aboutsummaryrefslogtreecommitdiff
path: root/riscv/processor.cc
blob: 843279b4444cbb6c06c58541d4b850c79a29fbb3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
// See LICENSE for license details.

#include "processor.h"
#include "common.h"
#include "config.h"
#include "sim.h"
#include "disasm.h"
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <iostream>
#include <assert.h>
#include <limits.h>

processor_t::processor_t(sim_t* _sim, mmu_t* _mmu, uint32_t _id)
  : sim(*_sim), mmu(*_mmu), id(_id), utidx(0)
{
  reset(true);

  // create microthreads
  for (int i=0; i<MAX_UTS; i++)
    uts[i] = new processor_t(&sim, &mmu, id, i);
}

processor_t::processor_t(sim_t* _sim, mmu_t* _mmu, uint32_t _id,
                         uint32_t _utidx)
  : sim(*_sim), mmu(*_mmu), id(_id)
{
  reset(true);
  set_pcr(PCR_SR, SR_U64 | SR_EF | SR_EV);
  utidx = _utidx;

  // microthreads don't possess their own microthreads
  for (int i=0; i<MAX_UTS; i++)
    uts[i] = NULL;
}

processor_t::~processor_t()
{
}

void processor_t::reset(bool value)
{
  if (run == !value)
    return;
  run = !value;

  // the ISA guarantees on boot that the PC is 0x2000 and the the processor
  // is in supervisor mode, and in 64-bit mode, if supported, with traps
  // and virtual memory disabled.
  sr = 0;
  set_pcr(PCR_SR, SR_S | SR_S64 | SR_IM);
  pc = 0x2000;

  // the following state is undefined upon boot-up,
  // but we zero it for determinism
  XPR.reset();
  FPR.reset();

  evec = 0;
  epc = 0;
  badvaddr = 0;
  cause = 0;
  pcr_k0 = 0;
  pcr_k1 = 0;
  count = 0;
  compare = 0;
  cycle = 0;
  set_fsr(0);

  // vector stuff
  vecbanks = 0xff;
  vecbanks_count = 8;
  utidx = -1;
  vlmax = 32;
  vl = 0;
  nxfpr_bank = 256;
  nxpr_use = 32;
  nfpr_use = 32;
}

void processor_t::set_fsr(uint32_t val)
{
  fsr = val & ~FSR_ZERO; // clear FSR bits that read as zero
}

void processor_t::vcfg()
{
  if (nxpr_use + nfpr_use < 2)
    vlmax = nxfpr_bank * vecbanks_count;
  else
    vlmax = (nxfpr_bank / (nxpr_use + nfpr_use - 1)) * vecbanks_count;

  vlmax = std::min(vlmax, MAX_UTS);
}

void processor_t::setvl(int vlapp)
{
  vl = std::min(vlmax, vlapp);
}

void processor_t::take_interrupt()
{
  uint32_t interrupts = (sr & SR_IP) >> SR_IP_SHIFT;
  interrupts &= (sr & SR_IM) >> SR_IM_SHIFT;

  if(interrupts && (sr & SR_ET))
    for(int i = 0; ; i++, interrupts >>= 1)
      if(interrupts & 1)
        throw interrupt_t(i);
}

void processor_t::step(size_t n, bool noisy)
{
  if(!run)
    return;

  size_t i = 0;
  try
  {
    take_interrupt();

    mmu_t& _mmu = mmu;
    reg_t npc = pc;

    // execute_insn fetches and executes one instruction
    #define execute_insn(noisy) \
      do { \
        mmu_t::insn_fetch_t fetch = _mmu.load_insn(npc, sr & SR_EC); \
        if(noisy) disasm(fetch.insn, npc); \
        npc = fetch.func(this, fetch.insn, npc); \
        pc = npc; \
      } while(0)

    if(noisy) for( ; i < n; i++) // print out instructions as we go
      execute_insn(true);
    else 
    {
      // unrolled for speed
      for( ; n > 3 && i < n-3; i+=4)
      {
        execute_insn(false);
        execute_insn(false);
        execute_insn(false);
        execute_insn(false);
      }
      for( ; i < n; i++)
        execute_insn(false);
    }
  }
  catch(trap_t t)
  {
    // an exception occurred in the target processor
    take_trap(t,noisy);
  }
  catch(interrupt_t t)
  {
    take_trap((1ULL << (8*sizeof(reg_t)-1)) + t.i, noisy);
  }
  catch(vt_command_t cmd)
  {
    // this microthread has finished
    assert(cmd == vt_command_stop);
  }

  cycle += i;

