aboutsummaryrefslogtreecommitdiff
path: root/crypto/internal.h
blob: 63e6a662f16a8103ef9180ac9f69ae9f2b67fcf7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */
/* ====================================================================
 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com). */

#ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
#define OPENSSL_HEADER_CRYPTO_INTERNAL_H

#include <openssl/crypto.h>
#include <openssl/ex_data.h>
#include <openssl/stack.h>
#include <openssl/thread.h>

#include <assert.h>
#include <string.h>

#if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
#include <valgrind/memcheck.h>
#endif

#if defined(BORINGSSL_FIPS_BREAK_TESTS)
#include <stdlib.h>
#endif

#if !defined(__cplusplus)
#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L
#include <stdalign.h>
#elif defined(_MSC_VER) && !defined(__clang__)
#define alignas(x) __declspec(align(x))
#define alignof __alignof
#else
// With the exception of MSVC, we require C11 to build the library. C11 is a
// prerequisite for improved refcounting performance. All our supported C
// compilers have long implemented C11 and made it default. The most likely
// cause of pre-C11 modes is stale -std=c99 or -std=gnu99 flags in build
// configuration. Such flags can be removed.
//
// TODO(davidben): In MSVC 2019 16.8 or higher (_MSC_VER >= 1928),
// |__STDC_VERSION__| will be 201112 when passed /std:c11 and unset otherwise.
// C11 alignas and alignof are only implemented in C11 mode. Can we mandate C11
// mode for those versions?
#error "BoringSSL must be built in C11 mode or higher."
#endif
#endif

#if defined(OPENSSL_THREADS) && \
    (!defined(OPENSSL_WINDOWS) || defined(__MINGW32__))
#include <pthread.h>
#define OPENSSL_PTHREADS
#endif

#if defined(OPENSSL_THREADS) && !defined(OPENSSL_PTHREADS) && \
    defined(OPENSSL_WINDOWS)
#define OPENSSL_WINDOWS_THREADS
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <windows.h>
OPENSSL_MSVC_PRAGMA(warning(pop))
#endif

#if defined(__cplusplus)
extern "C" {
#endif


#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
    defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE)
// OPENSSL_cpuid_setup initializes the platform-specific feature cache.
void OPENSSL_cpuid_setup(void);
#endif

#if (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \
    !defined(OPENSSL_STATIC_ARMCAP)
// OPENSSL_get_armcap_pointer_for_test returns a pointer to |OPENSSL_armcap_P|
// for unit tests. Any modifications to the value must be made after
// |CRYPTO_library_init| but before any other function call in BoringSSL.
OPENSSL_EXPORT uint32_t *OPENSSL_get_armcap_pointer_for_test(void);
#endif


#if (!defined(_MSC_VER) || defined(__clang__)) && defined(OPENSSL_64_BIT)
#define BORINGSSL_HAS_UINT128
typedef __int128_t int128_t;
typedef __uint128_t uint128_t;

// clang-cl supports __uint128_t but modulus and division don't work.
// https://crbug.com/787617.
#if !defined(_MSC_VER) || !defined(__clang__)
#define BORINGSSL_CAN_DIVIDE_UINT128
#endif
#endif

#define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))

// Have a generic fall-through for different versions of C/C++.
#if defined(__cplusplus) && __cplusplus >= 201703L
#define OPENSSL_FALLTHROUGH [[fallthrough]]
#elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__clang__)
#define OPENSSL_FALLTHROUGH [[clang::fallthrough]]
#elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__GNUC__) && \
    __GNUC__ >= 7
#define OPENSSL_FALLTHROUGH [[gnu::fallthrough]]
#elif defined(__GNUC__) && __GNUC__ >= 7 // gcc 7
#define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
#elif defined(__clang__)
#if __has_attribute(fallthrough) && __clang_major__ >= 5
// Clang 3.5, at least, complains about "error: declaration does not declare
// anything", possibily because we put a semicolon after this macro in
// practice. Thus limit it to >= Clang 5, which does work.
#define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
#else // clang versions that do not support fallthrough.
#define OPENSSL_FALLTHROUGH
#endif
#else // C++11 on gcc 6, and all other cases
#define OPENSSL_FALLTHROUGH
#endif

// For convenience in testing 64-bit generic code, we allow disabling SSE2
// intrinsics via |OPENSSL_NO_SSE2_FOR_TESTING|. x86_64 always has SSE2
// available, so we would otherwise need to test such code on a non-x86_64
// platform.
#if defined(__SSE2__) && !defined(OPENSSL_NO_SSE2_FOR_TESTING)
#define OPENSSL_SSE2
#endif


// Pointer utility functions.

