1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
|
// See LICENSE for license details.
#ifndef _RISCV_DECODE_MACROS_H
#define _RISCV_DECODE_MACROS_H
#include "config.h"
#include "decode.h"
#include "encoding.h"
#include "common.h"
#include "softfloat_types.h"
#include "specialize.h"
// helpful macros, etc
#define MMU (*p->get_mmu())
#define STATE (*p->get_state())
#define FLEN (p->get_flen())
#define CHECK_REG(reg) ((void) 0)
#define READ_REG(reg) (CHECK_REG(reg), STATE.XPR[reg])
#define READ_FREG(reg) STATE.FPR[reg]
#define RD READ_REG(insn.rd())
#define RS1 READ_REG(insn.rs1())
#define RS2 READ_REG(insn.rs2())
#define RS3 READ_REG(insn.rs3())
#define WRITE_RD(value) WRITE_REG(insn.rd(), value)
/* 0 : int
* 1 : floating
* 2 : vector reg
* 3 : vector hint
* 4 : csr
*/
#define WRITE_REG(reg, value) ({ \
reg_t wdata = (value); /* value may have side effects */ \
if (DECODE_MACRO_USAGE_LOGGED) STATE.log_reg_write[(reg) << 4] = {wdata, 0}; \
CHECK_REG(reg); \
STATE.XPR.write(reg, wdata); \
})
#define WRITE_FREG(reg, value) ({ \
freg_t wdata = freg(value); /* value may have side effects */ \
if (DECODE_MACRO_USAGE_LOGGED) STATE.log_reg_write[((reg) << 4) | 1] = wdata; \
DO_WRITE_FREG(reg, wdata); \
})
#define WRITE_VSTATUS STATE.log_reg_write[3] = {0, 0};
/* the value parameter needs to be evaluated before writing to the registers */
#define WRITE_REG_PAIR(reg, value) \
if (reg != 0) { \
require((reg) % 2 == 0); \
uint64_t val = (value); \
WRITE_REG(reg, sext32(val)); \
WRITE_REG((reg) + 1, (sreg_t(val)) >> 32); \
}
// RVC macros
#define WRITE_RVC_RS1S(value) WRITE_REG(insn.rvc_rs1s(), value)
#define WRITE_RVC_RS2S(value) WRITE_REG(insn.rvc_rs2s(), value)
#define WRITE_RVC_FRS2S(value) WRITE_FREG(insn.rvc_rs2s(), value)
#define RVC_RS1 READ_REG(insn.rvc_rs1())
#define RVC_RS2 READ_REG(insn.rvc_rs2())
#define RVC_RS1S READ_REG(insn.rvc_rs1s())
#define RVC_RS2S READ_REG(insn.rvc_rs2s())
#define RVC_FRS2 READ_FREG(insn.rvc_rs2())
#define RVC_FRS2S READ_FREG(insn.rvc_rs2s())
#define RVC_SP READ_REG(X_SP)
// Zc* macros
#define RVC_R1S (Sn(insn.rvc_r1sc()))
#define RVC_R2S (Sn(insn.rvc_r2sc()))
#define SP READ_REG(X_SP)
#define RA READ_REG(X_RA)
// Zdinx macros
#define READ_REG_PAIR(reg) ({ \
require((reg) % 2 == 0); \
(reg) == 0 ? reg_t(0) : \
(READ_REG((reg) + 1) << 32) + zext32(READ_REG(reg)); })
#define RS1_PAIR READ_REG_PAIR(insn.rs1())
#define RS2_PAIR READ_REG_PAIR(insn.rs2())
#define RD_PAIR READ_REG_PAIR(insn.rd())
#define WRITE_RD_PAIR(value) WRITE_REG_PAIR(insn.rd(), value)
// Zilsd macros
#define WRITE_RD_D(value) (xlen == 32 ? WRITE_RD_PAIR(value) : WRITE_RD(value))
// Zcmlsd macros
#define WRITE_RVC_RS2S_PAIR(value) WRITE_REG_PAIR(insn.rvc_rs2s(), value)
#define RVC_RS2S_PAIR READ_REG_PAIR(insn.rvc_rs2s())
#define RVC_RS2_PAIR READ_REG_PAIR(insn.rvc_rs2())
// FPU macros
#define READ_ZDINX_REG(reg) (xlen == 32 ? f64(READ_REG_PAIR(reg)) : f64(STATE.XPR[reg] & (uint64_t)-1))
#define READ_FREG_H(reg) (p->extension_enabled(EXT_ZFINX) ? f16(STATE.XPR[reg] & (uint16_t)-1) : f16(READ_FREG(reg)))
#define READ_FREG_BF(reg) (p->extension_enabled(EXT_ZFINX) ? bf16(STATE.XPR[reg] & (uint16_t)-1) : bf16(READ_FREG(reg)))
#define READ_FREG_F(reg) (p->extension_enabled(EXT_ZFINX) ? f32(STATE.XPR[reg] & (uint32_t)-1) : f32(READ_FREG(reg)))
