aboutsummaryrefslogtreecommitdiff
path: root/src/util/pty/pty_paranoia.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/util/pty/pty_paranoia.c')
-rw-r--r--src/util/pty/pty_paranoia.c650
1 files changed, 650 insertions, 0 deletions
diff --git a/src/util/pty/pty_paranoia.c b/src/util/pty/pty_paranoia.c
new file mode 100644
index 0000000..7311e08
--- /dev/null
+++ b/src/util/pty/pty_paranoia.c
@@ -0,0 +1,650 @@
+/*
+ * Copyright 2001 by the Massachusetts Institute of Technology.
+ *
+ * Permission to use, copy, modify, and distribute this software and
+ * its documentation for any purpose and without fee is hereby
+ * granted, provided that the above copyright notice appear in all
+ * copies and that both that copyright notice and this permission
+ * notice appear in supporting documentation, and that the name of
+ * M.I.T. not be used in advertising or publicity pertaining to
+ * distribution of the software without specific, written prior
+ * permission. Furthermore if you modify this software you must label
+ * your software as modified software and not distribute it in such a
+ * fashion that it might be confused with the original M.I.T. software.
+ * M.I.T. makes no representations about the suitability
+ * of this software for any purpose. It is provided "as is" without
+ * express or implied warranty.
+ */
+
+/*
+ * A rant on the nature of pseudo-terminals:
+ * -----------------------------------------
+ *
+ * Controlling terminals and job control:
+ *
+ * First, some explanation of job control and controlling terminals is
+ * necessary for background. This discussion applies to hardwired
+ * terminals as well as ptys. On most modern systems, all processes
+ * belong to a process group. A process whose process group id (pgid)
+ * is the sames as its pid is the process group leader of its process
+ * group. Process groups belong to sessions. On a modern system, a
+ * process that is not currently a process group leader may create a
+ * new session by calling setsid(), which makes it a session leader as
+ * well as a process group leader, and also removes any existing
+ * controlling terminal (ctty) association. Only a session leader may
+ * acquire a ctty. It's not clear how systems that don't have
+ * setsid() handle ctty acquisition, though probably any process group
+ * leader that doesn't have a ctty may acquire one that way.
+ *
+ * A terminal that is a ctty has an associated foreground process
+ * group, which is a member of the terminal's associated session.
+ * This process group gets read/write access to the terminal and will
+ * receive terminal-generated signals (e.g. SIGINT, SIGTSTP). Process
+ * groups belonging to the session but not in the foreground may get
+ * signals that suspend them if they try to read/write from the ctty,
+ * depending on various terminal settings.
+ *
+ * On many systems, the controlling process (the session leader
+ * associated with a ctty) exiting will cause the session to lose its
+ * ctty, even though some processes may continue to have open file
+ * descriptors on the former ctty. It is possible for a process to
+ * have no file descriptors open on its controlling tty, but to
+ * reacquire such by opening /dev/tty, as long as its session still
+ * has a ctty.
+ *
+ * On ptys in general:
+ *
+ * Ptys have a slave side and a master side. The slave side looks
+ * like a hardwired serial line to the application that opens it;
+ * usually, telnetd or rlogind, etc. opens the slave and hands it to
+ * the login program as stdin/stdout/stderr. The master side usually
+ * gets the actual network traffic written to/from it. Roughly, the
+ * master and slave are two ends of a bidirectional pair of FIFOs,
+ * though this can get complicated by other things.
+ *
+ * The master side of a pty is theoretically a single-open device.
+ * This MUST be true on systems that have BSD-style ptys, since there
+ * is usually no way to allocate an unused pty except by attempting to
+ * open all the master pty nodes in the system.
+ *
+ * Often, but not always, the last close of a slave device will cause
+ * the master to get an EOF. Closing the master device will sometimes
+ * cause the foreground process group of the slave to get a SIGHUP,
+ * but that may depend on terminal settings.
