, 2, 2, 0, 0, 3, 0, 0, 2, 0, 3, 2, 3, 1, 1, 0, 0, 2, 3, 0,
+ 0, 1, 1, 1, 2, 1, 3, 2, 1, 3, 0, 1, 3, 3, 1, 1, 1, 1, 1, 1,
+ 0, 0, 2, 3, 2, 2, 2, 3, 2, 3, 1, 2, 3, 2, 2, 2, 0, 1, 3, 0,
+ 1, 1, 0, 1, 0, 1, 1, 3, 3, 1, 2, 2, 3, 2, 0, 2, 2, 0, 1, 3,
+ 0, 1, 3, 2, 1, 3, 3, 2, 0, 1, 3, 2, 0, 2, 1, 1, 0, 3, 0, 1,
+ 1, 1, 1, 1, 3, 0, 0, 1, 0, 2, 3, 1, 3, 0, 2, 1, 3, 0, 3, 0,
+ 3, 2, 2, 0, 0, 2, 1, 3, 3, 2, 3, 2, 2, 1, 2, 2, 3, 0, 3, 2,
+ 2, 0, 3, 2, 3, 2, 0, 0, 1, 2, 0, 0, 2, 0, 0, 3, 3, 2, 0, 0,
+ 3, 3, 0, 2, 3, 1, 0, 1, 0, 2, 1, 0, 2, 1, 0, 1, 0, 3, 0, 2,
+ 2, 3, 0, 0, 2, 1, 0, 1, 0, 0, 0, 2, 2, 3, 2, 0, 3, 3, 2, 1,
+ 0, 0, 3, 1, 2, 3, 3, 1, 0, 3, 1, 1, 0, 3, 3, 3, 2, 2, 2, 0,
+ 1, 2, 0, 3, 0, 1, 0, 1, 1, 0, 1, 2, 0, 3, 2, 0, 1, 2, 2, 0,
+ 2, 0, 0, 1, 0, 3, 0, 3, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 0,
+ 2, 1, 1, 3, 2, 0, 2, 1, 1, 0, 2, 2, 1, 3, 0, 2, 1, 0, 1, 2,
+ 0, 1, 3, 2, 3, 2, 1, 0, 2, 0, 2, 2, 3, 1, 1, 3, 2, 3, 2, 2,
+ 0, 2, 0, 0, 0, 3, 2, 0, 2, 2, 3, 3, 3, 2, 1, 2, 0, 0, 3, 0,
+ 2, 0, 3, 2, 2, 3, 0, 3, 2, 1, 2, 2, 1, 2, 0, 0, 3, 1, 2, 0,
+ 2, 3, 2, 2, 1, 1, 1, 3, 3, 3, 3, 3, 1, 3, 0, 1, 3, 2, 2, 1,
+ 0, 1, 1, 2, 1, 2, 3, 1, 2, 2, 1, 2, 1, 1, 0, 3, 3, 1, 1, 3,
+ 2, 0, 0, 1, 2, 0, 1, 3, 1, 0, 0, 2, 2, 3, 3, 0, 2, 3, 2, 1,
+ 1, 3, 0, 2, 2, 3, 3, 1, 2, 3, 3, 3, 1, 3, 0, 3, 1, 1, 2, 2,
+ 2, 1, 0, 3, 2, 3, 0, 2, 3, 2, 3, 1, 2, 3, 3, 1, 2, 1, 0, 0,
+ 0, 3, 3, 3, 3, 0, 3, 3, 3, 3, 2, 1, 0, 3, 0, 3, 2, 3, 1, 0,
+ 0, 1, 3, 1, 0, 2, 2, 3, 1, 0, 2, 1, 1, 3, 1, 1, 3, 1, 2, 1,
+ 0, 0, 3, 2, 1, 1, 1, 1, 3, 2, 1, 3, 3, 1, 0, 3, 1, 1, 2, 0,
+ 0, 0, 2, 3, 3, 2, 2, 3, 0, 2, 3, 1, 3, 3, 0, 2, 1, 2, 2, 2,
+ 1, 0, 1, 3, 2, 3, 1, 1, 2, 1, 1, 0, 0, 2, 3, 2, 1, 0, 3, 1,
+ 3, 0, 1, 1, 2, 2, 1, 3, 3, 1, 1, 0, 0, 3, 3, 0, 0, 0, 0, 0,
+ 3, 1, 3, 0, 0, 0, 3, 3, 2, 1, 3, 0, 1, 3, 1, 1, 1, 0, 1, 0,
+ 1, 2, 2, 2, 3, 3, 0, 2, 3, 2, 1, 3, 3, 1, 1, 3, 0, 3, 3, 2,
+ 1, 1, 2, 0, 3, 0, 1, 2, 1, 1, 0, 0, 1, 2, 2, 0, 3, 1, 1, 1,
+ 3, 3, 3, 1, 0, 3, 3, 2, 2, 2, 1, 2, 0, 1, 1, 3, 0, 3, 1, 0,
+ 2, 2, 0, 1, 2, 3, 2, 1, 2, 0, 3, 2, 1, 3, 0, 1, 2, 0, 3, 0,
+ 1, 1, 2, 1
+};
+
+static data_t verify_data[ARRAY_SIZE] =
+{
+ 72, 75, 88, 101, 80, 88, 73, 75, 80, 81, 58, 75, 86, 65, 60, 80, 84, 83, 87, 83,
+ 108, 93, 85, 76, 72, 98, 79, 86, 80, 96, 91, 85, 72, 64, 70, 83, 68, 92, 51, 54,
+ 85, 85, 60, 58, 90, 64, 55, 69, 72, 48, 94, 77, 91, 83, 70, 69, 67, 77, 59, 50,
+ 67, 74, 77, 67, 67, 62, 72, 71, 68, 79, 54, 61, 67, 61, 55, 62, 78, 60, 53, 64,
+ 67, 69, 99, 68, 88, 60, 66, 63, 70, 62, 65, 50, 53, 66, 70, 72, 75, 78, 85, 95,
+ 71, 89, 70, 68, 86, 88, 58, 77, 84, 70, 65, 68, 73, 75, 91, 96, 105, 92, 76, 68,
+ 86, 69, 80, 59, 73, 83, 88, 75, 64, 63, 71, 99, 77, 77, 69, 55, 80, 73, 54, 73,
+ 87, 78, 60, 69, 65, 78, 86, 89, 95, 92, 63, 69, 89, 61, 80, 65, 70, 77, 89, 77,
+ 79, 79, 73, 92, 64, 81, 60, 78, 81, 80, 61, 63, 89, 65, 56, 83, 77, 65, 102, 70,
+ 98, 86, 96, 68, 72, 89, 73, 73, 70, 89, 84, 76, 48, 61, 63, 70, 70, 79, 50, 53,
+ 64, 63, 43, 51, 59, 62, 43, 63, 55, 77, 79, 74, 75, 74, 64, 44, 65, 69, 72, 66,
+ 54, 71, 74, 72, 69, 76, 68, 89, 94, 75, 65, 53, 85, 79, 65, 74, 82, 73, 58, 70,
+ 84, 77, 99, 72, 92, 84, 78, 62, 59, 83, 71, 74, 63, 85, 80, 78, 71, 72, 79, 83,
+ 73, 82, 60, 85, 76, 82, 60, 70, 82, 68, 54, 85, 84, 70, 86, 74, 100, 88, 98, 68,
+ 67, 87, 69, 73, 68, 88, 76, 71, 47, 43, 47, 80, 54, 65, 40, 37, 59, 53, 33, 48,
+ 62, 40, 36, 55, 36, 62, 53, 57, 70, 69, 45, 43, 53, 61, 42, 57, 56, 63, 51, 47,
+ 59, 75, 64, 89, 83, 75, 59, 75, 91, 92, 58, 64, 83, 74, 58, 60, 76, 66, 97, 69,
+ 90, 95, 92, 64, 78, 75, 77, 73, 65, 78, 82, 75, 47, 54, 59, 71, 59, 56, 53, 42,
+ 60, 55, 40, 51, 60, 46, 36, 59, 46, 57, 67, 43, 51, 53, 53, 38, 54, 56, 55, 48,
+ 41, 46, 63, 63, 80, 77, 89, 102, 89, 98, 74, 86, 98, 93, 63, 76, 98, 77, 48, 101,
+ 86, 88, 100, 82, 102, 90, 95, 75, 86, 103, 83, 98, 80, 104, 98, 86, 71, 74, 80, 90,
+ 86, 87, 73, 70, 81, 83, 55, 66, 90, 66, 58, 84, 77, 84, 93, 72, 99, 75, 85, 65,
+ 70, 89, 71, 82, 64, 79, 82, 80, 67, 73, 86, 101, 78, 97, 66, 64, 84, 80, 55, 64,
+ 79, 73, 51, 79, 89, 68, 94, 77, 109, 102, 82, 61, 66, 93, 88, 70, 82, 82, 85, 69,
+ 69, 72, 66, 97, 85, 90, 70, 59, 76, 89, 53, 56, 90, 79, 71, 64, 70, 67, 100, 92,
+ 106, 89, 83, 78, 73, 80, 70, 72, 65, 70, 92, 88, 57, 76, 55, 85, 66, 80, 61, 63,
+ 63, 78, 54, 58, 71, 73, 54, 63, 63, 62, 89, 76, 86, 81, 83, 54, 70, 81, 78, 64,
+ 56, 72, 74, 81, 75, 63, 68, 89, 65, 77, 58, 68, 75, 83, 52, 62, 82, 63, 55, 75,
+ 51, 70, 95, 66, 83, 77, 86, 61, 64, 77, 48, 70, 66, 82, 72, 75, 79, 71, 72, 89,
+ 78, 78, 66, 59, 91, 80, 55, 64, 79, 68, 54, 71, 67, 75, 87, 84, 100, 101, 76, 58,
+ 74, 82, 61, 74, 75, 97, 85, 79, 61, 55, 69, 68, 72, 65, 52, 64, 80, 73, 48, 54,
+ 71, 66, 42, 61, 66, 63, 92, 64, 85, 77, 73, 54, 74, 73, 76, 66, 62, 79, 85, 70,
+ 71, 84, 87, 81, 88, 86, 77, 77, 93, 88, 78, 71, 101, 89, 58, 84, 95, 81, 89, 97,
+ 104, 79, 83, 76, 90, 81, 91, 74, 70, 76, 91, 80, 51, 48, 56, 69, 47, 63, 54, 42,
+ 63, 63, 42, 52, 66, 56, 39, 59, 61, 52, 59, 63, 62, 68, 57, 35, 67, 58, 56, 52,
