aboutsummaryrefslogtreecommitdiff
path: root/riscv/processor.cc
blob: d937f2e481293cb7cceafdcffbaafb885e93e271 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
// See LICENSE for license details.

#include "processor.h"
#include "extension.h"
#include "common.h"
#include "config.h"
#include "sim.h"
#include "mmu.h"
#include "htif.h"
#include "disasm.h"
#include "gdbserver.h"
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <iostream>
#include <assert.h>
#include <limits.h>
#include <stdexcept>
#include <algorithm>

#undef STATE
#define STATE state

processor_t::processor_t(const char* isa, sim_t* sim, uint32_t id)
  : debug(false), sim(sim), ext(NULL), disassembler(new disassembler_t),
    id(id), run(false)
{
  parse_isa_string(isa);

  mmu = new mmu_t(sim, this);

  reset(true);

  register_base_instructions();
}

processor_t::~processor_t()
{
#ifdef RISCV_ENABLE_HISTOGRAM
  if (histogram_enabled)
  {
    fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
    for (auto it : pc_histogram)
      fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
  }
#endif

  delete mmu;
  delete disassembler;
}

static void bad_isa_string(const char* isa)
{
  fprintf(stderr, "error: bad --isa option %s\n", isa);
  abort();
}

void processor_t::parse_isa_string(const char* str)
{
  std::string lowercase, tmp;
  for (const char *r = str; *r; r++)
    lowercase += std::tolower(*r);

  const char* p = lowercase.c_str();
  const char* all_subsets = "imafdc";

  max_xlen = 64;
  isa = reg_t(2) << 62;

  if (strncmp(p, "rv32", 4) == 0)
    max_xlen = 32, isa = reg_t(1) << 30, p += 4;
  else if (strncmp(p, "rv64", 4) == 0)
    p += 4;
  else if (strncmp(p, "rv", 2) == 0)
    p += 2;

  if (!*p) {
    p = all_subsets;
  } else if (*p == 'g') { // treat "G" as "IMAFD"
    tmp = std::string("imafd") + (p+1);
    p = &tmp[0];
  } else if (*p != 'i') {
    bad_isa_string(str);
  }

  isa_string = "rv" + std::to_string(max_xlen) + p;
  isa |= 1L << ('s' - 'a'); // advertise support for supervisor mode

  while (*p) {
    isa |= 1L << (*p - 'a');

    if (auto next = strchr(all_subsets, *p)) {
      all_subsets = next + 1;
      p++;
    } else if (*p == 'x') {
      const char* ext = p+1, *end = ext;
      while (islower(*end))
        end++;
      register_extension(find_extension(std::string(ext, end - ext).c_str())());
      p = end;
    } else {
      bad_isa_string(str);
    }
  }

  if (supports_extension('D') && !supports_extension('F'))
    bad_isa_string(str);

  // advertise support for supervisor and user modes
  isa |= 1L << ('s' - 'a');
  isa |= 1L << ('u' - 'a');
}

void state_t::reset()
{
  memset(this, 0, sizeof(*this));
  prv = PRV_M;
  pc = DEFAULT_RSTVEC;
  mtvec = DEFAULT_MTVEC;
  load_reservation = -1;
}

void processor_t::set_debug(bool value)
{
  debug = value;
  if (ext)
    ext->set_debug(value);
}

void processor_t::set_histogram(bool value)
{
  histogram_enabled = value;
#ifndef RISCV_ENABLE_HISTOGRAM
  if (value) {
    fprintf(stderr, "PC Histogram support has not been properly enabled;");
    fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
  }
#endif
}

void processor_t::reset(bool value)
{
  if (run == !value)
    return;
  run = !value;

  state.reset();
  set_csr(CSR_MSTATUS, state.mstatus);

  if (ext)
    ext->reset(); // reset the extension
}

void processor_t::raise_interrupt(reg_t which)
{
  throw trap_t(((reg_t)1 << (max_xlen-1)) | which);
}

static int ctz(reg_t val)
{
  int res = 0;
  if (val)
    while ((val & 1) == 0)
      val >>= 1, res++;
  return res;
}

void processor_t::take_interrupt()
{
  reg_t pending_interrupts = state.mip & state.mie;

  reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
  reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
  reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;

  reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
  reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
  enabled_interrupts |= pending_interrupts & state.mideleg & -s_enabled;

  if (enabled_interrupts)
    raise_interrupt(ctz(enabled_interrupts));
}

static bool validate_priv(reg_t priv)
{
  return priv == PRV_U || priv == PRV_S || priv == PRV_M;
}

void processor_t::set_privilege(reg_t prv)
{
  assert(validate_priv(prv));
  mmu->flush_tlb();
  state.prv = prv;
}

void processor_t::enter_debug_mode(uint8_t cause)
{
  fprintf(stderr, "enter_debug_mode(%d)\n", cause);
  state.dcsr.cause = cause;
  state.dcsr.prv = state.prv;
  state.prv = PRV_M;
  state.dpc = state.pc;
  state.pc = DEBUG_ROM_START;
  debug = true; // TODO
}

void processor_t::take_trap(trap_t& t, reg_t epc)
{
  if (debug)
    fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
            id, t.name(), epc);

  if (t.cause() == CAUSE_BREAKPOINT &&
          sim->gdbserver && sim->gdbserver->connected()) {
    enter_debug_mode(DCSR_CAUSE_SWBP);
    return;
  }