+ *
+ * BSD ptys:
+ *
+ * On a BSD-derived system, the master nodes are named like
+ * /dev/ptyp0, and the slave nodes are named like /dev/ttyp0. The
+ * last two characters are the variable ones, and a shell-glob type
+ * pattern for a slave device is usually of the form
+ * /dev/tty[p-z][0-9a-f], though variants are known to exist.
+ *
+ * System V cloning ptys:
+ *
+ * There is a cloning master device (usually /dev/ptmx, but the name
+ * can vary) that gets opened. Each open of the cloning master
+ * results in an open file descriptor of a unique master device. The
+ * application calls ptsname() to find the pathname to the slave node.
+ *
+ * In theory, the slave side of the pty is locked out until the
+ * process opening the master calls grantpt() to adjust permissions
+ * and unlockpt() to unlock the slave. It turns out that Unix98
+ * doesn't require that the slave actually get locked out, or that
+ * unlockpt() actually do anything on such systems. At least AIX
+ * allows the slave to be opened prior to calling unlockpt(), but most
+ * other SysV-ish systems seem to actually lock out the slave.
+ *
+ * Pty security:
+ *
+ * It's not guaranteed on a BSD-ish system that a slave can't be
+ * opened when the master isn't open. It's even possible to acquire
+ * the slave as a ctty (!) if the open is done as non-blocking. It's
+ * possible to open the master corresponding to an open slave, which
+ * creates some security issues: once this master is open, data
+ * written to the slave will actually pass to the master.
+ *
+ * On a SysV-ish system, the close of the master will invalidate any
+ * open file descriptors on the slave.
+ *
+ * In general, there are two functions that can be used to "clean" a
+ * pty slave, revoke() and vhangup(). revoke() will invalidate all
+ * file descriptors open on a particular pathname (often this only
+ * works on terminal devices), usually by invalidating the underlying
+ * vnode. vhangup() will send a SIGHUP to the foreground process
+ * group of the control terminal. On many systems, it also has
+ * revoke() semantics.
+ *
+ * If a process acquires a controlling terminal in order to perform a
+ * vhangup(), the reopen of the controlling terminal after the
+ * vhangup() call should be done prior to the close of the file
+ * descriptor used to initially acquire the controlling terminal,
+ * since that will likely prevent the process on the master side from
+ * reading a spurious EOF due to all file descriptors to the slave
+ * being closed.
+ *
+ * Known quirks of various OSes:
+ *
+ * AIX 4.3.3:
+ *
+ * If the environment variable XPG_SUS_ENV is not equal to "ON", then
+ * it's possible to open the slave prior to calling unlockpt().
+ */
+
+/*
+ * NOTE: this program will get reworked at some point to actually test
+ * passing of data between master and slave, and to do general cleanup.
+ *
+ * This is rather complex, so it bears some explanation.
+ *
+ * There are multiple child processes and a parent process. These
+ * communicate via pipes (which we assume here to be unidirectional).
+ * The pipes are:
+ *
+ * pp1 - parent -> any children
+ *
+ * p1p - any children -> parent
+ *
+ * p21 - only child2 -> child1
+ *
+ * A parent process will acquire a pty master and slave via
+ * pty_getpty(). It will then fork a process, child1. It then does a
+ * waitpid() for child1, and then writes to child2 via syncpipe pp1.
+ * It then reads from child3 via syncpipe p1p, then closes the
+ * master. It writes to child3 via syncpipe pp1 to indicate that it
+ * has closed the master. It then reads from child3 via syncpipe p1p
+ * and exits with a value appropriate to what it read from child3.
+ *
+ * child1 will acquire the slave as its ctty and fork child2; child1
+ * will exit once it reads from the syncpipe p21 from child2.