+ 61, 63, 60, 47, 85, 75, 89, 106, 88, 95, 74, 82, 107, 107, 64, 78, 98, 90, 62, 91,
+ 79, 87, 111, 84, 104, 106, 96, 68, 94, 99, 81, 89, 79, 105, 95, 86, 65, 63, 77, 89,
+ 66, 88, 56, 73, 82, 92, 41, 62, 85, 66, 50, 81, 57, 71, 77, 78, 86, 89, 77, 53,
+ 67, 78, 61, 63, 72, 82, 69, 66, 59, 46, 55, 70, 56, 64, 45, 50, 65, 64, 42, 56,
+ 78, 49, 51, 52, 38, 56, 72, 55, 73, 72, 61, 50, 63, 60, 47, 57, 55, 73, 53, 68,
+ 85, 88, 91, 96, 82, 89, 73, 76, 87, 86, 67, 69, 96, 84, 57, 89, 87, 89, 99, 88,
+ 104, 90, 85, 75, 88, 92, 85, 75, 74, 87, 103, 94, 55, 48, 56, 65, 72, 50, 45, 51,
+ 63, 62, 47, 57, 79, 53, 36, 63, 54, 68, 71, 59, 63, 61, 63, 41, 50, 73, 57, 59,
+ 56, 76, 73, 65, 61, 64, 61, 79, 53, 73, 57, 44, 61, 59, 59, 56, 81, 59, 49, 62,
+ 65, 55, 69, 72, 79, 70, 58, 57, 68, 61, 62, 50, 57, 60, 66, 66, 63, 77, 81, 89,
+ 85, 81, 76, 73, 78, 95, 59, 70, 81, 77, 46, 79, 78, 79, 83, 81, 84, 82, 85, 48,
+ 74, 85, 85, 74, 74, 80, 80, 74, 60, 76, 80, 97, 88, 93, 66, 66, 73, 84, 56, 70,
+ 90, 63, 58, 78, 73, 93, 90, 78, 94, 88, 82, 67, 85, 70, 81, 86, 74, 82, 88, 82,
+ 68, 73, 75, 91, 78, 97, 71, 66, 74, 85, 50, 59, 86, 77, 70, 74, 75, 74, 99, 82,
+ 99, 91, 86, 65, 80, 77, 72, 69, 60, 78, 90, 87, 79, 69, 74, 98, 70, 86, 81, 67,
+ 69, 78, 48, 65, 88, 70, 70, 70, 69, 72, 96, 90, 99, 82, 81, 76, 98, 73, 74, 71,
+ 69, 73, 94, 89
+};
+
diff --git a/mt/am_matmul/matmul2.c b/mt/am_matmul/matmul2.c
new file mode 100644
index 0000000..30c705d
--- /dev/null
+++ b/mt/am_matmul/matmul2.c
@@ -0,0 +1,73 @@
+/*size_t i;
+ size_t j;
+ size_t max_dim = lda*lda;
+ if (coreid==0){
+ for (i=0; i<max_dim/(ncores*2); i+=8){
+ data_t elementA1 = A[i];
+ data_t elementA12 = A[i+1];
+ data_t elementA13 = A[i+2];
+ data_t elementA14 = A[i+3];
+ data_t elementA15 = A[i+4];
+ data_t elementA16 = A[i+5];
+ data_t elementA17 = A[i+6];
+ data_t elementA18 = A[i+7];
+ data_t elementA2 = A[i+32*8];
+ data_t elementA21 = A[i+32*8+1];
+ data_t elementA22 = A[i+32*8+2];
+ data_t elementA23 = A[i+32*8+3];
+ data_t elementA24 = A[i+32*8+4];
+ data_t elementA25 = A[i+32*8+5];
+ data_t elementA26 = A[i+32*8+6];
+ data_t elementA27 = A[i+32*8+7];
+ int row= (int)(i/32)*32;
+ int row2 = row+8*32;
+ int column1 = i%32*32;
+ int column12 = (i+1)%32*32;
+ int column13 = (i+2)%32*32;
+ int column14 = (i+3)%32*32;
+ int column15 = (i+4)%32*32;
+ int column16 = (i+5)%32*32;
+ int column17 = (i+6)%32*32;
+ int column18 = (i+7)%32*32;
+
+ for (j=0; j<lda; j++){
+ C[row+j]+=elementA1*B[column1+j]+elementA12*B[column12+j]+elementA13*B[column13+j]+elementA14*B[column14+j]+elementA15*B[column15+j]+elementA16*B[column16+j]+elementA17*B[column17+j]+elementA18*B[column18+j]
+
+ C[row2+j]+=elementA2*B[column1+j]+elementA21*B[column12+j]+elementA22*B[column13+j]+elementA23*B[column14+j]+elementA24*B[column15+j]+elementA25*B[column16+j]+elementA26*B[column17+j]+elementA27*B[column18+j];
+ }
+ }}else{
+ for (i=max_dim/2; i<(max_dim/(ncores*2)+max_dim/2); i+=8){
+ data_t elementA1 = A[i];
+ data_t elementA12 = A[i+1];
+ data_t elementA13 = A[i+2];
+ data_t elementA14 = A[i+3];
+ data_t elementA15 = A[i+4];
+ data_t elementA16 = A[i+5];
+ data_t elementA17 = A[i+6];
+ data_t elementA18 = A[i+7];
+ data_t elementA2 = A[i+32*8];
+ data_t elementA21 = A[i+32*8+1];
+ data_t elementA22 = A[i+32*8+2];
+ data_t elementA23 = A[i+32*8+3];
+ data_t elementA24 = A[i+32*8+4];
+ data_t elementA25 = A[i+32*8+5];
+ data_t elementA26 = A[i+32*8+6];
+ data_t elementA27 = A[i+32*8+7];
+ int row= (int)(i/32)*32;
+ int row2 = row+8*32;
+ int column1 = i%32*32;
+ int column12 = (i+1)%32*32;
+ int column13 = (i+2)%32*32;
+ int column14 = (i+3)%32*32;
+ int column15 = (i+4)%32*32;
+ int column16 = (i+5)%32*32;
+ int column17 = (i+6)%32*32;
+ int column18 = (i+7)%32*32;
+
+ for (j=0; j<lda; j++){
+ C[row+j]+=elementA1*B[column1+j]+elementA12*B[column12+j]+elementA13*B[column13+j]+elementA14*B[column14+j]+elementA15*B[column15+j]+elementA16*B[column16+j]+elementA17*B[column17+j]+elementA18*B[column18+j];
+ C[row2+j]+=elementA2*B[column1+j]+elementA21*B[column12+j]+elementA22*B[column13+j]+elementA23*B[column14+j]+elementA24*B[column15+j]+elementA25*B[column16+j]+elementA26*B[column17+j]+elementA27*B[column18+j];
+
+ }
+ }
+ }*/
diff --git a/mt/am_matmul/matmul2.c~ b/mt/am_matmul/matmul2.c~
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/mt/am_matmul/matmul2.c~
diff --git a/mt/am_matmul/matmul3.c b/mt/am_matmul/matmul3.c
new file mode 100755
index 0000000..9a79baa
--- /dev/null
+++ b/mt/am_matmul/matmul3.c
@@ -0,0 +1,221 @@
+//**************************************************************************
+// Multi-threaded Matrix Multiply benchmark
+//--------------------------------------------------------------------------
+// TA : Christopher Celio
+// Student:
+//
+//
+// This benchmark multiplies two 2-D arrays together and writes the results to
+// a third vector. The input data (and reference data) should be generated
+// using the matmul_gendata.pl perl script and dumped to a file named
+// dataset.h.