#define READ_FREG_D(reg) (p->extension_enabled(EXT_ZFINX) ? READ_ZDINX_REG(reg) : f64(READ_FREG(reg)))
#define FRS1 READ_FREG(insn.rs1())
#define FRS2 READ_FREG(insn.rs2())
#define FRS3 READ_FREG(insn.rs3())
#define FRS1_H READ_FREG_H(insn.rs1())
#define FRS1_BF READ_FREG_BF(insn.rs1())
#define FRS1_F READ_FREG_F(insn.rs1())
#define FRS1_D READ_FREG_D(insn.rs1())
#define FRS2_H READ_FREG_H(insn.rs2())
#define FRS2_F READ_FREG_F(insn.rs2())
#define FRS2_D READ_FREG_D(insn.rs2())
#define FRS3_H READ_FREG_H(insn.rs3())
#define FRS3_F READ_FREG_F(insn.rs3())
#define FRS3_D READ_FREG_D(insn.rs3())
#define dirty_fp_state STATE.sstatus->dirty(SSTATUS_FS)
#define dirty_ext_state STATE.sstatus->dirty(SSTATUS_XS)
#define dirty_vs_state STATE.sstatus->dirty(SSTATUS_VS)
#define DO_WRITE_FREG(reg, value) (STATE.FPR.write(reg, value), dirty_fp_state)
#define WRITE_FRD(value) WRITE_FREG(insn.rd(), value)
#define WRITE_FRD_H(value) \
do { \
if (p->extension_enabled(EXT_ZFINX)) \
WRITE_REG(insn.rd(), sext_xlen((int16_t)((value).v))); \
else { \
WRITE_FRD(value); \
} \
} while (0)
#define WRITE_FRD_BF WRITE_FRD_H
#define WRITE_FRD_F(value) \
do { \
if (p->extension_enabled(EXT_ZFINX)) \
WRITE_REG(insn.rd(), sext_xlen((value).v)); \
else { \
WRITE_FRD(value); \
} \
} while (0)
#define WRITE_FRD_D(value) \
do { \
if (p->extension_enabled(EXT_ZFINX)) { \
if (xlen == 32) { \
WRITE_RD_PAIR((value).v); \
} else { \
WRITE_REG(insn.rd(), (value).v); \
} \
} else { \
WRITE_FRD(value); \
} \
} while (0)
#define SHAMT (insn.i_imm() & 0x3F)
#define BRANCH_TARGET (pc + insn.sb_imm())
#define JUMP_TARGET (pc + insn.uj_imm())
#define RM ({ int rm = insn.rm(); \
if (rm == 7) rm = STATE.frm->read(); \
if (rm > 4) throw trap_illegal_instruction(insn.bits()); \
rm; })
static inline bool is_aligned(const unsigned val, const unsigned pos)
{
return pos ? (val & (pos - 1)) == 0 : true;
}
#define require_privilege(p) require(STATE.prv >= (p))
#define require_novirt() (unlikely(STATE.v) ? throw trap_virtual_instruction(insn.bits()) : (void) 0)
#define require_hs_qualified(cond) (STATE.v && !(cond) ? require_novirt() : require(cond))
#define require_privilege_hs_qualified(p) require_hs_qualified(STATE.prv >= (p))
#define require_rv64 require(xlen == 64)
#define require_rv32 require(xlen == 32)
#define require_extension(s) require(p->extension_enabled(s))
#define require_either_extension(A,B) require(p->extension_enabled(A) || p->extension_enabled(B));
#define require_impl(s) require(p->supports_impl(s))
#define require_fs require(STATE.sstatus->enabled(SSTATUS_FS))
#define require_fp STATE.fflags->verify_permissions(insn, false)
#define require_accelerator require(STATE.sstatus->enabled(SSTATUS_XS))
#define require_vector_vs require(p->any_vector_extensions() && STATE.sstatus->enabled(SSTATUS_VS))
#define require_vector(alu) \
do { \
require_vector_vs; \
require(!P.VU.vill); \
if (alu && !P.VU.vstart_alu) \
require(P.VU.vstart->read() == 0); \
WRITE_VSTATUS; \
dirty_vs_state; \
} while (0);
#define require_vector_novtype(is_log) \
do { \
require_vector_vs; \
if (is_log) \
WRITE_VSTATUS; \
dirty_vs_state; \
} while (0);
#define require_align(val, pos) require(is_aligned(val, pos))
#define require_noover(astart, asize, bstart, bsize) \
require(!is_overlapped(astart, asize, bstart, bsize))