+ *
+ * child2 will set a signal handler for SIGHUP and then write to
+ * child1 via syncpipe p21 to indicate that child2 has set up the
+ * handler. It will then read from the syncpipe pp1 from the parent
+ * to confirm that the parent has seen child1 exit, and then checks to
+ * see if it still has a ctty. Under Unix98, and likely earlier
+ * System V derivatives, the exiting of the session leader associated
+ * with a ctty (in this case, child1) will cause the entire session to
+ * lose its ctty.
+ *
+ * child2 will then check to see if it can reopen the slave, and
+ * whether it has a ctty after reopening it. This should fail on most
+ * systems.
+ *
+ * child2 will then fork child3 and immediately exit.
+ *
+ * child3 will write to the syncpipe p1p and read from the syncpipe
+ * pp1. It will then check if it has a ctty and then attempt to
+ * reopen the slave. This should fail. It will then write to the
+ * parent via syncpipe p1p and exit.
+ *
+ * If this doesn't fail, child3 will attempt to write to the open
+ * slave fd. This should fail unless a prior call to revoke(),
+ * etc. failed due to lack of permissions, e.g. NetBSD when running as
+ * non-root.
+ */
+
+#include <com_err.h>
+#include "libpty.h"
+#include "pty-int.h"
+#include <sys/wait.h>
+#include <stdlib.h>
+
+char *prog;
+int masterfd, slavefd;
+char slave[64], slave2[64];
+pid_t pid1, pid2, pid3;
+int status1, status2;
+int pp1[2], p1p[2], p21[2];
+
+void handler(int);
+void rdsync(int, int *, const char *);
+void wrsync(int, int, const char *);
+void testctty(const char *);
+void testex(int, const char *);
+void testwr(int, const char *);
+void child1(void);
+void child2(void);
+void child3(void);
+
+void
+handler(int sig)
+{
+ printf("pid %ld got signal %d\n", (long)getpid(), sig);
+ fflush(stdout);
+ return;
+}
+
+void
+rdsync(int fd, int *status, const char *caller)
+{
+ int n;
+ char c;
+
+#if 0
+ printf("rdsync: %s: starting\n", caller);
+ fflush(stdout);
+#endif
+ while ((n = read(fd, &c, 1)) < 0) {
+ if (errno != EINTR) {
+ fprintf(stderr, "rdsync: %s", caller);
+ perror("");
+ exit(1);
+ } else {
+ printf("rdsync: %s: got EINTR; looping\n", caller);
+ fflush(stdout);
+ }
+ }
+ if (!n) {
+ fprintf(stderr, "rdsync: %s: unexpected EOF\n", caller);
+ exit(1);
+ }
+ printf("rdsync: %s: got sync byte\n", caller);
+ fflush(stdout);
+ if (status != NULL)
+ *status = c;
+}
+
+void
+wrsync(int fd, int status, const char *caller)
+{
+ int n;
+ char c;
+
+ c = status;
+ while ((n = write(fd, &c, 1)) < 0) {
+ if (errno != EINTR) {
+ fprintf(stderr, "wrsync: %s", caller);
+ perror("");
+ exit(1);
+ } else {
+ printf("wrsync: %s: got EINTR; looping\n", caller);
+ fflush(stdout);
+ }
+ }
+#if 0
+ printf("wrsync: %s: sent sync byte\n", caller);
+#endif
+ fflush(stdout);
+}
+
+void
+testctty(const char *caller)
+{
+ int fd;
+
+ fd = open("/dev/tty", O_RDWR|O_NONBLOCK);