+
+
+// print out arrays, etc.
+//#define DEBUG
+
+//--------------------------------------------------------------------------
+// Includes
+
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+
+//--------------------------------------------------------------------------
+// Input/Reference Data
+
+typedef float data_t;
+#include "dataset.h"
+
+
+//--------------------------------------------------------------------------
+// Basic Utilities and Multi-thread Support
+
+__thread unsigned long coreid;
+unsigned long ncores;
+
+#include "util.h"
+
+#define stringify_1(s) #s
+#define stringify(s) stringify_1(s)
+#define stats(code) do { \
+ unsigned long _c = -rdcycle(), _i = -rdinstret(); \
+ code; \
+ _c += rdcycle(), _i += rdinstret(); \
+ if (coreid == 0) \
+ printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
+ stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
+ } while(0)
+
+
+//--------------------------------------------------------------------------
+// Helper functions
+
+void printArray( char name[], int n, data_t arr[] )
+{
+ int i;
+ if (coreid != 0)
+ return;
+
+ printf( " %10s :", name );
+ for ( i = 0; i < n; i++ )
+ printf( " %3ld ", (long) arr[i] );
+ printf( "\n" );
+}
+
+void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct)
+{
+ if (coreid != 0)
+ return;
+
+ size_t i;
+ for (i = 0; i < n; i++)
+ {
+ if (test[i] != correct[i])
+ {
+ printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n",
+ i, (long)test[i], i, (long)correct[i]);
+ exit(-1);
+ }
+ }
+
+ return;
+}
+
+//--------------------------------------------------------------------------
+// matmul function
+
+// single-thread, naive version
+void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] )
+{
+ int i, j, k;
+
+ if (coreid > 0)
+ return;
+
+ for ( i = 0; i < lda; i++ )
+ for ( j = 0; j < lda; j++ )
+ {
+ for ( k = 0; k < lda; k++ )
+ {
+ C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
+ }
+ }
+
+}
+
+
+
+void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] )
+{
+ size_t i;
+ size_t j;
+ size_t k;
+ size_t max_dim = 32*32;
+ data_t temp_mat[32]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ data_t temp_mat2[32]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ //for (i=coreid*max_dim/ncores; i<(max_dim/ncores+coreid*max_dim/ncores); i+=8){
+ for (i=coreid*max_dim/ncores; i<(max_dim/ncores+coreid*max_dim/ncores)/2; i+=8){
+ data_t element=A[i];
+ data_t element2 = A[i+1];
+ data_t element3 = A[i+2];
+ data_t element4 = A[i+3];
+ data_t element5 = A[i+4];
+ data_t element6 = A[i+5];
+ data_t element7 = A[i+6];
+ data_t element8 = A[i+7];
+ data_t elementA2 = A[i+32*8];
+ data_t elementA21 = A[i+32*8+1];
+ data_t elementA22 = A[i+32*8+2];
+ data_t elementA23 = A[i+32*8+3];
+ data_t elementA24 = A[i+32*8+4];
+ data_t elementA25 = A[i+32*8+5];
+ data_t elementA26 = A[i+32*8+6];
+ data_t elementA27 = A[i+32*8+7];
+ int row= (int)(i/32)*32;
+ int row2 = row+8*32;
+ int column = i%32*32;
+ int column2 = (i+1)%32*32;
+ int column3 = (i+2)%32*32;
+ int column4 = (i+3)%32*32;
+ int column5 = (i+4)%32*32;
+ int column6 = (i+5)%32*32;
+ int column7 = (i+6)%32*32;
+ int column8 = (i+7)%32*32;
+
+ for (j=0; j<32; j++){
+ temp_mat[j]+=element*B[column+j]+element2*B[column2+j]+element3*B[column3+j]+element4*B[column4+j]+element5*B[column5+j]+element6*B[column6+j]+element7*B[column7+j]+element8*B[column8+j];
+
+ temp_mat2[j]+=elementA2*B[column+j]+elementA21*B[column2+j]+elementA22*B[column3+j]+elementA23*B[column4+j]+elementA24*B[column5+j]+elementA25*B[column6+j]+elementA26*B[column7+j]+elementA27*B[column8+j];
+ }
+ if (i%32==24){
+ for(k=0; k<32; k++){
+ C[row+k]=temp_mat[k];
+ C[row2+k]=temp_mat2[k];
+ temp_mat[k]=0;
+ temp_mat2[k]=0;
+
+ }
+ }
+ }
+
+
+
+
+
+ // ***************************** //
+ // **** ADD YOUR CODE HERE ***** //
+ // ***************************** //
+ //
+ // feel free to make a separate function for MI and MSI versions.
+
+}
+
+//--------------------------------------------------------------------------
+// Main
+//
+// all threads start executing thread_entry(). Use their "coreid" to
+// differentiate between threads (each thread is running on a separate core).
+
+void thread_entry(int cid, int nc)
+{
+ coreid = cid;
+ ncores = nc;
+
+ // static allocates data in the binary, which is visible to both threads
+ static data_t results_data[ARRAY_SIZE];
+
+
+ // Execute the provided, naive matmul
+ barrier();
+ stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+
+
+ // verify
+ verify(ARRAY_SIZE, results_data, verify_data);
+
+ // clear results from the first trial
+ size_t i;
+ if (coreid == 0)
+ for (i=0; i < ARRAY_SIZE; i++)
+ results_data[i] = 0;
+ barrier();
+
+
+ // Execute your faster matmul
+ barrier();
+ stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+
+#ifdef DEBUG
+ printArray("results:", ARRAY_SIZE, results_data);
+ printArray("verify :", ARRAY_SIZE, verify_data);
+#endif
+
+ // verify
+ verify(ARRAY_SIZE, results_data, verify_data);
+ barrier();
+
+ exit(0);
+}
+
diff --git a/mt/am_matmul/matmul4.c b/mt/am_matmul/matmul4.c
new file mode 100755
index 0000000..05a1aa4
--- /dev/null
+++ b/mt/am_matmul/matmul4.c
@@ -0,0 +1,282 @@
+//**************************************************************************
+// Multi-threaded Matrix Multiply benchmark
+//--------------------------------------------------------------------------
+// TA : Christopher Celio
+// Student:
+//
+//
+// This benchmark multiplies two 2-D arrays together and writes the results to
+// a third vector. The input data (and reference data) should be generated
+// using the matmul_gendata.pl perl script and dumped to a file named
+// dataset.h.
+
+
+// print out arrays, etc.