#define require_noover_widen(astart, asize, bstart, bsize) \
require(!is_overlapped_widen(astart, asize, bstart, bsize))
#define require_vm do { if (insn.v_vm() == 0) require(insn.rd() != 0); } while (0);
#define require_envcfg(field) \
do { \
if (((STATE.prv != PRV_M) && (m##field == 0)) || \
((STATE.prv == PRV_U && !STATE.v) && (s##field == 0))) \
throw trap_illegal_instruction(insn.bits()); \
else if (STATE.v && ((h##field == 0) || \
((STATE.prv == PRV_U) && (s##field == 0)))) \
throw trap_virtual_instruction(insn.bits()); \
} while (0);
#define require_zcmp_pushpop \
do { \
require_extension(EXT_ZCMP); \
reg_t rlist = insn.rvc_rlist(); \
require(rlist >= 4); \
\
if (p->extension_enabled('E')) { \
require(rlist <= 6); \
} \
} while (0);
#define raise_fp_exceptions(flags) do { if (flags) STATE.fflags->write(STATE.fflags->read() | (flags)); } while (0);
#define set_fp_exceptions \
do { \
raise_fp_exceptions(softfloat_exceptionFlags); \
softfloat_exceptionFlags = 0; \
} while (0);
#define sext32(x) ((sreg_t)(int32_t)(x))
#define zext32(x) ((reg_t)(uint32_t)(x))
#define sext(x, pos) (((sreg_t)(x) << (64 - (pos))) >> (64 - (pos)))
#define zext(x, pos) (((reg_t)(x) << (64 - (pos))) >> (64 - (pos)))
#define sext_xlen(x) sext(x, xlen)
#define zext_xlen(x) zext(x, xlen)
#define set_pc(x) \
do { p->check_pc_alignment(x); \
npc = sext_xlen(x); \
} while (0)
#define set_pc_and_serialize(x) \
do { reg_t __npc = (x) & p->pc_alignment_mask(); \
npc = PC_SERIALIZE_AFTER; \
STATE.pc = __npc; \
} while (0)
class wait_for_interrupt_t {};
#define wfi() \
do { set_pc_and_serialize(npc); \
throw wait_for_interrupt_t(); \
} while (0)
#define serialize() set_pc_and_serialize(npc)
/* Sentinel PC values to serialize simulator pipeline */
#define PC_SERIALIZE_BEFORE 3
#define PC_SERIALIZE_AFTER 5
#define invalid_pc(pc) ((pc) & 1)
/* Convenience wrappers to simplify softfloat code sequences */
#define isBoxedF16(r) (isBoxedF32(r) && ((uint64_t)((r.v[0] >> 16) + 1) == ((uint64_t)1 << 48)))
#define unboxF16(r) (isBoxedF16(r) ? (uint16_t)r.v[0] : defaultNaNF16UI)
#define isBoxedBF16(r) isBoxedF16(r)
#define unboxBF16(r) (isBoxedBF16(r) ? (uint16_t)r.v[0] : defaultNaNBF16UI)
#define isBoxedF32(r) (isBoxedF64(r) && ((uint32_t)((r.v[0] >> 32) + 1) == 0))
#define unboxF32(r) (isBoxedF32(r) ? (uint32_t)r.v[0] : defaultNaNF32UI)
#define isBoxedF64(r) ((r.v[1] + 1) == 0)
#define unboxF64(r) (isBoxedF64(r) ? r.v[0] : defaultNaNF64UI)
inline float16_t f16(uint16_t v) { return { v }; }
inline bfloat16_t bf16(uint16_t v) { return { v }; }
inline float32_t f32(uint32_t v) { return { v }; }
inline float64_t f64(uint64_t v) { return { v }; }
inline float16_t f16(freg_t r) { return f16(unboxF16(r)); }
inline bfloat16_t bf16(freg_t r) { return bf16(unboxBF16(r)); }
inline float32_t f32(freg_t r) { return f32(unboxF32(r)); }
inline float64_t f64(freg_t r) { return f64(unboxF64(r)); }
inline float128_t f128(freg_t r) { return r; }
inline freg_t freg(float16_t f) { return { ((uint64_t)-1 << 16) | f.v, (uint64_t)-1 }; }
inline freg_t freg(float32_t f) { return { ((uint64_t)-1 << 32) | f.v, (uint64_t)-1 }; }
inline freg_t freg(float64_t f) { return { f.v, (uint64_t)-1 }; }
inline freg_t freg(float128_t f) { return f; }
#define F16_SIGN ((uint16_t)1 << 15)