+ if (fd < 0) {
+ printf("%s: no ctty\n", caller);
+ } else {
+ printf("%s: have ctty\n", caller);
+ }
+}
+
+void
+testex(int fd, const char *caller)
+{
+ fd_set rfds, xfds;
+ struct timeval timeout;
+ int n;
+ char c;
+
+ timeout.tv_sec = 0;
+ timeout.tv_usec = 0;
+ FD_ZERO(&rfds);
+ FD_ZERO(&xfds);
+ FD_SET(fd, &rfds);
+ FD_SET(fd, &xfds);
+
+ n = select(fd + 1, &rfds, NULL, &xfds, &timeout);
+ if (n < 0) {
+ fprintf(stderr, "testex: %s: ", caller);
+ perror("select");
+ }
+ if (n) {
+ if (FD_ISSET(fd, &rfds) || FD_ISSET(fd, &xfds)) {
+ n = read(fd, &c, 1);
+ if (!n) {
+ printf("testex: %s: got EOF\n", caller);
+ fflush(stdout);
+ return;
+ } else if (n == -1) {
+ printf("testex: %s: got errno=%ld (%s)\n",
+ caller, (long)errno, strerror(errno));
+ } else {
+ printf("testex: %s: read 1 byte!?\n", caller);
+ }
+ }
+ } else {
+ printf("testex: %s: no exceptions or readable fds\n", caller);
+ }
+}
+
+void
+testwr(int fd, const char *caller)
+{
+ fd_set wfds;
+ struct timeval timeout;
+ int n;
+
+ timeout.tv_sec = 0;
+ timeout.tv_usec = 0;
+ FD_ZERO(&wfds);
+ FD_SET(fd, &wfds);
+
+ n = select(fd + 1, NULL, &wfds, NULL, &timeout);
+ if (n < 0) {
+ fprintf(stderr, "testwr: %s: ", caller);
+ perror("select");
+ }
+ if (n) {
+ if (FD_ISSET(fd, &wfds)) {
+ printf("testwr: %s: is writable\n", caller);
+ fflush(stdout);
+ }
+ }
+}
+
+
+void
+child3(void)
+{
+ int n;
+
+ ptyint_void_association();
+ slavefd = open(slave, O_RDWR|O_NONBLOCK);
+ if (slavefd < 0) {
+ wrsync(p1p[1], 1, "[02] child3->parent");
+ printf("child3: failed reopen of slave\n");
+ fflush(stdout);
+ exit(1);
+ }
+#ifdef TIOCSCTTY
+ ioctl(slavefd, TIOCSCTTY, 0);
+#endif
+
+ printf("child3: reopened slave\n");
+ testctty("child3: after reopen of slave");
+ testwr(slavefd, "child3: after reopen of slave");
+ testex(slavefd, "child3: after reopen of slave");
+ close(slavefd);
+ testctty("child3: after close of slave");
+
+ /*
+ * Sync for parent to close master.
+ */
+ wrsync(p1p[1], 0, "[02] child3->parent");
+ rdsync(pp1[0], NULL, "[03] parent->child3");
+
+ testctty("child3: after close of master");
+ printf("child3: attempting reopen of slave\n");
+ fflush(stdout);
+ slavefd = open(slave, O_RDWR|O_NONBLOCK);
+ if (slavefd < 0) {
+ printf("child3: failed reopen of slave after master close: "
+ "errno=%ld (%s)\n", (long)errno, strerror(errno));
+ wrsync(p1p[1], 0, "[04] child3->parent");
+ fflush(stdout);
+ exit(0);
+ }
+ if (fcntl(slavefd, F_SETFL, 0) == -1) {
+ perror("child3: fcntl");
+ wrsync(p1p[1], 2, "[04] child3->parent");
+ exit(1);
+ }
+#ifdef TIOCSCTTY
+ ioctl(slavefd, TIOCSCTTY, 0);
+#endif
+ printf("child3: reopened slave after master close\n");
+ testctty("child3: after reopen of slave after master close");
+ testwr(slavefd, "child3: after reopen of slave after master close");
+ testex(slavefd, "child3: after reopen of slave after master close");
