aboutsummaryrefslogtreecommitdiff
path: root/drivers/cpu/imx8_cpu.c
blob: 4781a565547a15e032038fb49060666867ffbe44 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright 2019 NXP
 */

#include <cpu.h>
#include <dm.h>
#include <thermal.h>
#include <asm/global_data.h>
#include <asm/system.h>
#include <firmware/imx/sci/sci.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch-imx/cpu.h>
#include <asm/armv8/cpu.h>
#include <imx_thermal.h>
#include <linux/bitops.h>
#include <linux/clk-provider.h>

DECLARE_GLOBAL_DATA_PTR;

struct cpu_imx_plat {
	const char *name;
	const char *rev;
	const char *type;
	u32 cpu_rsrc;
	u32 cpurev;
	u32 freq_mhz;
	u32 mpidr;
};

static const char *get_imx_type_str(u32 imxtype)
{
	switch (imxtype) {
	case MXC_CPU_IMX8QXP:
	case MXC_CPU_IMX8QXP_A0:
		return "8QXP";
	case MXC_CPU_IMX8QM:
		return "8QM";
	case MXC_CPU_IMX93:
		return "93(52)";/* iMX93 Dual core with NPU */
	case MXC_CPU_IMX9351:
		return "93(51)";/* iMX93 Single core with NPU */
	case MXC_CPU_IMX9332:
		return "93(32)";/* iMX93 Dual core without NPU */
	case MXC_CPU_IMX9331:
		return "93(31)";/* iMX93 Single core without NPU */
	case MXC_CPU_IMX9322:
		return "93(22)";/* iMX93 9x9 Dual core  */
	case MXC_CPU_IMX9321:
		return "93(21)";/* iMX93 9x9 Single core  */
	case MXC_CPU_IMX9312:
		return "93(12)";/* iMX93 9x9 Dual core without NPU */
	case MXC_CPU_IMX9311:
		return "93(11)";/* iMX93 9x9 Single core without NPU */
	default:
		return "??";
	}
}

static const char *get_imx_rev_str(u32 rev)
{
	static char revision[4];

	if (IS_ENABLED(CONFIG_IMX8)) {
		switch (rev) {
		case CHIP_REV_A:
			return "A";
		case CHIP_REV_B:
			return "B";
		case CHIP_REV_C:
			return "C";
		default:
			return "?";
		}
	} else {
		revision[0] = '1' + (((rev & 0xf0) - CHIP_REV_1_0) >> 4);
		revision[1] = '.';
		revision[2] = '0' + (rev & 0xf);
		revision[3] = '\0';

		return revision;
	}
}

static void set_core_data(struct udevice *dev)
{
	struct cpu_imx_plat *plat = dev_get_plat(dev);

	if (device_is_compatible(dev, "arm,cortex-a35")) {
		plat->cpu_rsrc = SC_R_A35;
		plat->name = "A35";
	} else if (device_is_compatible(dev, "arm,cortex-a53")) {
		plat->cpu_rsrc = SC_R_A53;
		plat->name = "A53";
	} else if (device_is_compatible(dev, "arm,cortex-a72")) {
		plat->cpu_rsrc = SC_R_A72;
		plat->name = "A72";
	} else if (device_is_compatible(dev, "arm,cortex-a55")) {
		plat->name = "A55";
	} else {
		plat->cpu_rsrc = SC_R_A53;
		plat->name = "?";
	}
}

#if IS_ENABLED(CONFIG_DM_THERMAL)
static int cpu_imx_get_temp(struct cpu_imx_plat *plat)
{
	struct udevice *thermal_dev;
	int cpu_tmp, ret;
	int idx = 1; /* use "cpu-thermal0" device */

	if (IS_ENABLED(CONFIG_IMX8)) {
		if (plat->cpu_rsrc == SC_R_A72)
			idx = 2; /* use "cpu-thermal1" device */
	} else {
		idx = 1;
	}

	ret = uclass_get_device(UCLASS_THERMAL, idx, &thermal_dev);
	if (!ret) {
		ret = thermal_get_temp(thermal_dev, &cpu_tmp);
		if (ret)
			return 0xdeadbeef;
	} else {
		return 0xdeadbeef;
	}

	return cpu_tmp;
}
#else
static int cpu_imx_get_temp(struct cpu_imx_plat *plat)
{
	return 0;
}
#endif