+//#define DEBUG
+
+//--------------------------------------------------------------------------
+// Includes
+
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+
+//--------------------------------------------------------------------------
+// Input/Reference Data
+
+typedef float data_t;
+#include "dataset.h"
+
+
+//--------------------------------------------------------------------------
+// Basic Utilities and Multi-thread Support
+
+__thread unsigned long coreid;
+unsigned long ncores;
+
+#include "util.h"
+
+#define stringify_1(s) #s
+#define stringify(s) stringify_1(s)
+#define stats(code) do { \
+ unsigned long _c = -rdcycle(), _i = -rdinstret(); \
+ code; \
+ _c += rdcycle(), _i += rdinstret(); \
+ if (coreid == 0) \
+ printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
+ stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
+ } while(0)
+
+
+//--------------------------------------------------------------------------
+// Helper functions
+
+void printArray( char name[], int n, data_t arr[] )
+{
+ int i;
+ if (coreid != 0)
+ return;
+
+ printf( " %10s :", name );
+ for ( i = 0; i < n; i++ )
+ printf( " %3ld ", (long) arr[i] );
+ printf( "\n" );
+}
+
+void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct)
+{
+ if (coreid != 0)
+ return;
+
+ size_t i;
+ for (i = 0; i < n; i++)
+ {
+ if (test[i] != correct[i])
+ {
+ printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n",
+ i, (long)test[i], i, (long)correct[i]);
+ exit(-1);
+ }
+ }
+
+ return;
+}
+
+//--------------------------------------------------------------------------
+// matmul function
+
+// single-thread, naive version
+void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] )
+{
+ int i, j, k;
+
+ if (coreid > 0)
+ return;
+
+ for ( i = 0; i < lda; i++ )
+ for ( j = 0; j < lda; j++ )
+ {
+ for ( k = 0; k < lda; k++ )
+ {
+ C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
+ }
+ }
+
+}
+
+
+
+void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] )
+{
+ /*size_t i;
+ size_t j;
+ size_t k;
+ size_t max_dim = 32*32;
+ data_t temp_mat[32]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ for (i=coreid*max_dim/ncores; i<(max_dim/ncores+coreid*max_dim/ncores); i+=8){
+ data_t element=A[i];
+ data_t element2 = A[i+1];
+ data_t element3 = A[i+2];
+ data_t element4 = A[i+3];
+ data_t element5 = A[i+4];
+ data_t element6 = A[i+5];
+ data_t element7 = A[i+6];
+ data_t element8 = A[i+7];
+ int row= (int)(i/32)*32;
+ int column = i%32*32;
+ int column2 = (i+1)%32*32;
+ int column3 = (i+2)%32*32;
+ int column4 = (i+3)%32*32;
+ int column5 = (i+4)%32*32;
+ int column6 = (i+5)%32*32;
+ int column7 = (i+6)%32*32;
+ int column8 = (i+7)%32*32;
+
+ for (j=0; j<32; j++){
+ temp_mat[j]+=element*B[column+j]+element2*B[column2+j]+element3*B[column3+j]+element4*B[column4+j]+element5*B[column5+j]+element6*B[column6+j]+element7*B[column7+j]+element8*B[column8+j];
+ }
+ if (i%32==24){
+ for(k=0; k<32; k++){
+ C[row+k]=temp_mat[k];
+ temp_mat[k]=0;
+ }
+ }
+ }*/
+ int i,j,k,l;
+ //data_t element11, element12, element13, element14, element21, element22, element23, element24;
+ data_t element1, element2, element3, element4, element5, element6, element7, element8;
+ int row, row2;
+ //int column11, column12, column13, column14, column21, column22, column23, column24;
+ int column1, column2, column3, column4, column5, column6, column7, column8;
+ data_t temp[32]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ //data_t temp2[32]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ if (coreid == 0){
+ for (i=0; i<32; i++){
+ if (i==15){
+ for (j=0; j<32; j+=4){
+ row=15*32;
+ element1 = A[row+j];
+ element2 = A[row+j+1];
+ element3 = A[row+j+2];
+ element4 = A[row+j+3];
+ column1 = j*32;
+ column2 = (j+1)*32;
+ column3 = (j+2)*32;
+ column4 = (j+3)*32;
+ for (k=0;k<32; k++){
+ temp[k]+=element1*B[column1+k]+element2*B[column2+k]+element3*B[column3+k]+element4*B[column4+k];
+ }
+ if (j==28){
+ for (l=0; l<32; l++){
+ C[row+l]=temp[l];
+ temp[l]=0;
+ }
+ }
+ }
+ }
+ else{
+ row = i*32;
+ for (j=0; j<16; j+=4){
+ element1 = A[i*32+j];
+ element2 = A[i*32+j+1];
+ element3 = A[i*32+j+2];
+ element4 = A[i*32+j+3];
+ column1 = j*32;
+ column2 = (j+1)*32;
+ column3 = (j+2)*32;
+ column4 = (j+3)*32;
+ for (k=0; k<32; k++){
+ temp[k]+=element1*B[column1+k]+element2*B[column2+k]+element3*B[column3+k]+element4*B[column4+k];
+ }
+ if (j==12){
+ for (l=0; l<32; l++){
+ C[row+l]+=temp[l];
+ temp[l]=0;
+ }
+ }
+ }
+ }
+ }
+ }
+ else if (coreid==1){
+ for (i=0; i<32; i++){
+ row = (31-i)*32;
+ if (row/32 != 15){
+ for (j=16; j<32; j+=4){
+ element1 = A[(31-i)*32+j];
+ element2 = A[(31-i)*32+j+1];
+ element3 = A[(31-i)*32+j+2];
+ element4 = A[(31-i)*32+j+3];
+ column1 = j*32;
+ column2 = (j+1)*32;
+ column3 = (j+2)*32;
+ column4 = (j+3)*32;
+ for (k=0; k<32; k++){
+ temp[k]+=element1*B[column1+k]+element2*B[column2+k]+element3*B[column3+k]+element4*B[column4+k];
+ }
+ if (j==28){
+ for (l=0; l<32; l++){
+ C[row+l]+=temp[l];
+ temp[l]=0;
+ }
+ }
+ }
+ }
+ }
+ }
+ // ***************************** //
+ // **** ADD YOUR CODE HERE ***** //
+ // ***************************** //
+ //
+ // feel free to make a separate function for MI and MSI versions.
+
+}
+
+//--------------------------------------------------------------------------
+// Main
+//
+// all threads start executing thread_entry(). Use their "coreid" to
+// differentiate between threads (each thread is running on a separate core).
+
+void thread_entry(int cid, int nc)
+{
+ coreid = cid;
+ ncores = nc;
+
+ // static allocates data in the binary, which is visible to both threads
+ static data_t results_data[ARRAY_SIZE];
+
+
+ // Execute the provided, naive matmul
+ barrier();
+ stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+
+
+ // verify
+ verify(ARRAY_SIZE, results_data, verify_data);
+
+ // clear results from the first trial
+ size_t i;
+ if (coreid == 0)
+ for (i=0; i < ARRAY_SIZE; i++)
+ results_data[i] = 0;
+ barrier();
+
+
+ // Execute your faster matmul
+ barrier();
+ stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+
+#ifdef DEBUG
+ printArray("results:", ARRAY_SIZE, results_data);
+ printArray("verify :", ARRAY_SIZE, verify_data);
+#endif
+
+ // verify
+ verify(ARRAY_SIZE, results_data, verify_data);
+ barrier();
+
+ exit(0);
+}
+
diff --git a/mt/am_matmul/matmul_gendata.pl b/mt/am_matmul/matmul_gendata.pl
new file mode 100755
index 0000000..f21bb46
--- /dev/null
+++ b/mt/am_matmul/matmul_gendata.pl
@@ -0,0 +1,200 @@
+#!/usr/bin/perl -w
+#==========================================================================
+# matmul_gendata.pl
+#
+# Author : Christopher Batten (cbatten@mit.edu)
+# Date : April 29, 2005
+#
+(our $usageMsg = <<'ENDMSG') =~ s/^\#//gm;
+#
+# Simple script which creates an input data set and the reference data
+# for the matmul benchmark.
+#
+ENDMSG
+
+use strict "vars";
+use warnings;
+no warnings("once");
+use Getopt::Long;
+
+#--------------------------------------------------------------------------
+# Command line processing
+#--------------------------------------------------------------------------
+
+our %opts;
+
+sub usage()
+{
+
+ print "\n";
+ print " Usage: matmul_gendata.pl [options] \n";
+ print "\n";
+ print " Options:\n";
+ print " --help print this message\n";
+ print " --size size of input data [1000]\n";
+ print " --seed random seed [1]\n";
+ print "$usageMsg";
+
+ exit();
+}
+
+sub processCommandLine()
+{
+
+ $opts{"help"} = 0;
+ $opts{"size"} = 1000;
+ $opts{"seed"} = 1;
+ Getopt::Long::GetOptions( \%opts, 'help|?', 'size:i', 'seed:i' ) or usage();
+ $opts{"help"} and usage();
+
+}
+
+#--------------------------------------------------------------------------
+# Helper Functions
+#--------------------------------------------------------------------------
+
+sub printArray
+{
+ my $arrayName = $_[0];
+ my $arrayRef = $_[1];
+
+ my $numCols = 20;
+ my $arrayLen = scalar(@{$arrayRef});
+
+ print "static data_t ".$arrayName."[ARRAY_SIZE] = \n";
+ print "{\n";
+
+ if ( $arrayLen <= $numCols ) {
+ print " ";
+ for ( my $i = 0; $i < $arrayLen; $i++ ) {
+ print sprintf("%3d",$arrayRef->[$i]);
+ if ( $i != $arrayLen-1 ) {
+ print ", ";
+ }
+ }
+ print "\n";
+ }
+
+ else {
+ my $numRows = int($arrayLen/$numCols);
+ for ( my $j = 0; $j < $numRows; $j++ ) {
+ print " ";
+ for ( my $i = 0; $i < $numCols; $i++ ) {
+ my $index = $j*$numCols + $i;
+ print sprintf("%3d",$arrayRef->[$index]);
+ if ( $index != $arrayLen-1 ) {
+ print ", ";
+ }
+ }
+ print "\n";
+ }
+
+ if ( $arrayLen > ($numRows*$numCols) ) {