  // by default, trap to M-mode, unless delegated to S-mode
  reg_t bit = t.cause();
  reg_t deleg = state.medeleg;
  if (bit & ((reg_t)1 << (max_xlen-1)))
    deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
  if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
    // handle the trap in S-mode
    state.pc = state.stvec;
    state.scause = t.cause();
    state.sepc = epc;
    if (t.has_badaddr())
      state.sbadaddr = t.get_badaddr();

    reg_t s = state.mstatus;
    s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_UIE << state.prv));
    s = set_field(s, MSTATUS_SPP, state.prv);
    s = set_field(s, MSTATUS_SIE, 0);
    set_csr(CSR_MSTATUS, s);
    set_privilege(PRV_S);
  } else {
    state.pc = state.mtvec;
    state.mcause = t.cause();
    state.mepc = epc;
    if (t.has_badaddr())
      state.mbadaddr = t.get_badaddr();

    reg_t s = state.mstatus;
    s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_UIE << state.prv));
    s = set_field(s, MSTATUS_MPP, state.prv);
    s = set_field(s, MSTATUS_MIE, 0);
    set_csr(CSR_MSTATUS, s);
    set_privilege(PRV_M);
  }

  yield_load_reservation();
}

void processor_t::disasm(insn_t insn)
{
  uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
  fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
          id, state.pc, bits, disassembler->disassemble(insn).c_str());
}

static bool validate_vm(int max_xlen, reg_t vm)
{
  if (max_xlen == 64 && (vm == VM_SV39 || vm == VM_SV48))
    return true;
  if (max_xlen == 32 && vm == VM_SV32)
    return true;
  return vm == VM_MBARE;
}

void processor_t::set_csr(int which, reg_t val)
{
  val = zext_xlen(val);
  reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
  reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
  switch (which)
  {
    case CSR_FFLAGS:
      dirty_fp_state;
      state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
      break;
    case CSR_FRM:
      dirty_fp_state;
      state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
      break;
    case CSR_FCSR:
      dirty_fp_state;
      state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
      state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
      break;
    case CSR_MSTATUS: {
      if ((val ^ state.mstatus) &
          (MSTATUS_VM | MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_PUM))
        mmu->flush_tlb();

      reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
                 | MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_PUM
                 | (ext ? MSTATUS_XS : 0);

      if (validate_vm(max_xlen, get_field(val, MSTATUS_VM)))
        mask |= MSTATUS_VM;
      if (validate_priv(get_field(val, MSTATUS_MPP)))
        mask |= MSTATUS_MPP;

      state.mstatus = (state.mstatus & ~mask) | (val & mask);

      bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
      dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
      if (max_xlen == 32)
        state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
      else
        state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);