__weak u32 get_cpu_temp_grade(int *minc, int *maxc)
{
	return 0;
}

static int cpu_imx_get_desc(const struct udevice *dev, char *buf, int size)
{
	struct cpu_imx_plat *plat = dev_get_plat(dev);
	const char *grade;
	int ret, temp;
	int minc, maxc;

	if (size < 100)
		return -ENOSPC;

	ret = snprintf(buf, size, "NXP i.MX%s Rev%s %s at %u MHz",
		       plat->type, plat->rev, plat->name, plat->freq_mhz);

	if (IS_ENABLED(CONFIG_IMX9)) {
		switch (get_cpu_temp_grade(&minc, &maxc)) {
		case TEMP_AUTOMOTIVE:
			grade = "Automotive temperature grade ";
			break;
		case TEMP_INDUSTRIAL:
			grade = "Industrial temperature grade ";
			break;
		case TEMP_EXTCOMMERCIAL:
			grade = "Extended Consumer temperature grade ";
			break;
		default:
			grade = "Consumer temperature grade ";
			break;
		}

		buf = buf + ret;
		size = size - ret;
		ret = snprintf(buf, size, "\nCPU:   %s (%dC to %dC)", grade, minc, maxc);
	}

	if (IS_ENABLED(CONFIG_DM_THERMAL)) {
		temp = cpu_imx_get_temp(plat);
		buf = buf + ret;
		size = size - ret;
		if (temp != 0xdeadbeef)
			ret = snprintf(buf, size, " at %dC", temp);
		else
			ret = snprintf(buf, size, " - invalid sensor data");
	}

	snprintf(buf + ret, size - ret, "\n");

	return 0;
}

static int cpu_imx_get_info(const struct udevice *dev, struct cpu_info *info)
{
	struct cpu_imx_plat *plat = dev_get_plat(dev);

	info->cpu_freq = plat->freq_mhz * 1000;
	info->features = BIT(CPU_FEAT_L1_CACHE) | BIT(CPU_FEAT_MMU);
	return 0;
}

static int cpu_imx_get_count(const struct udevice *dev)
{
	ofnode node;
	int num = 0;

	ofnode_for_each_subnode(node, dev_ofnode(dev->parent)) {
		const char *device_type;

		if (!ofnode_is_enabled(node))
			continue;

		device_type = ofnode_read_string(node, "device_type");
		if (!device_type)
			continue;

		if (!strcmp(device_type, "cpu"))
			num++;
	}

	return num;
}

static int cpu_imx_get_vendor(const struct udevice *dev,  char *buf, int size)
{
	snprintf(buf, size, "NXP");
	return 0;
}

static int cpu_imx_is_current(struct udevice *dev)
{
	struct cpu_imx_plat *plat = dev_get_plat(dev);

	if (plat->mpidr == (read_mpidr() & 0xffff))
		return 1;

	return 0;
}

static const struct cpu_ops cpu_imx_ops = {
	.get_desc	= cpu_imx_get_desc,
	.get_info	= cpu_imx_get_info,
	.get_count	= cpu_imx_get_count,
	.get_vendor	= cpu_imx_get_vendor,
	.is_current	= cpu_imx_is_current,
};

static const struct udevice_id cpu_imx_ids[] = {
	{ .compatible = "arm,cortex-a35" },
	{ .compatible = "arm,cortex-a53" },
	{ .compatible = "arm,cortex-a55" },
	{ .compatible = "arm,cortex-a72" },
	{ }
};

static ulong imx_get_cpu_rate(struct udevice *dev)
{
	struct cpu_imx_plat *plat = dev_get_plat(dev);
	struct clk clk;
	ulong rate;
	int ret;

	if (IS_ENABLED(CONFIG_IMX8)) {
		ret = sc_pm_get_clock_rate(-1, plat->cpu_rsrc, SC_PM_CLK_CPU,
					   (sc_pm_clock_rate_t *)&rate);
	} else {
		ret = clk_get_by_index(dev, 0, &clk);
		if (!ret) {
			rate = clk_get_rate(&clk);
			if (!rate)
				ret = -EOPNOTSUPP;
		}
	}
	if (ret) {
		printf("Could not read CPU frequency: %d\n", ret);
		return 0;
	}

	return rate;
}

static int imx_cpu_probe(struct udevice *dev)
{
	struct cpu_imx_plat *plat = dev_get_plat(dev);
	u32 cpurev;

	set_core_data(dev);
	cpurev = get_cpu_rev();
	plat->cpurev = cpurev;
	plat->rev = get_imx_rev_str(cpurev & 0xFFF);
	plat->type = get_imx_type_str((cpurev & 0xFF000) >> 12);
	plat->freq_mhz = imx_get_cpu_rate(dev) / 1000000;
	plat->mpidr = dev_read_addr(dev);
	if (plat->mpidr == FDT_ADDR_T_NONE) {
		printf("%s: Failed to get CPU reg property\n", __func__);
		return -EINVAL;
	}

	return 0;
}

U_BOOT_DRIVER(cpu_imx_drv) = {
	.name		= "imx_cpu",
	.id		= UCLASS_CPU,
	.of_match	= cpu_imx_ids,
	.ops		= &cpu_imx_ops,
	.probe		= imx_cpu_probe,
	.plat_auto	= sizeof(struct cpu_imx_plat),
	.flags		= DM_FLAG_PRE_RELOC,
};