+ print " ";
+ for ( my $i = 0; $i < ($arrayLen-($numRows*$numCols)); $i++ ) {
+ my $index = $numCols*$numRows + $i;
+ print sprintf("%3d",$arrayRef->[$index]);
+ if ( $index != $arrayLen-1 ) {
+ print ", ";
+ }
+ }
+ print "\n";
+ }
+
+ }
+
+ print "};\n\n";
+}
+
+
+
+#--------------------------------------------------------------------------
+# Matmul
+#--------------------------------------------------------------------------
+
+# http://answers.oreilly.com/topic/418-how-to-multiply-matrices-in-perl/
+
+sub mmult {
+ my ($m1,$m2) = @_;
+ my ($m1rows,$m1cols) = matdim($m1);
+ my ($m2rows,$m2cols) = matdim($m2);
+
+ my $result = [ ];
+ my ($i, $j, $k);
+
+ for $i (range($m1rows)) {
+ for $j (range($m2cols)) {
+ for $k (range($m1cols)) {
+ $result->[$i][$j] += $m1->[$i][$k] * $m2->[$k][$j];
+ }
+ }
+ }
+ return $result;
+}
+
+sub range { 0 .. ($_[0] - 1) }
+
+
+sub veclen {
+ my $ary_ref = $_[0];
+ my $type = ref $ary_ref;
+ if ($type ne "ARRAY") { die "$type is bad array ref for $ary_ref" }
+ return scalar(@$ary_ref);
+}
+
+sub matdim {
+ my $matrix = $_[0];
+ my $rows = veclen($matrix);
+ my $cols = veclen($matrix->[0]);
+ return ($rows, $cols);
+}
+
+#--------------------------------------------------------------------------
+# Main
+#--------------------------------------------------------------------------
+
+sub main()
+{
+
+ processCommandLine();
+ srand($opts{"seed"});
+
+ # create random input arrays
+ my $mat_values1;
+ my $mat_values2;
+ for ( my $i = 0; $i < $opts{"size"}; $i++ ) {
+ for ( my $j = 0; $j < $opts{"size"}; $j++ ) {
+ $mat_values1->[$i][$j] = int(rand(4));
+ $mat_values2->[$i][$j] = int(rand(4));
+ }
+ }
+
+ # perform matmul
+ my $mat_results = mmult( $mat_values1, $mat_values2 );
+
+ # translate 2d arrays to 1d-somethings (I don't know how to code in perl - Chris)
+ my @values1;
+ my @values2;
+ my @results;
+ for ( my $i = 0; $i < $opts{"size"}; $i++ ) {
+ for ( my $j = 0; $j < $opts{"size"}; $j++ ) {
+ my $value1 = $mat_values1->[$i][$j];
+ my $value2 = $mat_values2->[$i][$j];
+ my $result = $mat_results->[$i][$j];
+ push( @values1, $value1 );
+ push( @values2, $value2 );
+ push( @results, $result );
+ }
+ }
+
+ print "\n\#define ARRAY_SIZE ".($opts{"size"}*$opts{"size"})." \n\n";
+ print "\n\#define DIM_SIZE ".$opts{"size"}." \n\n";
+
+ printArray( "input1_data", \@values1 );
+ printArray( "input2_data", \@values2 );
+ printArray( "verify_data", \@results);
+
+}
+
+main();
+
diff --git a/mt/am_matmul/matmul_mi.c b/mt/am_matmul/matmul_mi.c
new file mode 100755
index 0000000..841a4b5
--- /dev/null
+++ b/mt/am_matmul/matmul_mi.c
@@ -0,0 +1,249 @@
+//**************************************************************************
+// Multi-threaded Matrix Multiply benchmark
+//--------------------------------------------------------------------------
+// TA : Christopher Celio
+// Student:
+//
+//
+// This benchmark multiplies two 2-D arrays together and writes the results to
+// a third vector. The input data (and reference data) should be generated
+// using the matmul_gendata.pl perl script and dumped to a file named
+// dataset.h.
+
+
+// print out arrays, etc.
+//#define DEBUG
+
+//--------------------------------------------------------------------------
+// Includes
+
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+
+//--------------------------------------------------------------------------
+// Input/Reference Data
+
+typedef float data_t;
+#include "dataset.h"
+
+
+//--------------------------------------------------------------------------
+// Basic Utilities and Multi-thread Support
+
+__thread unsigned long coreid;
+unsigned long ncores;
+
+#include "util.h"
+
+#define stringify_1(s) #s
+#define stringify(s) stringify_1(s)
+#define stats(code) do { \
+ unsigned long _c = -rdcycle(), _i = -rdinstret(); \
+ code; \
+ _c += rdcycle(), _i += rdinstret(); \
+ if (coreid == 0) \
+ printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
+ stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
+ } while(0)
+
+
+//--------------------------------------------------------------------------
+// Helper functions
+
+void printArray( char name[], int n, data_t arr[] )
+{
+ int i;
+ if (coreid != 0)
+ return;
+
+ printf( " %10s :", name );
+ for ( i = 0; i < n; i++ )
+ printf( " %3ld ", (long) arr[i] );
+ printf( "\n" );
+}
+
+void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct)
+{
+ if (coreid != 0)
+ return;
+
+ size_t i;
+ for (i = 0; i < n; i++)
+ {
+ if (test[i] != correct[i])
+ {
+ printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n",
+ i, (long)test[i], i, (long)correct[i]);
+ exit(-1);
+ }
+ }
+
+ return;
+}
+
+//--------------------------------------------------------------------------
+// matmul function
+
+// single-thread, naive version
+void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] )
+{
+ int i, j, k;
+
+ if (coreid > 0)
+ return;
+
+ for ( i = 0; i < lda; i++ )
+ for ( j = 0; j < lda; j++ )
+ {
+ for ( k = 0; k < lda; k++ )
+ {
+ C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
+ }
+ }
+
+}
+
+
+
+void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] )
+{
+ int i,j,k,l;
+ data_t element1, element2, element3, element4, element5, element6, element7, element8;
+ int row, row2;
+ int column1, column2, column3, column4, column5, column6, column7, column8;
+ data_t temp[32]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ data_t temp2[32]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ if (coreid == 0){
+ for (i=0; i<lda; i+=2){
+ row = i*lda;
+ row2 = (i+1)*lda;
+ for (j=0; j<16; j+=4){
+ element1 = A[row+j];
+ element2 = A[row+j+1];
+ element3 = A[row+j+2];
+ element4 = A[row+j+3];
+ column1 = j*32;
+ column2 = (j+1)*32;
+ column3 = (j+2)*32;
+ column4 = (j+3)*32;
+ element5 = A[row2+j];
+ element6 = A[row2+j+1];
+ element7 = A[row2+j+2];
+ element8 = A[row2+j+3];
+
+ for (k=0; k<32; k+=4){
+ temp[k]+=element1*B[column1+k]+element2*B[column2+k]+element3*B[column3+k]+element4*B[column4+k];
+ temp[k+1]+=element1*B[column1+k+1]+element2*B[column2+k+1]+element3*B[column3+k+1]+element4*B[column4+k+1];
+ temp[k+2]+=element1*B[column1+k+2]+element2*B[column2+k+2]+element3*B[column3+k+2]+element4*B[column4+k+2];
+ temp[k+3]+=element1*B[column1+k+3]+element2*B[column2+k+3]+element3*B[column3+k+3]+element4*B[column4+k+3];
+ temp2[k]+=element5*B[column1+k]+element6*B[column2+k]+element7*B[column3+k]+element8*B[column4+k];
+ temp2[k+1]+=element5*B[column1+k+1]+element6*B[column2+k+1]+element7*B[column3+k+1]+element8*B[column4+k+1];
+ temp2[k+2]+=element5*B[column1+k+2]+element6*B[column2+k+2]+element7*B[column3+k+2]+element8*B[column4+k+2];
+ temp2[k+3]+=element5*B[column1+k+3]+element6*B[column2+k+3]+element7*B[column3+k+3]+element8*B[column4+k+3];
+ }
+ if (j==12){
+ for (l=0; l<32; l++){
+ C[row+l]+=temp[l];
+ C[row2+l]+=temp2[l];
+ temp[l]=0;
+ temp2[l]=0;
+ }
+ }
+ }
+ }
+ }
+ else if (coreid==1){
+ for (i=0; i<32; i+=2){
+ row = (31-i)*lda;
+ row2 = (31-i-1)*lda;
+ for (j=16; j<32; j+=4){
+ element1 = A[row+j];
+ element2 = A[row+j+1];
+ element3 = A[row+j+2];
+ element4 = A[row+j+3];
+ element5 = A[row2+j];
+ element6 = A[row2+j+1];
+ element7 = A[row2+j+2];
+ element8 = A[row2+j+3];
+ column1 = j*32;
+ column2 = (j+1)*32;
+ column3 = (j+2)*32;
+ column4 = (j+3)*32;
+ for (k=0; k<32; k+=4){
+ temp[k]+=element1*B[column1+k]+element2*B[column2+k]+element3*B[column3+k]+element4*B[column4+k];
+ temp[k+1]+=element1*B[column1+k+1]+element2*B[column2+k+1]+element3*B[column3+k+1]+element4*B[column4+k+1];
+ temp[k+2]+=element1*B[column1+k+2]+element2*B[column2+k+2]+element3*B[column3+k+2]+element4*B[column4+k+2];
+ temp[k+3]+=element1*B[column1+k+3]+element2*B[column2+k+3]+element3*B[column3+k+3]+element4*B[column4+k+3];
+ temp2[k]+=element5*B[column1+k]+element6*B[column2+k]+element7*B[column3+k]+element8*B[column4+k];
+ temp2[k+1]+=element5*B[column1+k+1]+element6*B[column2+k+1]+element7*B[column3+k+1]+element8*B[column4+k+1];
+ temp2[k+2]+=element5*B[column1+k+2]+element6*B[column2+k+2]+element7*B[column3+k+2]+element8*B[column4+k+2];
+ temp2[k+3]+=element5*B[column1+k+3]+element6*B[column2+k+3]+element7*B[column3+k+3]+element8*B[column4+k+3];
+ }
+ if (j==28){
+ for (l=0; l<32; l++){
+ C[row+l]+=temp[l];
+ C[row2+l]+=temp2[l];
+ temp[l]=0;
+ temp2[l]=0;
+ }
+ }
+ }
+ }
+ }
+ // ***************************** //
+ // **** ADD YOUR CODE HERE ***** //
+ // ***************************** //
+ //
+ // feel free to make a separate function for MI and MSI versions.