+ n = write(slavefd, "foo", 4);
+ if (n < 0) {
+ printf("child3: writing to slave of closed master: errno=%ld (%s)\n",
+ (long)errno, strerror(errno));
+ wrsync(p1p[1], 1, "[04] child3->parent");
+ } else {
+ printf("child3: wrote %d byes to slave of closed master\n", n);
+ fflush(stdout);
+ wrsync(p1p[1], 2, "[04] child3->parent");
+ }
+ rdsync(pp1[0], NULL, "[05] parent->child3");
+ testex(slavefd, "child3: after parent reopen of master");
+ testwr(slavefd, "child3: after parent reopen of master");
+ fflush(stdout);
+ n = write(slavefd, "bar", 4);
+ if (n < 0) {
+ perror("child3: writing to slave");
+ } else {
+ printf("child3: wrote %d bytes to slave\n", n);
+ fflush(stdout);
+ }
+ wrsync(p1p[1], 0, "[06] child3->parent");
+ rdsync(pp1[0], NULL, "[07] parent->child3");
+ wrsync(p1p[1], 0, "[08] child3->parent");
+ exit(0);
+}
+
+void
+child2(void)
+{
+ struct sigaction sa;
+
+ close(p21[0]);
+ setpgid(0, 0);
+ sa.sa_flags = 0;
+ sigemptyset(&sa.sa_mask);
+ sa.sa_handler = handler;
+ if (sigaction(SIGHUP, &sa, NULL) < 0) {
+ wrsync(p21[1], 1, "[00] child2->child1");
+ perror("child2: sigaction");
+ fflush(stdout);
+ exit(1);
+ }
+ printf("child2: set up signal handler\n");
+ testctty("child2: after start");
+ testwr(slavefd, "child2: after start");
+ wrsync(p21[1], 0, "[00] child2->child1");
+ rdsync(pp1[0], NULL, "[01] parent->child2");
+
+ testctty("child2: after child1 exit");
+ testex(slavefd, "child2: after child1 exit");
+ testwr(slavefd, "child2: after child1 exit");
+ close(slavefd);
+ testctty("child2: after close of slavefd");
+ slavefd = open(slave, O_RDWR|O_NONBLOCK);
+ if (slavefd < 0) {
+ wrsync(p1p[1], 1, "[02] child2->parent");
+ printf("child2: failed reopen of slave\n");
+ fflush(stdout);
+ exit(1);
+ }
+#ifdef TIOCSCTTY
+ ioctl(slavefd, TIOCSCTTY, 0);
+#endif
+ printf("child2: reopened slave\n");
+ testctty("child2: after reopen of slave");
+ fflush(stdout);
+ close(slavefd);
+ pid3 = fork();
+ if (!pid3) {
+ child3();
+ } else if (pid3 == -1) {
+ wrsync(p1p[1], 1, "[02] child2->parent");
+ perror("child2: fork of child3");
+ exit(1);
+ }
+ printf("child2: forked child3=%ld\n", (long)pid3);
+ fflush(stdout);
+ exit(0);
+}
+
+void
+child1(void)
+{
+ int status;
+
+#if 0
+ setuid(1);
+#endif
+ close(pp1[1]);
+ close(p1p[0]);
+ close(masterfd);
+ ptyint_void_association();
+ slavefd = open(slave, O_RDWR|O_NONBLOCK);
+ if (slavefd < 0) {
+ perror("child1: open slave");
+ exit(1);
+ }
+#ifdef TIOCSCTTY
+ ioctl(slavefd, TIOCSCTTY, 0);
+#endif
+
+ printf("child1: opened slave\n");
+ testctty("child1: after slave open");
+
+ if (pipe(p21) < 0) {
+ perror("pipe child2->child1");
+ exit(1);
+ }
+ pid2 = fork();
+ if (!pid2) {
+ child2();
+ } else if (pid2 == -1) {
+ perror("child1: fork child2");
+ exit(1);
+ }
+ close(p21[1]);
+ printf("child1: forked child2=%ld\n", (long)pid2);
+ fflush(stdout);
