aboutsummaryrefslogtreecommitdiff
path: root/riscv/jtag_dtm.cc
blob: 9ca38afbed77bdf461da454e671ffef8a74875c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#include <stdio.h>

#include "decode.h"
#include "jtag_dtm.h"
#include "debug_module.h"
#include "debug_defines.h"

#if 0
#  define D(x) x
#else
#  define D(x)
#endif

enum {
  IR_IDCODE=1,
  IR_DTMCONTROL=0x10,
  IR_DBUS=0x11,
  IR_BYPASS=0x1f
};

#define DTMCONTROL_VERSION      0xf
#define DTMCONTROL_ABITS        (0x3f << 4)
#define DTMCONTROL_DMISTAT      (3<<10)
#define DTMCONTROL_IDLE         (7<<12)
#define DTMCONTROL_DMIRESET     (1<<16)
#define DTMCONTROL_DMIHARDRESET (1<<17)

#define DMI_OP                 3
#define DMI_DATA               (0xffffffffLL<<2)
#define DMI_ADDRESS            ((1LL<<(abits+34)) - (1LL<<34))

#define DMI_OP_STATUS_SUCCESS	0
#define DMI_OP_STATUS_RESERVED	1
#define DMI_OP_STATUS_FAILED	2
#define DMI_OP_STATUS_BUSY	3

#define DMI_OP_NOP	        0
#define DMI_OP_READ	        1
#define DMI_OP_WRITE	        2
#define DMI_OP_RESERVED	        3

jtag_dtm_t::jtag_dtm_t(debug_module_t *dm, unsigned required_rti_cycles) :
  dm(dm), required_rti_cycles(required_rti_cycles),
  _tck(false), _tms(false), _tdi(false), _tdo(false),
  dtmcontrol((abits << DTM_DTMCS_ABITS_OFFSET) | 1),
  dmi(DMI_OP_STATUS_SUCCESS << DTM_DMI_OP_OFFSET),
  bypass(0),
  _state(TEST_LOGIC_RESET)
{
}

void jtag_dtm_t::reset() {
  _state = TEST_LOGIC_RESET;
  busy_stuck = false;
  rti_remaining = 0;
  dmi = 0;
}

void jtag_dtm_t::set_pins(bool tck, bool tms, bool tdi) {
  const jtag_state_t next[16][2] = {
    /* TEST_LOGIC_RESET */    { RUN_TEST_IDLE, TEST_LOGIC_RESET },
    /* RUN_TEST_IDLE */       { RUN_TEST_IDLE, SELECT_DR_SCAN },
    /* SELECT_DR_SCAN */      { CAPTURE_DR, SELECT_IR_SCAN },
    /* CAPTURE_DR */          { SHIFT_DR, EXIT1_DR },
    /* SHIFT_DR */            { SHIFT_DR, EXIT1_DR },
    /* EXIT1_DR */            { PAUSE_DR, UPDATE_DR },
    /* PAUSE_DR */            { PAUSE_DR, EXIT2_DR },
    /* EXIT2_DR */            { SHIFT_DR, UPDATE_DR },
    /* UPDATE_DR */           { RUN_TEST_IDLE, SELECT_DR_SCAN },
    /* SELECT_IR_SCAN */      { CAPTURE_IR, TEST_LOGIC_RESET },
    /* CAPTURE_IR */          { SHIFT_IR, EXIT1_IR },
    /* SHIFT_IR */            { SHIFT_IR, EXIT1_IR },
    /* EXIT1_IR */            { PAUSE_IR, UPDATE_IR },
    /* PAUSE_IR */            { PAUSE_IR, EXIT2_IR },
    /* EXIT2_IR */            { SHIFT_IR, UPDATE_IR },
    /* UPDATE_IR */           { RUN_TEST_IDLE, SELECT_DR_SCAN }
  };

  if (!_tck && tck) {
    // Positive clock edge. TMS and TDI are sampled on the rising edge of TCK by
    // Target.
    switch (_state) {
      case SHIFT_DR:
        dr >>= 1;
        dr |= (uint64_t) _tdi << (dr_length-1);
        break;
      case SHIFT_IR:
        ir >>= 1;
        ir |= _tdi << (ir_length-1);
        break;
      default:
        break;
    }
    _state = next[_state][_tms];

  } else {
    // Negative clock edge. TDO is updated.
    switch (_state) {
      case RUN_TEST_IDLE:
        if (rti_remaining > 0)
          rti_remaining--;
        dm->run_test_idle();
        break;
      case TEST_LOGIC_RESET:
        ir = IR_IDCODE;
        break;
      case CAPTURE_DR:
        capture_dr();
        break;
      case SHIFT_DR:
        _tdo = dr & 1;
        break;
      case UPDATE_DR:
        update_dr();
        break;
      case SHIFT_IR:
        _tdo = ir & 1;
        break;
      default:
        break;
    }
  }

  D(fprintf(stderr, "state=%2d, tdi=%d, tdo=%d, tms=%d, tck=%d, ir=0x%02x, "
        "dr=0x%lx\n",
        _state, _tdi, _tdo, _tms, _tck, ir, dr));

  _tck = tck;
  _tms = tms;
  _tdi = tdi;
}

void jtag_dtm_t::capture_dr()
{
  switch (ir) {
    case IR_IDCODE:
      dr = idcode;
      dr_length = 32;
      break;
    case IR_DTMCONTROL:
      dr = dtmcontrol;
      dr_length = 32;
      break;
    case IR_DBUS:
      if (rti_remaining > 0 || busy_stuck) {
        dr = DMI_OP_STATUS_BUSY;
        busy_stuck = true;
      } else {
        dr = dmi;
      }
      dr_length = abits + 34;
      break;
    case IR_BYPASS:
      dr = bypass;
      dr_length = 1;
      break;
    default:
      fprintf(stderr, "Unsupported IR: 0x%x\n", ir);
      break;
  }
  D(fprintf(stderr, "Capture DR; IR=0x%x, DR=0x%lx (%d bits)\n",
        ir, dr, dr_length));
}

void jtag_dtm_t::update_dr()
{
  D(fprintf(stderr, "Update DR; IR=0x%x, DR=0x%lx (%d bits)\n",
        ir, dr, dr_length));
  if (ir == IR_DTMCONTROL) {
    if (dr & DTMCONTROL_DMIRESET)
      busy_stuck = false;
    if (dr & DTMCONTROL_DMIHARDRESET)
      reset();
  } else if (ir == IR_BYPASS) {
    bypass = dr;
  } else if (ir == IR_DBUS && !busy_stuck) {
    unsigned op = get_field(dr, DMI_OP);
    uint32_t data = get_field(dr, DMI_DATA);
    unsigned address = get_field(dr, DMI_ADDRESS);

    dmi = dr;

    bool success = true;
    if (op == DMI_OP_READ) {
      uint32_t value;
      if (dm->dmi_read(address, &value)) {
        dmi = set_field(dmi, DMI_DATA, value);
      } else {
        success = false;
      }
    } else if (op == DMI_OP_WRITE) {
      success = dm->dmi_write(address, data);
    }

    if (success) {
      dmi = set_field(dmi, DMI_OP, DMI_OP_STATUS_SUCCESS);
    } else {
      dmi = set_field(dmi, DMI_OP, DMI_OP_STATUS_FAILED);
    }
    D(fprintf(stderr, "dmi=0x%lx\n", dmi));

    rti_remaining = required_rti_cycles;
  }
}