// buffers_alias returns one if |a| and |b| alias and zero otherwise.
static inline int buffers_alias(const uint8_t *a, size_t a_len,
                                const uint8_t *b, size_t b_len) {
  // Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
  // objects are undefined whereas pointer to integer conversions are merely
  // implementation-defined. We assume the implementation defined it in a sane
  // way.
  uintptr_t a_u = (uintptr_t)a;
  uintptr_t b_u = (uintptr_t)b;
  return a_u + a_len > b_u && b_u + b_len > a_u;
}

// align_pointer returns |ptr|, advanced to |alignment|. |alignment| must be a
// power of two, and |ptr| must have at least |alignment - 1| bytes of scratch
// space.
static inline void *align_pointer(void *ptr, size_t alignment) {
  // |alignment| must be a power of two.
  assert(alignment != 0 && (alignment & (alignment - 1)) == 0);
  // Instead of aligning |ptr| as a |uintptr_t| and casting back, compute the
  // offset and advance in pointer space. C guarantees that casting from pointer
  // to |uintptr_t| and back gives the same pointer, but general
  // integer-to-pointer conversions are implementation-defined. GCC does define
  // it in the useful way, but this makes fewer assumptions.
  uintptr_t offset = (0u - (uintptr_t)ptr) & (alignment - 1);
  ptr = (char *)ptr + offset;
  assert(((uintptr_t)ptr & (alignment - 1)) == 0);
  return ptr;
}


// Constant-time utility functions.
//
// The following methods return a bitmask of all ones (0xff...f) for true and 0
// for false. This is useful for choosing a value based on the result of a
// conditional in constant time. For example,
//
// if (a < b) {
//   c = a;
// } else {
//   c = b;
// }
//
// can be written as
//
// crypto_word_t lt = constant_time_lt_w(a, b);
// c = constant_time_select_w(lt, a, b);

// crypto_word_t is the type that most constant-time functions use. Ideally we
// would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit
// pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64
// bits. Since we want to be able to do constant-time operations on a
// |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native
// word length.
#if defined(OPENSSL_64_BIT)
typedef uint64_t crypto_word_t;
#elif defined(OPENSSL_32_BIT)
typedef uint32_t crypto_word_t;
#else
#error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
#endif

#define CONSTTIME_TRUE_W ~((crypto_word_t)0)
#define CONSTTIME_FALSE_W ((crypto_word_t)0)
#define CONSTTIME_TRUE_8 ((uint8_t)0xff)
#define CONSTTIME_FALSE_8 ((uint8_t)0)

// value_barrier_w returns |a|, but prevents GCC and Clang from reasoning about
// the returned value. This is used to mitigate compilers undoing constant-time
// code, until we can express our requirements directly in the language.
//
// Note the compiler is aware that |value_barrier_w| has no side effects and
// always has the same output for a given input. This allows it to eliminate
// dead code, move computations across loops, and vectorize.
static inline crypto_word_t value_barrier_w(crypto_word_t a) {
#if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
  __asm__("" : "+r"(a) : /* no inputs */);
#endif
  return a;
}

// value_barrier_u32 behaves like |value_barrier_w| but takes a |uint32_t|.
static inline uint32_t value_barrier_u32(uint32_t a) {
#if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
  __asm__("" : "+r"(a) : /* no inputs */);
#endif
  return a;
}

// value_barrier_u64 behaves like |value_barrier_w| but takes a |uint64_t|.
static inline uint64_t value_barrier_u64(uint64_t a) {
#if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
  __asm__("" : "+r"(a) : /* no inputs */);
#endif
  return a;
}

// constant_time_msb_w returns the given value with the MSB copied to all the
// other bits.
static inline crypto_word_t constant_time_msb_w(crypto_word_t a) {
  return 0u - (a >> (sizeof(a) * 8 - 1));
}