      // spike supports the notion of xlen < max_xlen, but current priv spec
      // doesn't provide a mechanism to run RV32 software on an RV64 machine
      xlen = max_xlen;
      break;
    }
    case CSR_MIP: {
      reg_t mask = MIP_SSIP | MIP_STIP;
      state.mip = (state.mip & ~mask) | (val & mask);
      break;
    }
    case CSR_MIE:
      state.mie = (state.mie & ~all_ints) | (val & all_ints);
      break;
    case CSR_MIDELEG:
      state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
      break;
    case CSR_MEDELEG: {
      reg_t mask = 0;
#define DECLARE_CAUSE(name, value) mask |= 1ULL << (value);
#include "encoding.h"
#undef DECLARE_CAUSE
      state.medeleg = (state.medeleg & ~mask) | (val & mask);
      break;
    }
    case CSR_MUCOUNTEREN:
      state.mucounteren = val & 7;
      break;
    case CSR_MSCOUNTEREN:
      state.mscounteren = val & 7;
      break;
    case CSR_SSTATUS: {
      reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
                 | SSTATUS_XS | SSTATUS_PUM;
      return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
    }
    case CSR_SIP:
      return set_csr(CSR_MIP,
                     (state.mip & ~state.mideleg) | (val & state.mideleg));
    case CSR_SIE:
      return set_csr(CSR_MIE,
                     (state.mie & ~state.mideleg) | (val & state.mideleg));
    case CSR_SEPC: state.sepc = val; break;
    case CSR_STVEC: state.stvec = val >> 2 << 2; break;
    case CSR_SPTBR: state.sptbr = val; break;
    case CSR_SSCRATCH: state.sscratch = val; break;
    case CSR_SCAUSE: state.scause = val; break;
    case CSR_SBADADDR: state.sbadaddr = val; break;
    case CSR_MEPC: state.mepc = val; break;
    case CSR_MTVEC: state.mtvec = val >> 2 << 2; break;
    case CSR_MSCRATCH: state.mscratch = val; break;
    case CSR_MCAUSE: state.mcause = val; break;
    case CSR_MBADADDR: state.mbadaddr = val; break;
    case DCSR_ADDRESS:
      // TODO: Use get_field style
      state.dcsr.prv = (val & DCSR_PRV_MASK) >> DCSR_PRV_OFFSET;
      state.dcsr.step = (val & DCSR_STEP_MASK) >> DCSR_STEP_OFFSET;
      // TODO: ndreset and fullreset
      state.dcsr.ebreakm = (val & DCSR_EBREAKM_MASK) >> DCSR_EBREAKM_OFFSET;
      state.dcsr.ebreakh = (val & DCSR_EBREAKH_MASK) >> DCSR_EBREAKH_OFFSET;
      state.dcsr.ebreaks = (val & DCSR_EBREAKS_MASK) >> DCSR_EBREAKS_OFFSET;
      state.dcsr.ebreaku = (val & DCSR_EBREAKU_MASK) >> DCSR_EBREAKU_OFFSET;
      state.dcsr.halt = (val & DCSR_HALT_MASK) >> DCSR_HALT_OFFSET;
      break;
    case DPC_ADDRESS:
      state.dpc = val;
      break;
    case DSCRATCH_ADDRESS:
      state.dscratch = val;
      break;
  }
}

reg_t processor_t::get_csr(int which)
{
  switch (which)
  {
    case CSR_FFLAGS:
      require_fp;
      if (!supports_extension('F'))
        break;
      return state.fflags;
    case CSR_FRM:
      require_fp;
      if (!supports_extension('F'))
        break;
      return state.frm;
    case CSR_FCSR:
      require_fp;
      if (!supports_extension('F'))
        break;
      return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
    case CSR_TIME:
    case CSR_INSTRET:
    case CSR_CYCLE:
      if ((state.mucounteren >> (which & (xlen-1))) & 1)
        return get_csr(which + (CSR_MCYCLE - CSR_CYCLE));
      break;
    case CSR_STIME:
    case CSR_SINSTRET:
    case CSR_SCYCLE:
      if ((state.mscounteren >> (which & (xlen-1))) & 1)
        return get_csr(which + (CSR_MCYCLE - CSR_SCYCLE));
      break;
    case CSR_MUCOUNTEREN: return state.mucounteren;
    case CSR_MSCOUNTEREN: return state.mscounteren;
    case CSR_MUCYCLE_DELTA: return 0;
    case CSR_MUTIME_DELTA: return 0;
    case CSR_MUINSTRET_DELTA: return 0;
    case CSR_MSCYCLE_DELTA: return 0;
    case CSR_MSTIME_DELTA: return 0;
    case CSR_MSINSTRET_DELTA: return 0;
    case CSR_MUCYCLE_DELTAH: if (xlen > 32) break; else return 0;
    case CSR_MUTIME_DELTAH: if (xlen > 32) break; else return 0;
    case CSR_MUINSTRET_DELTAH: if (xlen > 32) break; else return 0;
    case CSR_MSCYCLE_DELTAH: if (xlen > 32) break; else return 0;
    case CSR_MSTIME_DELTAH: if (xlen > 32) break; else return 0;
    case CSR_MSINSTRET_DELTAH: if (xlen > 32) break; else return 0;
    case CSR_MCYCLE: return state.minstret;
    case CSR_MINSTRET: return state.minstret;
    case CSR_MCYCLEH: if (xlen > 32) break; else return state.minstret >> 32;
    case CSR_MINSTRETH: if (xlen > 32) break; else return state.minstret >> 32;
    case CSR_SSTATUS: {
      reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
                 | SSTATUS_XS | SSTATUS_PUM;
      reg_t sstatus = state.mstatus & mask;
      if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
          (sstatus & SSTATUS_XS) == SSTATUS_XS)
        sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
      return sstatus;
    }
    case CSR_SIP: return state.mip & state.mideleg;
    case CSR_SIE: return state.mie & state.mideleg;
    case CSR_SEPC: return state.sepc;
    case CSR_SBADADDR: return state.sbadaddr;
    case CSR_STVEC: return state.stvec;
    case CSR_SCAUSE:
      if (max_xlen > xlen)
        return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
      return state.scause;
    case CSR_SPTBR: return state.sptbr;
    case CSR_SASID: return 0;
    case CSR_SSCRATCH: return state.sscratch;
    case CSR_MSTATUS: return state.mstatus;
    case CSR_MIP: return state.mip;
    case CSR_MIE: return state.mie;
    case CSR_MEPC: return state.mepc;
    case CSR_MSCRATCH: return state.mscratch;
    case CSR_MCAUSE: return state.mcause;
    case CSR_MBADADDR: return state.mbadaddr;
    case CSR_MISA: return isa;
    case CSR_MARCHID: return 0;
    case CSR_MIMPID: return 0;
    case CSR_MVENDORID: return 0;
    case CSR_MHARTID: return id;
    case CSR_MTVEC: return state.mtvec;
    case CSR_MEDELEG: return state.medeleg;
    case CSR_MIDELEG: return state.mideleg;
    case DCSR_ADDRESS:
      {
        uint32_t value =
          (1 << DCSR_XDEBUGVER_OFFSET) |
          (0 << DCSR_HWBPCOUNT_OFFSET) |
          (0 << DCSR_NDRESET_OFFSET) |
          (0 << DCSR_FULLRESET_OFFSET) |
          (state.dcsr.prv << DCSR_PRV_OFFSET) |
          (state.dcsr.step << DCSR_STEP_OFFSET) |
          (sim->debug_module.get_interrupt(id) << DCSR_DEBUGINT_OFFSET) |
          (0 << DCSR_STOPCYCLE_OFFSET) |
          (0 << DCSR_STOPTIME_OFFSET) |
          (state.dcsr.ebreakm << DCSR_EBREAKM_OFFSET) |
          (state.dcsr.ebreakh << DCSR_EBREAKH_OFFSET) |
          (state.dcsr.ebreaks << DCSR_EBREAKS_OFFSET) |
          (state.dcsr.ebreaku << DCSR_EBREAKU_OFFSET) |
          (state.dcsr.halt << DCSR_HALT_OFFSET) |
          (state.dcsr.cause << DCSR_CAUSE_OFFSET);
        return value;
      }
    case DPC_ADDRESS:
      return state.dpc;
    case DSCRATCH_ADDRESS:
      return state.dscratch;
  }
  throw trap_illegal_instruction();
}

reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
{
  throw trap_illegal_instruction();
}

insn_func_t processor_t::decode_insn(insn_t insn)
{
  // look up opcode in hash table
  size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
  insn_desc_t desc = opcode_cache[idx];

  if (unlikely(insn.bits() != desc.match)) {
    // fall back to linear search
    insn_desc_t* p = &instructions[0];
    while ((insn.bits() & p->mask) != p->match)
      p++;
    desc = *p;

    if (p->mask != 0 && p > &instructions[0]) {
      if (p->match != (p-1)->match && p->match != (p+1)->match) {
        // move to front of opcode list to reduce miss penalty
        while (--p >= &instructions[0])
          *(p+1) = *p;
        instructions[0] = desc;
      }
    }

    opcode_cache[idx] = desc;
    opcode_cache[idx].match = insn.bits();
  }

  return xlen == 64 ? desc.rv64 : desc.rv32;
}

void processor_t::register_insn(insn_desc_t desc)
{
  instructions.push_back(desc);
}

void processor_t::build_opcode_map()
{
  struct cmp {
    bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
      if (lhs.match == rhs.match)
        return lhs.mask > rhs.mask;
      return lhs.match > rhs.match;
    }
  };
  std::sort(instructions.begin(), instructions.end(), cmp());

  for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
    opcode_cache[i] = {1, 0, &illegal_instruction, &illegal_instruction};
}

void processor_t::register_extension(extension_t* x)
{
  for (auto insn : x->get_instructions())
    register_insn(insn);
  build_opcode_map();
  for (auto disasm_insn : x->get_disasms())
    disassembler->add_insn(disasm_insn);
  if (ext != NULL)
    throw std::logic_error("only one extension may be registered");
  ext = x;
  x->set_processor(this);
}

void processor_t::register_base_instructions()
{
  #define DECLARE_INSN(name, match, mask) \
    insn_bits_t name##_match = (match), name##_mask = (mask);
  #include "encoding.h"
  #undef DECLARE_INSN

  #define DEFINE_INSN(name) \
    REGISTER_INSN(this, name, name##_match, name##_mask)
  #include "insn_list.h"
  #undef DEFINE_INSN

  register_insn({0, 0, &illegal_instruction, &illegal_instruction});
  build_opcode_map();
}

bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
{
  return false;
}

bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
{
  switch (addr)
  {
    case 0:
      state.mip &= ~MIP_MSIP;
      if (bytes[0] & 1)
        state.mip |= MIP_MSIP;
      return true;

    default:
      return false;
  }
}