#define F32_SIGN ((uint32_t)1 << 31)
#define F64_SIGN ((uint64_t)1 << 63)
#define fsgnj16(a, b, n, x) \
f16((f16(a).v & ~F16_SIGN) | ((((x) ? f16(a).v : (n) ? F16_SIGN : 0) ^ f16(b).v) & F16_SIGN))
#define fsgnj32(a, b, n, x) \
f32((f32(a).v & ~F32_SIGN) | ((((x) ? f32(a).v : (n) ? F32_SIGN : 0) ^ f32(b).v) & F32_SIGN))
#define fsgnj64(a, b, n, x) \
f64((f64(a).v & ~F64_SIGN) | ((((x) ? f64(a).v : (n) ? F64_SIGN : 0) ^ f64(b).v) & F64_SIGN))
#define isNaNF128(x) isNaNF128UI(x.v[1], x.v[0])
inline float128_t defaultNaNF128()
{
float128_t nan;
nan.v[1] = defaultNaNF128UI64;
nan.v[0] = defaultNaNF128UI0;
return nan;
}
inline freg_t fsgnj128(freg_t a, freg_t b, bool n, bool x)
{
a.v[1] = (a.v[1] & ~F64_SIGN) | (((x ? a.v[1] : n ? F64_SIGN : 0) ^ b.v[1]) & F64_SIGN);
return a;
}
inline freg_t f128_negate(freg_t a)
{
a.v[1] ^= F64_SIGN;
return a;
}
#define validate_csr(which, write) ({ \
if (!STATE.serialized) return PC_SERIALIZE_BEFORE; \
STATE.serialized = false; \
/* permissions check occurs in get_csr */ \
(which); })
/* For debug only. This will fail if the native machine's float types are not IEEE */
inline float to_f(float32_t f) { float r; memcpy(&r, &f, sizeof(r)); return r; }
inline double to_f(float64_t f) { double r; memcpy(&r, &f, sizeof(r)); return r; }
inline long double to_f(float128_t f) { long double r; memcpy(&r, &f, sizeof(r)); return r; }
// Vector macros
#define e8 8 // 8b elements
#define e16 16 // 16b elements
#define e32 32 // 32b elements
#define e64 64 // 64b elements
#define e128 128 // 128b elements
#define e256 256 // 256b elements
#define e512 512 // 512b elements
#define e1024 1024 // 1024b elements
#define vsext(x, sew) (((sreg_t)(x) << (64 - sew)) >> (64 - sew))
#define vzext(x, sew) (((reg_t)(x) << (64 - sew)) >> (64 - sew))
#define DEBUG_RVV 0
#if DEBUG_RVV
#define DEBUG_RVV_FP_VV \
printf("vfp(%lu) vd=%f vs1=%f vs2=%f\n", i, to_f(vd), to_f(vs1), to_f(vs2));
#define DEBUG_RVV_FP_VF \
printf("vfp(%lu) vd=%f vs1=%f vs2=%f\n", i, to_f(vd), to_f(rs1), to_f(vs2));
#define DEBUG_RVV_FMA_VV \
printf("vfma(%lu) vd=%f vs1=%f vs2=%f vd_old=%f\n", i, to_f(vd), to_f(vs1), to_f(vs2), to_f(vd_old));
#define DEBUG_RVV_FMA_VF \
printf("vfma(%lu) vd=%f vs1=%f vs2=%f vd_old=%f\n", i, to_f(vd), to_f(rs1), to_f(vs2), to_f(vd_old));
#else
#define DEBUG_RVV_FP_VV 0
#define DEBUG_RVV_FP_VF 0
#define DEBUG_RVV_FMA_VV 0
#define DEBUG_RVV_FMA_VF 0
#endif
#define DECLARE_XENVCFG_VARS(field) \
reg_t m##field = get_field(STATE.menvcfg->read(), MENVCFG_##field); \
reg_t s##field = get_field(STATE.senvcfg->read(), SENVCFG_##field); \
reg_t h##field = get_field(STATE.henvcfg->read(), HENVCFG_##field)
#endif
#define software_check(x, tval) (unlikely(!(x)) ? throw trap_software_check(tval) : (void) 0)
#define ZICFILP_xLPE(v, prv) \
({ \
reg_t lpe = 0ULL; \
if (p->extension_enabled(EXT_ZICFILP)) { \
DECLARE_XENVCFG_VARS(LPE); \
const reg_t msecLPE = get_field(STATE.mseccfg->read(), MSECCFG_MLPE); \
switch (prv) { \
case PRV_U: lpe = p->extension_enabled('S') ? sLPE : mLPE; break; \
case PRV_S: lpe = (v) ? hLPE : mLPE; break; \
case PRV_M: lpe = msecLPE; break; \
default: abort(); \
} \
} \
lpe; \
})
#define ZICFILP_IS_LP_EXPECTED(reg_num) \
(((reg_num) != 1 && (reg_num) != 5 && (reg_num) != 7) ? \
elp_t::LP_EXPECTED : elp_t::NO_LP_EXPECTED)
|