// constant_time_lt_w returns 0xff..f if a < b and 0 otherwise.
static inline crypto_word_t constant_time_lt_w(crypto_word_t a,
                                               crypto_word_t b) {
  // Consider the two cases of the problem:
  //   msb(a) == msb(b): a < b iff the MSB of a - b is set.
  //   msb(a) != msb(b): a < b iff the MSB of b is set.
  //
  // If msb(a) == msb(b) then the following evaluates as:
  //   msb(a^((a^b)|((a-b)^a))) ==
  //   msb(a^((a-b) ^ a))       ==   (because msb(a^b) == 0)
  //   msb(a^a^(a-b))           ==   (rearranging)
  //   msb(a-b)                      (because ∀x. x^x == 0)
  //
  // Else, if msb(a) != msb(b) then the following evaluates as:
  //   msb(a^((a^b)|((a-b)^a))) ==
  //   msb(a^(𝟙 | ((a-b)^a)))   ==   (because msb(a^b) == 1 and 𝟙
  //                                  represents a value s.t. msb(𝟙) = 1)
  //   msb(a^𝟙)                 ==   (because ORing with 1 results in 1)
  //   msb(b)
  //
  //
  // Here is an SMT-LIB verification of this formula:
  //
  // (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
  //   (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
  // )
  //
  // (declare-fun a () (_ BitVec 32))
  // (declare-fun b () (_ BitVec 32))
  //
  // (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
  // (check-sat)
  // (get-model)
  return constant_time_msb_w(a^((a^b)|((a-b)^a)));
}

// constant_time_lt_8 acts like |constant_time_lt_w| but returns an 8-bit
// mask.
static inline uint8_t constant_time_lt_8(crypto_word_t a, crypto_word_t b) {
  return (uint8_t)(constant_time_lt_w(a, b));
}

// constant_time_ge_w returns 0xff..f if a >= b and 0 otherwise.
static inline crypto_word_t constant_time_ge_w(crypto_word_t a,
                                               crypto_word_t b) {
  return ~constant_time_lt_w(a, b);
}

// constant_time_ge_8 acts like |constant_time_ge_w| but returns an 8-bit
// mask.
static inline uint8_t constant_time_ge_8(crypto_word_t a, crypto_word_t b) {
  return (uint8_t)(constant_time_ge_w(a, b));
}

// constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise.
static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) {
  // Here is an SMT-LIB verification of this formula:
  //
  // (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
  //   (bvand (bvnot a) (bvsub a #x00000001))
  // )
  //
  // (declare-fun a () (_ BitVec 32))
  //
  // (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
  // (check-sat)
  // (get-model)
  return constant_time_msb_w(~a & (a - 1));
}

// constant_time_is_zero_8 acts like |constant_time_is_zero_w| but returns an
// 8-bit mask.
static inline uint8_t constant_time_is_zero_8(crypto_word_t a) {
  return (uint8_t)(constant_time_is_zero_w(a));
}

// constant_time_eq_w returns 0xff..f if a == b and 0 otherwise.
static inline crypto_word_t constant_time_eq_w(crypto_word_t a,
                                               crypto_word_t b) {
  return constant_time_is_zero_w(a ^ b);
}

// constant_time_eq_8 acts like |constant_time_eq_w| but returns an 8-bit
// mask.
static inline uint8_t constant_time_eq_8(crypto_word_t a, crypto_word_t b) {
  return (uint8_t)(constant_time_eq_w(a, b));
}

// constant_time_eq_int acts like |constant_time_eq_w| but works on int
// values.
static inline crypto_word_t constant_time_eq_int(int a, int b) {
  return constant_time_eq_w((crypto_word_t)(a), (crypto_word_t)(b));
}

// constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
// mask.
static inline uint8_t constant_time_eq_int_8(int a, int b) {
  return constant_time_eq_8((crypto_word_t)(a), (crypto_word_t)(b));
}

// constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all
// 1s or all 0s (as returned by the methods above), the select methods return
// either |a| (if |mask| is nonzero) or |b| (if |mask| is zero).
static inline crypto_word_t constant_time_select_w(crypto_word_t mask,
                                                   crypto_word_t a,
                                                   crypto_word_t b) {
  // Clang recognizes this pattern as a select. While it usually transforms it
  // to a cmov, it sometimes further transforms it into a branch, which we do
  // not want.
  //
  // Adding barriers to both |mask| and |~mask| breaks the relationship between
  // the two, which makes the compiler stick with bitmasks.
  return (value_barrier_w(mask) & a) | (value_barrier_w(~mask) & b);
}