+ rdsync(p21[0], &status, "[00] child2->child1");
+ exit(status);
+}
+
+int
+main(int argc, char *argv[])
+{
+ long retval;
+ int status;
+ char buf[4];
+ int n;
+
+ prog = argv[0];
+
+ printf("parent: pid=%ld\n", (long)getpid());
+
+ retval = ptyint_getpty_ext(&masterfd, slave, sizeof(slave), 0);
+
+ if (retval) {
+ com_err(prog, retval, "open master");
+ exit(1);
+ }
+#if 0
+ chown(slave, 1, -1);
+#endif
+ printf("parent: master opened; slave=%s\n", slave);
+ fflush(stdout);
+
+#if defined(HAVE_GRANTPT) && defined(HAVE_STREAMS)
+#ifdef O_NOCTTY
+ printf("parent: attempting to open slave before unlockpt\n");
+ fflush(stdout);
+ slavefd = open(slave, O_RDWR|O_NONBLOCK|O_NOCTTY);
+ if (slavefd < 0) {
+ printf("parent: failed slave open before unlockpt errno=%ld (%s)\n",
+ (long)errno, strerror(errno));
+ } else {
+ printf("parent: WARNING: "
+ "succeeded in opening slave before unlockpt\n");
+ }
+ close(slavefd);
+#endif
+ if (grantpt(masterfd) < 0) {
+ perror("parent: grantpt");
+ exit(1);
+ }
+ if (unlockpt(masterfd) < 0) {
+ perror("parent: unlockpt");
+ exit(1);
+ }
+#endif /* HAVE_GRANTPT && HAVE_STREAMS */
+
+ if (pipe(pp1) < 0) {
+ perror("pipe parent->child1");
+ exit(1);
+ }
+ if (pipe(p1p) < 0) {
+ perror("pipe child1->parent");
+ exit(1);
+ }
+
+ pid1 = fork();
+ if (!pid1) {
+ child1();
+ } else if (pid1 == -1) {
+ perror("fork of child1");
+ exit(1);
+ }
+ printf("parent: forked child1=%ld\n", (long)pid1);
+ fflush(stdout);
+ if (waitpid(pid1, &status1, 0) < 0) {
+ perror("waitpid for child1");
+ exit(1);
+ }
+ printf("parent: child1 exited, status=%d\n", status1);
+ if (status1)
+ exit(status1);
+
+ wrsync(pp1[1], 0, "[01] parent->child2");
+ rdsync(p1p[0], &status, "[02] child3->parent");
+ if (status) {
+ fprintf(stderr, "child2 or child3 got an error\n");
+ exit(1);
+ }
+
+ printf("parent: closing master\n");
+ fflush(stdout);
+ close(masterfd);
+ chmod(slave, 0666);
+ printf("parent: closed master\n");
+ wrsync(pp1[1], 0, "[03] parent->child3");
+
+ rdsync(p1p[0], &status, "[04] child3->parent");
+ switch (status) {
+ case 1:
+ break;
+ case 0:
+ exit(0);
+ default:
+ fprintf(stderr, "child3 got an error\n");
+ fflush(stdout);
+ exit(1);
+ }
+
+ retval = pty_getpty(&masterfd, slave2, sizeof(slave2));
+ printf("parent: new master opened; slave=%s\n", slave2);
+#if 0
+#ifdef HAVE_REVOKE
+ printf("parent: revoking\n");
+ revoke(slave2);
+#endif
+#endif
+ fflush(stdout);
+ wrsync(pp1[1], 0, "[05] parent->child3");
+ rdsync(p1p[0], NULL, "[06] child3->parent");
+
+ n = read(masterfd, buf, 4);
+ if (n < 0) {
+ perror("parent: reading from master");
+ } else {
+ printf("parent: read %d bytes (%.*s) from master\n", n, n, buf);
+ fflush(stdout);
+ }
+ chmod(slave2, 0666);
+ close(masterfd);
+ wrsync(pp1[1], 0, "[07] parent->child3");
+ rdsync(p1p[0], NULL, "[08] child3->parent");
+ fflush(stdout);
+ exit(0);
+}