+
+}
+
+//--------------------------------------------------------------------------
+// Main
+//
+// all threads start executing thread_entry(). Use their "coreid" to
+// differentiate between threads (each thread is running on a separate core).
+
+void thread_entry(int cid, int nc)
+{
+ coreid = cid;
+ ncores = nc;
+
+ // static allocates data in the binary, which is visible to both threads
+ static data_t results_data[ARRAY_SIZE];
+
+
+// // Execute the provided, naive matmul
+// barrier();
+// stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+//
+//
+// // verify
+// verify(ARRAY_SIZE, results_data, verify_data);
+//
+// // clear results from the first trial
+// size_t i;
+// if (coreid == 0)
+// for (i=0; i < ARRAY_SIZE; i++)
+// results_data[i] = 0;
+// barrier();
+
+
+ // Execute your faster matmul
+ barrier();
+ stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+
+#ifdef DEBUG
+ printArray("results:", ARRAY_SIZE, results_data);
+ printArray("verify :", ARRAY_SIZE, verify_data);
+#endif
+
+ // verify
+ verify(ARRAY_SIZE, results_data, verify_data);
+ barrier();
+
+ exit(0);
+}
+
diff --git a/mt/am_matmul/matmul_mi.c~ b/mt/am_matmul/matmul_mi.c~
new file mode 100755
index 0000000..858f363
--- /dev/null
+++ b/mt/am_matmul/matmul_mi.c~
@@ -0,0 +1,290 @@
+//**************************************************************************
+// Multi-threaded Matrix Multiply benchmark
+//--------------------------------------------------------------------------
+// TA : Christopher Celio
+// Student:
+//
+//
+// This benchmark multiplies two 2-D arrays together and writes the results to
+// a third vector. The input data (and reference data) should be generated
+// using the matmul_gendata.pl perl script and dumped to a file named
+// dataset.h.
+
+
+// print out arrays, etc.
+//#define DEBUG
+
+//--------------------------------------------------------------------------
+// Includes
+
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+
+//--------------------------------------------------------------------------
+// Input/Reference Data
+
+typedef float data_t;
+#include "dataset.h"
+
+
+//--------------------------------------------------------------------------
+// Basic Utilities and Multi-thread Support
+
+__thread unsigned long coreid;
+unsigned long ncores;
+
+#include "util.h"
+
+#define stringify_1(s) #s
+#define stringify(s) stringify_1(s)
+#define stats(code) do { \
+ unsigned long _c = -rdcycle(), _i = -rdinstret(); \
+ code; \
+ _c += rdcycle(), _i += rdinstret(); \
+ if (coreid == 0) \
+ printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
+ stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
+ } while(0)
+
+
+//--------------------------------------------------------------------------
+// Helper functions
+
+void printArray( char name[], int n, data_t arr[] )
+{
+ int i;
+ if (coreid != 0)
+ return;
+
+ printf( " %10s :", name );
+ for ( i = 0; i < n; i++ )
+ printf( " %3ld ", (long) arr[i] );
+ printf( "\n" );
+}
+
+void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct)
+{
+ if (coreid != 0)
+ return;
+
+ size_t i;
+ for (i = 0; i < n; i++)
+ {
+ if (test[i] != correct[i])
+ {
+ printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n",
+ i, (long)test[i], i, (long)correct[i]);
+ exit(-1);
+ }
+ }
+
+ return;
+}
+
+//--------------------------------------------------------------------------
+// matmul function
+
+// single-thread, naive version
+void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] )
+{
+ int i, j, k;
+
+ if (coreid > 0)
+ return;
+
+ for ( i = 0; i < lda; i++ )
+ for ( j = 0; j < lda; j++ )
+ {
+ for ( k = 0; k < lda; k++ )
+ {
+ C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
+ }
+ }
+
+}
+
+
+
+void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] )
+{
+ /*size_t i, j, k;
+ int row, column, column2, column3, column4, column5, column6, column7, column8;
+ size_t max_dim = 32*32;
+ data_t element, element2, element3, element4, element5, element6, element7, element8;
+ data_t temp_mat[32]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ for (i=coreid*max_dim/ncores; i<(max_dim/ncores+coreid*max_dim/ncores); i+=8){
+ element=A[i];
+ element2 = A[i+1];
+ element3 = A[i+2];
+ element4 = A[i+3];
+ element5 = A[i+4];
+ element6 = A[i+5];
+ element7 = A[i+6];
+ element8 = A[i+7];
+ row= (int)(i/32)*32;
+ column = i%32*32;
+ column2 = (i+1)%32*32;
+ column3 = (i+2)%32*32;
+ column4 = (i+3)%32*32;
+ column5 = (i+4)%32*32;
+ column6 = (i+5)%32*32;
+ column7 = (i+6)%32*32;
+ column8 = (i+7)%32*32;
+
+ for (j=0; j<32; j+=8){
+ temp_mat[j]+=element*B[column+j]+element2*B[column2+j]+element3*B[column3+j]+element4*B[column4+j]+element5*B[column5+j]+element6*B[column6+j]+element7*B[column7+j]+element8*B[column8+j];
+ temp_mat[j+1]+=element*B[column+j+1]+element2*B[column2+j+1]+element3*B[column3+j+1]+element4*B[column4+j+1]+element5*B[column5+j+1]+element6*B[column6+j+1]+element7*B[column7+j+1]+element8*B[column8+j+1];
+ temp_mat[j+2]+=element*B[column+j+2]+element2*B[column2+j+2]+element3*B[column3+j+2]+element4*B[column4+j+2]+element5*B[column5+j+2]+element6*B[column6+j+2]+element7*B[column7+j+2]+element8*B[column8+j+2];
+ temp_mat[j+3]+=element*B[column+j+3]+element2*B[column2+j+3]+element3*B[column3+j+3]+element4*B[column4+j+3]+element5*B[column5+j+3]+element6*B[column6+j+3]+element7*B[column7+j+3]+element8*B[column8+j+3];
+ temp_mat[j+4]+=element*B[column+j+4]+element2*B[column2+j+4]+element3*B[column3+j+4]+element4*B[column4+j+4]+element5*B[column5+j+4]+element6*B[column6+j+4]+element7*B[column7+j+4]+element8*B[column8+j+4];
+ temp_mat[j+5]+=element*B[column+j+5]+element2*B[column2+j+5]+element3*B[column3+j+5]+element4*B[column4+j+5]+element5*B[column5+j+5]+element6*B[column6+j+5]+element7*B[column7+j+5]+element8*B[column8+j+5];
+ temp_mat[j+6]+=element*B[column+j+6]+element2*B[column2+j+6]+element3*B[column3+j+6]+element4*B[column4+j+6]+element5*B[column5+j+6]+element6*B[column6+j+6]+element7*B[column7+j+6]+element8*B[column8+j+6];
+ temp_mat[j+7]+=element*B[column+j+7]+element2*B[column2+j+7]+element3*B[column3+j+7]+element4*B[column4+j+7]+element5*B[column5+j+7]+element6*B[column6+j+7]+element7*B[column7+j+7]+element8*B[column8+j+7];
+ }
+ if (i%32==24){
+ for(k=0; k<32; k++){
+ C[row+k]=temp_mat[k];
+ temp_mat[k]=0;
+ }
+ }
+ }*/
+ int i,j,k,l;
+ data_t element1, element2, element3, element4, element5, element6, element7, element8;
+ int row, row2;
+ int column1, column2, column3, column4, column5, column6, column7, column8;
+ data_t temp[32]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ data_t temp2[32]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ if (coreid == 0){
+ for (i=0; i<32; i+=2){
+ row = i*32;
+ row2 = (i+1)*32;
+ for (j=0; j<16; j+=4){
+ element1 = A[row+j];
+ element2 = A[row+j+1];
+ element3 = A[row+j+2];
+ element4 = A[row+j+3];
+ column1 = j*32;
+ column2 = (j+1)*32;
+ column3 = (j+2)*32;
+ column4 = (j+3)*32;
+ element5 = A[row2+j];
+ element6 = A[row2+j+1];
+ element7 = A[row2+j+2];
+ element8 = A[row2+j+3];
+
+ for (k=0; k<32; k+=4){
+ temp[k]+=element1*B[column1+k]+element2*B[column2+k]+element3*B[column3+k]+element4*B[column4+k];
+ temp[k+1]+=element1*B[column1+k+1]+element2*B[column2+k+1]+element3*B[column3+k+1]+element4*B[column4+k+1];
+ temp[k+2]+=element1*B[column1+k+2]+element2*B[column2+k+2]+element3*B[column3+k+2]+element4*B[column4+k+2];
+ temp[k+3]+=element1*B[column1+k+3]+element2*B[column2+k+3]+element3*B[column3+k+3]+element4*B[column4+k+3];
+ temp2[k]+=element5*B[column1+k]+element6*B[column2+k]+element7*B[column3+k]+element8*B[column4+k];
+ temp2[k+1]+=element5*B[column1+k+1]+element6*B[column2+k+1]+element7*B[column3+k+1]+element8*B[column4+k+1];
+ temp2[k+2]+=element5*B[column1+k+2]+element6*B[column2+k+2]+element7*B[column3+k+2]+element8*B[column4+k+2];