// constant_time_select_8 acts like |constant_time_select| but operates on
// 8-bit values.
static inline uint8_t constant_time_select_8(uint8_t mask, uint8_t a,
                                             uint8_t b) {
  return (uint8_t)(constant_time_select_w(mask, a, b));
}

// constant_time_select_int acts like |constant_time_select| but operates on
// ints.
static inline int constant_time_select_int(crypto_word_t mask, int a, int b) {
  return (int)(constant_time_select_w(mask, (crypto_word_t)(a),
                                      (crypto_word_t)(b)));
}

#if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)

// CONSTTIME_SECRET takes a pointer and a number of bytes and marks that region
// of memory as secret. Secret data is tracked as it flows to registers and
// other parts of a memory. If secret data is used as a condition for a branch,
// or as a memory index, it will trigger warnings in valgrind.
#define CONSTTIME_SECRET(x, y) VALGRIND_MAKE_MEM_UNDEFINED(x, y)

// CONSTTIME_DECLASSIFY takes a pointer and a number of bytes and marks that
// region of memory as public. Public data is not subject to constant-time
// rules.
#define CONSTTIME_DECLASSIFY(x, y) VALGRIND_MAKE_MEM_DEFINED(x, y)

#else

#define CONSTTIME_SECRET(x, y)
#define CONSTTIME_DECLASSIFY(x, y)

#endif  // BORINGSSL_CONSTANT_TIME_VALIDATION


// Thread-safe initialisation.

#if !defined(OPENSSL_THREADS)
typedef uint32_t CRYPTO_once_t;
#define CRYPTO_ONCE_INIT 0
#elif defined(OPENSSL_WINDOWS_THREADS)
typedef INIT_ONCE CRYPTO_once_t;
#define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT
#elif defined(OPENSSL_PTHREADS)
typedef pthread_once_t CRYPTO_once_t;
#define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT
#else
#error "Unknown threading library"
#endif

// CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
// concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
// then they will block until |init| completes, but |init| will have only been
// called once.
//
// The |once| argument must be a |CRYPTO_once_t| that has been initialised with
// the value |CRYPTO_ONCE_INIT|.
OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));


// Reference counting.

// Automatically enable C11 atomics if implemented.
#if !defined(OPENSSL_C11_ATOMIC) && defined(OPENSSL_THREADS) &&   \
    !defined(__STDC_NO_ATOMICS__) && defined(__STDC_VERSION__) && \
    __STDC_VERSION__ >= 201112L
#define OPENSSL_C11_ATOMIC
#endif

// CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates.
#define CRYPTO_REFCOUNT_MAX 0xffffffff

// CRYPTO_refcount_inc atomically increments the value at |*count| unless the
// value would overflow. It's safe for multiple threads to concurrently call
// this or |CRYPTO_refcount_dec_and_test_zero| on the same
// |CRYPTO_refcount_t|.
OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);

// CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
//   if it's zero, it crashes the address space.
//   if it's the maximum value, it returns zero.
//   otherwise, it atomically decrements it and returns one iff the resulting
//       value is zero.
//
// It's safe for multiple threads to concurrently call this or
// |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|.
OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);


// Locks.
//
// Two types of locks are defined: |CRYPTO_MUTEX|, which can be used in
// structures as normal, and |struct CRYPTO_STATIC_MUTEX|, which can be used as
// a global lock. A global lock must be initialised to the value
// |CRYPTO_STATIC_MUTEX_INIT|.
//
// |CRYPTO_MUTEX| can appear in public structures and so is defined in
// thread.h as a structure large enough to fit the real type. The global lock is
// a different type so it may be initialized with platform initializer macros.