  // update timer and possibly register a timer interrupt
  uint32_t old_count = count;
  count += i;
  if(old_count < compare && uint64_t(old_count) + i >= compare)
    set_interrupt(IRQ_TIMER, true);
}

void processor_t::take_trap(reg_t t, bool noisy)
{
  if(noisy)
  {
    if ((sreg_t)t < 0)
      fprintf(stderr, "core %3d: interrupt %d, epc 0x%016" PRIx64 "\n",
              id, uint8_t(t), pc);
    else
      fprintf(stderr, "core %3d: trap %s, epc 0x%016" PRIx64 "\n",
              id, trap_name(trap_t(t)), pc);
  }

  // switch to supervisor, set previous supervisor bit, disable traps
  set_pcr(PCR_SR, (((sr & ~SR_ET) | SR_S) & ~SR_PS) | ((sr & SR_S) ? SR_PS : 0));
  cause = t;
  epc = pc;
  pc = evec;
  badvaddr = mmu.get_badvaddr();
}

void processor_t::deliver_ipi()
{
  if (run)
    set_pcr(PCR_CLR_IPI, 1);
}

void processor_t::disasm(insn_t insn, reg_t pc)
{
  // the disassembler is stateless, so we share it
  static disassembler disasm;
  fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx32 ") %s\n",
          id, pc, insn.bits, disasm.disassemble(insn).c_str());
}

void processor_t::set_pcr(int which, reg_t val)
{
  switch (which)
  {
    case PCR_SR:
      sr = (val & ~SR_IP) | (sr & SR_IP);
#ifndef RISCV_ENABLE_64BIT
      sr &= ~(SR_S64 | SR_U64);
#endif
#ifndef RISCV_ENABLE_FPU
      sr &= ~SR_EF;
#endif
#ifndef RISCV_ENABLE_RVC
      sr &= ~SR_EC;
#endif
#ifndef RISCV_ENABLE_VEC
      sr &= ~SR_EV;
#endif
      sr &= ~SR_ZERO;
      mmu.set_sr(sr);
      break;
    case PCR_EPC:
      epc = val;
      break;
    case PCR_EVEC: 
      evec = val;
      break;
    case PCR_COUNT:
      count = val;
      break;
    case PCR_COMPARE:
      set_interrupt(IRQ_TIMER, false);
      compare = val;
      break;
    case PCR_PTBR:
      mmu.set_ptbr(val);
      break;
    case PCR_SEND_IPI:
      sim.send_ipi(val);
      break;
    case PCR_CLR_IPI:
      set_interrupt(IRQ_IPI, val & 1);
      break;
    case PCR_K0:
      pcr_k0 = val;
      break;
    case PCR_K1:
      pcr_k1 = val;
      break;
    case PCR_VECBANK:
      vecbanks = val & 0xff;
      vecbanks_count = __builtin_popcountll(vecbanks);
      break;
    case PCR_TOHOST:
      if (tohost == 0)
        tohost = val;
      break;
    case PCR_FROMHOST:
      set_interrupt(IRQ_HOST, val != 0);
      fromhost = val;
      break;
  }
}

reg_t processor_t::get_pcr(int which)
{
  switch (which)
  {
    case PCR_SR:
      return sr;
    case PCR_EPC:
      return epc;
    case PCR_BADVADDR:
      return badvaddr;
    case PCR_EVEC:
      return evec;
    case PCR_COUNT:
      return count;
    case PCR_COMPARE:
      return compare;
    case PCR_CAUSE:
      return cause;
    case PCR_PTBR:
      return mmu.get_ptbr();
    case PCR_COREID:
      return id;
    case PCR_IMPL:
      return 1;
    case PCR_K0:
      return pcr_k0;
    case PCR_K1:
      return pcr_k1;
    case PCR_VECBANK:
      return vecbanks;
    case PCR_VECCFG:
      return nfpr_use << 18 | nxpr_use << 12 | vl;
    case PCR_TOHOST:
      return tohost;
    case PCR_FROMHOST:
      return fromhost;
  }
  return -1;
}

void processor_t::set_interrupt(int which, bool on)
{
  uint32_t mask = (1 << (which + SR_IP_SHIFT)) & SR_IP;
  if (on)
    sr |= mask;
  else
    sr &= ~mask;
}