+ temp2[k+3]+=element5*B[column1+k+3]+element6*B[column2+k+3]+element7*B[column3+k+3]+element8*B[column4+k+3];
+ }
+ if (j==12){
+ for (l=0; l<32; l++){
+ C[row+l]+=temp[l];
+ C[row2+l]+=temp2[l];
+ temp[l]=0;
+ temp2[l]=0;
+ }
+ }
+ }
+ }
+ }
+ else if (coreid==1){
+ for (i=0; i<32; i+=2){
+ row = (31-i)*32;
+ row2 = (31-i-1)*32;
+ for (j=16; j<32; j+=4){
+ element1 = A[row+j];
+ element2 = A[row+j+1];
+ element3 = A[row+j+2];
+ element4 = A[row+j+3];
+ element5 = A[row2+j];
+ element6 = A[row2+j+1];
+ element7 = A[row2+j+2];
+ element8 = A[row2+j+3];
+ column1 = j*32;
+ column2 = (j+1)*32;
+ column3 = (j+2)*32;
+ column4 = (j+3)*32;
+ for (k=0; k<32; k+=4){
+ temp[k]+=element1*B[column1+k]+element2*B[column2+k]+element3*B[column3+k]+element4*B[column4+k];
+ temp[k+1]+=element1*B[column1+k+1]+element2*B[column2+k+1]+element3*B[column3+k+1]+element4*B[column4+k+1];
+ temp[k+2]+=element1*B[column1+k+2]+element2*B[column2+k+2]+element3*B[column3+k+2]+element4*B[column4+k+2];
+ temp[k+3]+=element1*B[column1+k+3]+element2*B[column2+k+3]+element3*B[column3+k+3]+element4*B[column4+k+3];
+ temp2[k]+=element5*B[column1+k]+element6*B[column2+k]+element7*B[column3+k]+element8*B[column4+k];
+ temp2[k+1]+=element5*B[column1+k+1]+element6*B[column2+k+1]+element7*B[column3+k+1]+element8*B[column4+k+1];
+ temp2[k+2]+=element5*B[column1+k+2]+element6*B[column2+k+2]+element7*B[column3+k+2]+element8*B[column4+k+2];
+ temp2[k+3]+=element5*B[column1+k+3]+element6*B[column2+k+3]+element7*B[column3+k+3]+element8*B[column4+k+3];
+ }
+ if (j==28){
+ for (l=0; l<32; l++){
+ C[row+l]+=temp[l];
+ C[row2+l]+=temp2[l];
+ temp[l]=0;
+ temp2[l]=0;
+ }
+ }
+ }
+ }
+ }
+ // ***************************** //
+ // **** ADD YOUR CODE HERE ***** //
+ // ***************************** //
+ //
+ // feel free to make a separate function for MI and MSI versions.
+
+}
+
+//--------------------------------------------------------------------------
+// Main
+//
+// all threads start executing thread_entry(). Use their "coreid" to
+// differentiate between threads (each thread is running on a separate core).
+
+void thread_entry(int cid, int nc)
+{
+ coreid = cid;
+ ncores = nc;
+
+ // static allocates data in the binary, which is visible to both threads
+ static data_t results_data[ARRAY_SIZE];
+
+
+ // Execute the provided, naive matmul
+ barrier();
+ stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+
+
+ // verify
+ verify(ARRAY_SIZE, results_data, verify_data);
+
+ // clear results from the first trial
+ size_t i;
+ if (coreid == 0)
+ for (i=0; i < ARRAY_SIZE; i++)
+ results_data[i] = 0;
+ barrier();
+
+
+ // Execute your faster matmul
+ barrier();
+ stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+
+#ifdef DEBUG
+ printArray("results:", ARRAY_SIZE, results_data);
+ printArray("verify :", ARRAY_SIZE, verify_data);
+#endif
+
+ // verify
+ verify(ARRAY_SIZE, results_data, verify_data);
+ barrier();
+
+ exit(0);
+}
+
diff --git a/mt/am_matmul/matmul_msi.c b/mt/am_matmul/matmul_msi.c
new file mode 100755
index 0000000..0b59f8c
--- /dev/null
+++ b/mt/am_matmul/matmul_msi.c
@@ -0,0 +1,216 @@
+//**************************************************************************
+// Multi-threaded Matrix Multiply benchmark
+//--------------------------------------------------------------------------
+// TA : Christopher Celio
+// Student:
+//
+//
+// This benchmark multiplies two 2-D arrays together and writes the results to
+// a third vector. The input data (and reference data) should be generated
+// using the matmul_gendata.pl perl script and dumped to a file named
+// dataset.h.
+
+
+// print out arrays, etc.
+//#define DEBUG
+
+//--------------------------------------------------------------------------
+// Includes
+
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+
+//--------------------------------------------------------------------------
+// Input/Reference Data
+
+typedef float data_t;
+#include "dataset.h"
+
+
+//--------------------------------------------------------------------------
+// Basic Utilities and Multi-thread Support
+
+__thread unsigned long coreid;
+unsigned long ncores;
+
+#include "util.h"
+
+#define stringify_1(s) #s
+#define stringify(s) stringify_1(s)
+#define stats(code) do { \
+ unsigned long _c = -rdcycle(), _i = -rdinstret(); \
+ code; \
+ _c += rdcycle(), _i += rdinstret(); \
+ if (coreid == 0) \
+ printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
+ stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
+ } while(0)
+
+
+//--------------------------------------------------------------------------
+// Helper functions
+
+void printArray( char name[], int n, data_t arr[] )
+{
+ int i;
+ if (coreid != 0)
+ return;
+
+ printf( " %10s :", name );
+ for ( i = 0; i < n; i++ )
+ printf( " %3ld ", (long) arr[i] );
+ printf( "\n" );
+}
+
+void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct)
+{
+ if (coreid != 0)
+ return;
+
+ size_t i;
+ for (i = 0; i < n; i++)
+ {
+ if (test[i] != correct[i])
+ {
+ printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n",
+ i, (long)test[i], i, (long)correct[i]);
+ exit(-1);
+ }
+ }
+
+ return;
+}
+
+//--------------------------------------------------------------------------
+// matmul function
+
+// single-thread, naive version
+void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] )
+{
+ int i, j, k;
+
+ if (coreid > 0)
+ return;
+
+ for ( i = 0; i < lda; i++ )
+ for ( j = 0; j < lda; j++ )
+ {
+ for ( k = 0; k < lda; k++ )
+ {
+ C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
+ }
+ }
+
+}
+
+
+
+void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] )
+{
+ size_t i, j, k, l;
+ int row,row2, column, column2, column3, column4, column5, column6, column7, column8;
+ size_t max_dim = 32*32;
+ data_t element, element2, element3, element4, element5, element6, element7, element8;
+ data_t temp_mat[32]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ data_t temp_mat2[32]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ //for (i=coreid*max_dim/ncores; i<(max_dim/ncores+coreid*max_dim/ncores); i+=8){
+ for (l=coreid*32/ncores; l<32*(1+coreid)/ncores; l+=2){
+ row=l*32;
+ row2=(l+1)*32;
+ for (i=0; i<lda; i+=4){
+ element = A[row+i];
+ element2 = A[row+i+1];
+ element3 = A[row+i+2];
+ element4 = A[row+i+3];
+ element5 = A[row2+i];
+ element6 = A[row2+i+1];
+ element7 = A[row2+i+2];
+ element8 = A[row2+i+3];
+ column=i*32;
+ column2=(i+1)*32;
+ column3=(i+2)*32;
+ column4=(i+3)*32;
+ for (j=0; j<32; j+=4){
+ temp_mat[j]+=element*B[column+j]+element2*B[column2+j]+element3*B[column3+j]+element4*B[column4+j];
+ temp_mat[j+1]+=element*B[column+j+1]+element2*B[column2+j+1]+element3*B[column3+j+1]+element4*B[column4+j+1];
+ temp_mat[j+2]+=element*B[column+j+2]+element2*B[column2+j+2]+element3*B[column3+j+2]+element4*B[column4+j+2];
+ temp_mat[j+3]+=element*B[column+j+3]+element2*B[column2+j+3]+element3*B[column3+j+3]+element4*B[column4+j+3];
+ temp_mat2[j]+=element5*B[column+j]+element6*B[column2+j]+element7*B[column3+j]+element8*B[column4+j];
+ temp_mat2[j+1]+=element5*B[column+j+1]+element6*B[column2+j+1]+element7*B[column3+j+1]+element8*B[column4+j+1];
+ temp_mat2[j+2]+=element5*B[column+j+2]+element6*B[column2+j+2]+element7*B[column3+j+2]+element8*B[column4+j+2];
+ temp_mat2[j+3]+=element5*B[column+j+3]+element6*B[column2+j+3]+element7*B[column3+j+3]+element8*B[column4+j+3];
+ }
+ /*if (i==28){
+ for(k=0; k<32; k++){
+ C[row+k]=temp_mat[k];
+ C[row2+k]=temp_mat2[k];
+ temp_mat[k]=0;
+ temp_mat2[k]=0;
+ }
+ }*/
+ }
+ for(k=0; k<32; k++){
+ C[row+k]=temp_mat[k];
+ C[row2+k]=temp_mat2[k];
+ temp_mat[k]=0;
+ temp_mat2[k]=0;
+ }
+ }
+
+ // ***************************** //
+ // **** ADD YOUR CODE HERE ***** //
+ // ***************************** //
+ //
+ // feel free to make a separate function for MI and MSI versions.