#if !defined(OPENSSL_THREADS)
struct CRYPTO_STATIC_MUTEX {
  char padding;  // Empty structs have different sizes in C and C++.
};
#define CRYPTO_STATIC_MUTEX_INIT { 0 }
#elif defined(OPENSSL_WINDOWS_THREADS)
struct CRYPTO_STATIC_MUTEX {
  SRWLOCK lock;
};
#define CRYPTO_STATIC_MUTEX_INIT { SRWLOCK_INIT }
#elif defined(OPENSSL_PTHREADS)
struct CRYPTO_STATIC_MUTEX {
  pthread_rwlock_t lock;
};
#define CRYPTO_STATIC_MUTEX_INIT { PTHREAD_RWLOCK_INITIALIZER }
#else
#error "Unknown threading library"
#endif

// CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
// |CRYPTO_STATIC_MUTEX|.
OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);

// CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
// read lock, but none may have a write lock.
OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);

// CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
// of lock on it.
OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);

// CRYPTO_MUTEX_unlock_read unlocks |lock| for reading.
OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock);

// CRYPTO_MUTEX_unlock_write unlocks |lock| for writing.
OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock);

// CRYPTO_MUTEX_cleanup releases all resources held by |lock|.
OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);

// CRYPTO_STATIC_MUTEX_lock_read locks |lock| such that other threads may also
// have a read lock, but none may have a write lock. The |lock| variable does
// not need to be initialised by any function, but must have been statically
// initialised with |CRYPTO_STATIC_MUTEX_INIT|.
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_read(
    struct CRYPTO_STATIC_MUTEX *lock);

// CRYPTO_STATIC_MUTEX_lock_write locks |lock| such that no other thread has
// any type of lock on it.  The |lock| variable does not need to be initialised
// by any function, but must have been statically initialised with
// |CRYPTO_STATIC_MUTEX_INIT|.
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_write(
    struct CRYPTO_STATIC_MUTEX *lock);

// CRYPTO_STATIC_MUTEX_unlock_read unlocks |lock| for reading.
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_read(
    struct CRYPTO_STATIC_MUTEX *lock);

// CRYPTO_STATIC_MUTEX_unlock_write unlocks |lock| for writing.
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_write(
    struct CRYPTO_STATIC_MUTEX *lock);

#if defined(__cplusplus)
extern "C++" {

BSSL_NAMESPACE_BEGIN

namespace internal {

// MutexLockBase is a RAII helper for CRYPTO_MUTEX locking.
template <void (*LockFunc)(CRYPTO_MUTEX *), void (*ReleaseFunc)(CRYPTO_MUTEX *)>
class MutexLockBase {
 public:
  explicit MutexLockBase(CRYPTO_MUTEX *mu) : mu_(mu) {
    assert(mu_ != nullptr);
    LockFunc(mu_);
  }
  ~MutexLockBase() { ReleaseFunc(mu_); }
  MutexLockBase(const MutexLockBase<LockFunc, ReleaseFunc> &) = delete;
  MutexLockBase &operator=(const MutexLockBase<LockFunc, ReleaseFunc> &) =
      delete;

 private:
  CRYPTO_MUTEX *const mu_;
};

}  // namespace internal

using MutexWriteLock =
    internal::MutexLockBase<CRYPTO_MUTEX_lock_write, CRYPTO_MUTEX_unlock_write>;
using MutexReadLock =
    internal::MutexLockBase<CRYPTO_MUTEX_lock_read, CRYPTO_MUTEX_unlock_read>;

BSSL_NAMESPACE_END

}  // extern "C++"
#endif  // defined(__cplusplus)


// Thread local storage.

// thread_local_data_t enumerates the types of thread-local data that can be
// stored.
typedef enum {
  OPENSSL_THREAD_LOCAL_ERR = 0,
  OPENSSL_THREAD_LOCAL_RAND,
  OPENSSL_THREAD_LOCAL_FIPS_COUNTERS,
  OPENSSL_THREAD_LOCAL_FIPS_SERVICE_INDICATOR_STATE,
  OPENSSL_THREAD_LOCAL_TEST,
  NUM_OPENSSL_THREAD_LOCALS,
} thread_local_data_t;

// thread_local_destructor_t is the type of a destructor function that will be
// called when a thread exits and its thread-local storage needs to be freed.
typedef void (*thread_local_destructor_t)(void *);

// CRYPTO_get_thread_local gets the pointer value that is stored for the
// current thread for the given index, or NULL if none has been set.
OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);