+
+}
+
+//--------------------------------------------------------------------------
+// Main
+//
+// all threads start executing thread_entry(). Use their "coreid" to
+// differentiate between threads (each thread is running on a separate core).
+
+void thread_entry(int cid, int nc)
+{
+ coreid = cid;
+ ncores = nc;
+
+ // static allocates data in the binary, which is visible to both threads
+ static data_t results_data[ARRAY_SIZE];
+
+
+ // Execute the provided, naive matmul
+ barrier();
+ stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+
+
+ // verify
+ verify(ARRAY_SIZE, results_data, verify_data);
+
+ // clear results from the first trial
+ size_t i;
+ if (coreid == 0)
+ for (i=0; i < ARRAY_SIZE; i++)
+ results_data[i] = 0;
+ barrier();
+
+
+ // Execute your faster matmul
+ barrier();
+ stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+
+#ifdef DEBUG
+ printArray("results:", ARRAY_SIZE, results_data);
+ printArray("verify :", ARRAY_SIZE, verify_data);
+#endif
+
+ // verify
+ verify(ARRAY_SIZE, results_data, verify_data);
+ barrier();
+
+ exit(0);
+}
+
diff --git a/mt/am_matmul/matmul_msi.c~ b/mt/am_matmul/matmul_msi.c~
new file mode 100755
index 0000000..61016a7
--- /dev/null
+++ b/mt/am_matmul/matmul_msi.c~
@@ -0,0 +1,210 @@
+//**************************************************************************
+// Multi-threaded Matrix Multiply benchmark
+//--------------------------------------------------------------------------
+// TA : Christopher Celio
+// Student:
+//
+//
+// This benchmark multiplies two 2-D arrays together and writes the results to
+// a third vector. The input data (and reference data) should be generated
+// using the matmul_gendata.pl perl script and dumped to a file named
+// dataset.h.
+
+
+// print out arrays, etc.
+//#define DEBUG
+
+//--------------------------------------------------------------------------
+// Includes
+
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+
+//--------------------------------------------------------------------------
+// Input/Reference Data
+
+typedef float data_t;
+#include "dataset.h"
+
+
+//--------------------------------------------------------------------------
+// Basic Utilities and Multi-thread Support
+
+__thread unsigned long coreid;
+unsigned long ncores;
+
+#include "util.h"
+
+#define stringify_1(s) #s
+#define stringify(s) stringify_1(s)
+#define stats(code) do { \
+ unsigned long _c = -rdcycle(), _i = -rdinstret(); \
+ code; \
+ _c += rdcycle(), _i += rdinstret(); \
+ if (coreid == 0) \
+ printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
+ stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
+ } while(0)
+
+
+//--------------------------------------------------------------------------
+// Helper functions
+
+void printArray( char name[], int n, data_t arr[] )
+{
+ int i;
+ if (coreid != 0)
+ return;
+
+ printf( " %10s :", name );
+ for ( i = 0; i < n; i++ )
+ printf( " %3ld ", (long) arr[i] );
+ printf( "\n" );
+}
+
+void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct)
+{
+ if (coreid != 0)
+ return;
+
+ size_t i;
+ for (i = 0; i < n; i++)
+ {
+ if (test[i] != correct[i])
+ {
+ printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n",
+ i, (long)test[i], i, (long)correct[i]);
+ exit(-1);
+ }
+ }
+
+ return;
+}
+
+//--------------------------------------------------------------------------
+// matmul function
+
+// single-thread, naive version
+void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] )
+{
+ int i, j, k;
+
+ if (coreid > 0)
+ return;
+
+ for ( i = 0; i < lda; i++ )
+ for ( j = 0; j < lda; j++ )
+ {
+ for ( k = 0; k < lda; k++ )
+ {
+ C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
+ }
+ }
+
+}
+
+
+
+void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] )
+{
+ size_t i, j, k, l;
+ int row,row2, column, column2, column3, column4, column5, column6, column7, column8;
+ size_t max_dim = 32*32;
+ data_t element, element2, element3, element4, element5, element6, element7, element8;
+ data_t temp_mat[32]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ data_t temp_mat2[32]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ //for (i=coreid*max_dim/ncores; i<(max_dim/ncores+coreid*max_dim/ncores); i+=8){
+ for (l=coreid*32/ncores; l<32*(1+coreid)/ncores; l+=2){
+ row=l*32;
+ row2=(l+1)*32;
+ for (i=0; i<lda; i+=4){
+ element = A[row+i];
+ element2 = A[row+i+1];
+ element3 = A[row+i+2];
+ element4 = A[row+i+3];
+ element5 = A[row2+i];
+ element6 = A[row2+i+1];
+ element7 = A[row2+i+2];
+ element8 = A[row2+i+3];
+ column=i*32;
+ column2=(i+1)*32;
+ column3=(i+2)*32;
+ column4=(i+3)*32;
+ for (j=0; j<32; j+=4){
+ temp_mat[j]+=element*B[column+j]+element2*B[column2+j]+element3*B[column3+j]+element4*B[column4+j];
+ temp_mat[j+1]+=element*B[column+j+1]+element2*B[column2+j+1]+element3*B[column3+j+1]+element4*B[column4+j+1];
+ temp_mat[j+2]+=element*B[column+j+2]+element2*B[column2+j+2]+element3*B[column3+j+2]+element4*B[column4+j+2];
+ temp_mat[j+3]+=element*B[column+j+3]+element2*B[column2+j+3]+element3*B[column3+j+3]+element4*B[column4+j+3];
+ temp_mat2[j]+=element5*B[column+j]+element6*B[column2+j]+element7*B[column3+j]+element8*B[column4+j];
+ temp_mat2[j+1]+=element5*B[column+j+1]+element6*B[column2+j+1]+element7*B[column3+j+1]+element8*B[column4+j+1];
+ temp_mat2[j+2]+=element5*B[column+j+2]+element6*B[column2+j+2]+element7*B[column3+j+2]+element8*B[column4+j+2];
+ temp_mat2[j+3]+=element5*B[column+j+3]+element6*B[column2+j+3]+element7*B[column3+j+3]+element8*B[column4+j+3];
+ }
+ if (i==28){
+ for(k=0; k<32; k++){
+ C[row+k]=temp_mat[k];
+ C[row2+k]=temp_mat2[k];
+ temp_mat[k]=0;
+ temp_mat2[k]=0;
+ }
+ }
+ }
+ }
+
+ // ***************************** //
+ // **** ADD YOUR CODE HERE ***** //
+ // ***************************** //
+ //
+ // feel free to make a separate function for MI and MSI versions.
+
+}
+
+//--------------------------------------------------------------------------
+// Main
+//
+// all threads start executing thread_entry(). Use their "coreid" to
+// differentiate between threads (each thread is running on a separate core).
+
+void thread_entry(int cid, int nc)
+{
+ coreid = cid;
+ ncores = nc;
+
+ // static allocates data in the binary, which is visible to both threads
+ static data_t results_data[ARRAY_SIZE];
+
+
+ // Execute the provided, naive matmul
+ barrier();
+ stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+
+
+ // verify
+ verify(ARRAY_SIZE, results_data, verify_data);
+
+ // clear results from the first trial
+ size_t i;
+ if (coreid == 0)
+ for (i=0; i < ARRAY_SIZE; i++)
+ results_data[i] = 0;
+ barrier();
+
+
+ // Execute your faster matmul
+ barrier();
+ stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+
+#ifdef DEBUG
+ printArray("results:", ARRAY_SIZE, results_data);
+ printArray("verify :", ARRAY_SIZE, verify_data);
+#endif
+
+ // verify
+ verify(ARRAY_SIZE, results_data, verify_data);
+ barrier();
+
+ exit(0);
+}
+