// CRYPTO_set_thread_local sets a pointer value for the current thread at the
// given index. This function should only be called once per thread for a given
// |index|: rather than update the pointer value itself, update the data that
// is pointed to.
//
// The destructor function will be called when a thread exits to free this
// thread-local data. All calls to |CRYPTO_set_thread_local| with the same
// |index| should have the same |destructor| argument. The destructor may be
// called with a NULL argument if a thread that never set a thread-local
// pointer for |index|, exits. The destructor may be called concurrently with
// different arguments.
//
// This function returns one on success or zero on error. If it returns zero
// then |destructor| has been called with |value| already.
OPENSSL_EXPORT int CRYPTO_set_thread_local(
    thread_local_data_t index, void *value,
    thread_local_destructor_t destructor);


// ex_data

typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;

DECLARE_STACK_OF(CRYPTO_EX_DATA_FUNCS)

// CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
// supports ex_data. It should defined as a static global within the module
// which defines that type.
typedef struct {
  struct CRYPTO_STATIC_MUTEX lock;
  STACK_OF(CRYPTO_EX_DATA_FUNCS) *meth;
  // num_reserved is one if the ex_data index zero is reserved for legacy
  // |TYPE_get_app_data| functions.
  uint8_t num_reserved;
} CRYPTO_EX_DATA_CLASS;

#define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_STATIC_MUTEX_INIT, NULL, 0}
#define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \
    {CRYPTO_STATIC_MUTEX_INIT, NULL, 1}

// CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
// it to |*out_index|. Each class of object should provide a wrapper function
// that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
// zero otherwise.
OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class,
                                           int *out_index, long argl,
                                           void *argp,
                                           CRYPTO_EX_free *free_func);

// CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
// of object should provide a wrapper function.
OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);

// CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
// if no such index exists. Each class of object should provide a wrapper
// function.
OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);

// CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|.
OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad);

// CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
// object of the given class.
OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
                                        void *obj, CRYPTO_EX_DATA *ad);


// Endianness conversions.

#if defined(__GNUC__) && __GNUC__ >= 2
static inline uint16_t CRYPTO_bswap2(uint16_t x) {
  return __builtin_bswap16(x);
}

static inline uint32_t CRYPTO_bswap4(uint32_t x) {
  return __builtin_bswap32(x);
}

static inline uint64_t CRYPTO_bswap8(uint64_t x) {
  return __builtin_bswap64(x);
}
#elif defined(_MSC_VER)
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <stdlib.h>
OPENSSL_MSVC_PRAGMA(warning(pop))
#pragma intrinsic(_byteswap_uint64, _byteswap_ulong, _byteswap_ushort)
static inline uint16_t CRYPTO_bswap2(uint16_t x) {
  return _byteswap_ushort(x);
}

static inline uint32_t CRYPTO_bswap4(uint32_t x) {
  return _byteswap_ulong(x);
}

static inline uint64_t CRYPTO_bswap8(uint64_t x) {
  return _byteswap_uint64(x);
}
#else
static inline uint16_t CRYPTO_bswap2(uint16_t x) {
  return (x >> 8) | (x << 8);
}

static inline uint32_t CRYPTO_bswap4(uint32_t x) {
  x = (x >> 16) | (x << 16);
  x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8);
  return x;
}

static inline uint64_t CRYPTO_bswap8(uint64_t x) {
  return CRYPTO_bswap4(x >> 32) | (((uint64_t)CRYPTO_bswap4(x)) << 32);
}
#endif


// Language bug workarounds.
//
// Most C standard library functions are undefined if passed NULL, even when the
// corresponding length is zero. This gives them (and, in turn, all functions
// which call them) surprising behavior on empty arrays. Some compilers will
// miscompile code due to this rule. See also
// https://www.imperialviolet.org/2016/06/26/nonnull.html
//
// These wrapper functions behave the same as the corresponding C standard
// functions, but behave as expected when passed NULL if the length is zero.
//
// Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|.

// C++ defines |memchr| as a const-correct overload.
#if defined(__cplusplus)
extern "C++" {

static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) {
  if (n == 0) {
    return NULL;
  }

  return memchr(s, c, n);
}

static inline void *OPENSSL_memchr(void *s, int c, size_t n) {
  if (n == 0) {
    return NULL;
  }

  return memchr(s, c, n);
}

}  // extern "C++"
#else  // __cplusplus

static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
  if (n == 0) {
    return NULL;
  }

  return memchr(s, c, n);
}

#endif  // __cplusplus

static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) {
  if (n == 0) {
    return 0;
  }

  return memcmp(s1, s2, n);
}

static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) {
  if (n == 0) {
    return dst;
  }

  return memcpy(dst, src, n);
}

static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) {
  if (n == 0) {
    return dst;
  }

  return memmove(dst, src, n);
}

static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
  if (n == 0) {
    return dst;
  }

  return memset(dst, c, n);
}


// Loads and stores.
//
// The following functions load and store sized integers with the specified
// endianness. They use |memcpy|, and so avoid alignment or strict aliasing
// requirements on the input and output pointers.

static inline uint32_t CRYPTO_load_u32_le(const void *in) {
  uint32_t v;
  OPENSSL_memcpy(&v, in, sizeof(v));
  return v;
}

static inline void CRYPTO_store_u32_le(void *out, uint32_t v) {
  OPENSSL_memcpy(out, &v, sizeof(v));
}

static inline uint32_t CRYPTO_load_u32_be(const void *in) {
  uint32_t v;
  OPENSSL_memcpy(&v, in, sizeof(v));
  return CRYPTO_bswap4(v);
}

static inline void CRYPTO_store_u32_be(void *out, uint32_t v) {
  v = CRYPTO_bswap4(v);
  OPENSSL_memcpy(out, &v, sizeof(v));
}

static inline uint64_t CRYPTO_load_u64_le(const void *in) {
  uint64_t v;
  OPENSSL_memcpy(&v, in, sizeof(v));
  return v;
}

static inline void CRYPTO_store_u64_le(void *out, uint64_t v) {
  OPENSSL_memcpy(out, &v, sizeof(v));
}

static inline uint64_t CRYPTO_load_u64_be(const void *ptr) {
  uint64_t ret;
  OPENSSL_memcpy(&ret, ptr, sizeof(ret));
  return CRYPTO_bswap8(ret);
}

static inline void CRYPTO_store_u64_be(void *out, uint64_t v) {
  v = CRYPTO_bswap8(v);
  OPENSSL_memcpy(out, &v, sizeof(v));
}

static inline crypto_word_t CRYPTO_load_word_le(const void *in) {
  crypto_word_t v;
  OPENSSL_memcpy(&v, in, sizeof(v));
  return v;
}

static inline void CRYPTO_store_word_le(void *out, crypto_word_t v) {
  OPENSSL_memcpy(out, &v, sizeof(v));
}

static inline crypto_word_t CRYPTO_load_word_be(const void *in) {
  crypto_word_t v;
  OPENSSL_memcpy(&v, in, sizeof(v));
#if defined(OPENSSL_64_BIT)
  static_assert(sizeof(v) == 8, "crypto_word_t has unexpected size");
  return CRYPTO_bswap8(v);
#else
  static_assert(sizeof(v) == 4, "crypto_word_t has unexpected size");
  return CRYPTO_bswap4(v);
#endif
}


// Bit rotation functions.
//
// Note these functions use |(-shift) & 31|, etc., because shifting by the bit
// width is undefined. Both Clang and GCC recognize this pattern as a rotation,
// but MSVC does not. Instead, we call MSVC's built-in functions.

static inline uint32_t CRYPTO_rotl_u32(uint32_t value, int shift) {
#if defined(_MSC_VER)
  return _rotl(value, shift);
#else
  return (value << shift) | (value >> ((-shift) & 31));
#endif
}

static inline uint32_t CRYPTO_rotr_u32(uint32_t value, int shift) {
#if defined(_MSC_VER)
  return _rotr(value, shift);
#else
  return (value >> shift) | (value << ((-shift) & 31));
#endif
}

static inline uint64_t CRYPTO_rotl_u64(uint64_t value, int shift) {
#if defined(_MSC_VER)
  return _rotl64(value, shift);
#else
  return (value << shift) | (value >> ((-shift) & 63));
#endif
}

static inline uint64_t CRYPTO_rotr_u64(uint64_t value, int shift) {
#if defined(_MSC_VER)
  return _rotr64(value, shift);
#else
  return (value >> shift) | (value << ((-shift) & 63));
#endif
}


// FIPS functions.

#if defined(BORINGSSL_FIPS)

// BORINGSSL_FIPS_abort is called when a FIPS power-on or continuous test
// fails. It prevents any further cryptographic operations by the current
// process.
void BORINGSSL_FIPS_abort(void) __attribute__((noreturn));

// boringssl_self_test_startup runs all startup self tests and returns one on
// success or zero on error. Startup self tests do not include lazy tests.
// Call |BORINGSSL_self_test| to run every self test.
int boringssl_self_test_startup(void);

// boringssl_ensure_rsa_self_test checks whether the RSA self-test has been run
// in this address space. If not, it runs it and crashes the address space if
// unsuccessful.
void boringssl_ensure_rsa_self_test(void);

// boringssl_ensure_ecc_self_test checks whether the ECDSA and ECDH self-test
// has been run in this address space. If not, it runs it and crashes the
// address space if unsuccessful.
void boringssl_ensure_ecc_self_test(void);

// boringssl_ensure_ffdh_self_test checks whether the FFDH self-test has been
// run in this address space. If not, it runs it and crashes the address space
// if unsuccessful.
void boringssl_ensure_ffdh_self_test(void);

#else

// Outside of FIPS mode, the lazy tests are no-ops.

OPENSSL_INLINE void boringssl_ensure_rsa_self_test(void) {}
OPENSSL_INLINE void boringssl_ensure_ecc_self_test(void) {}
OPENSSL_INLINE void boringssl_ensure_ffdh_self_test(void) {}

#endif  // FIPS

// boringssl_self_test_sha256 performs a SHA-256 KAT.
int boringssl_self_test_sha256(void);

// boringssl_self_test_sha512 performs a SHA-512 KAT.
int boringssl_self_test_sha512(void);

// boringssl_self_test_hmac_sha256 performs an HMAC-SHA-256 KAT.
int boringssl_self_test_hmac_sha256(void);

#if defined(BORINGSSL_FIPS_COUNTERS)
void boringssl_fips_inc_counter(enum fips_counter_t counter);
#else
OPENSSL_INLINE void boringssl_fips_inc_counter(enum fips_counter_t counter) {}
#endif

#if defined(BORINGSSL_FIPS_BREAK_TESTS)
OPENSSL_INLINE int boringssl_fips_break_test(const char *test) {
  const char *const value = getenv("BORINGSSL_FIPS_BREAK_TEST");
  return value != NULL && strcmp(value, test) == 0;
}
#else
OPENSSL_INLINE int boringssl_fips_break_test(const char *test) {
  return 0;
}
#endif  // BORINGSSL_FIPS_BREAK_TESTS


// Runtime CPU feature support

#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
// OPENSSL_ia32cap_P contains the Intel CPUID bits when running on an x86 or
// x86-64 system.
//
//   Index 0:
//     EDX for CPUID where EAX = 1
//     Bit 20 is always zero
//     Bit 28 is adjusted to reflect whether the data cache is shared between
//       multiple logical cores
//     Bit 30 is used to indicate an Intel CPU
//   Index 1:
//     ECX for CPUID where EAX = 1
//     Bit 11 is used to indicate AMD XOP support, not SDBG
//   Index 2:
//     EBX for CPUID where EAX = 7
//   Index 3:
//     ECX for CPUID where EAX = 7
//
// Note: the CPUID bits are pre-adjusted for the OSXSAVE bit and the YMM and XMM
// bits in XCR0, so it is not necessary to check those.
extern uint32_t OPENSSL_ia32cap_P[4];

#if defined(BORINGSSL_FIPS) && !defined(BORINGSSL_SHARED_LIBRARY)
// The FIPS module, as a static library, requires an out-of-line version of
// |OPENSSL_ia32cap_get| so accesses can be rewritten by delocate. Mark the
// function const so multiple accesses can be optimized together.
const uint32_t *OPENSSL_ia32cap_get(void) __attribute__((const));
#else
OPENSSL_INLINE const uint32_t *OPENSSL_ia32cap_get(void) {
  return OPENSSL_ia32cap_P;
}
#endif

// See Intel manual, volume 2A, table 3-11.

OPENSSL_INLINE int CRYPTO_is_FXSR_capable(void) {
#if defined(__FXSR__)
  return 1;
#else
  return (OPENSSL_ia32cap_get()[0] & (1 << 24)) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_intel_cpu(void) {
  // The reserved bit 30 is used to indicate an Intel CPU.
  return (OPENSSL_ia32cap_get()[0] & (1 << 30)) != 0;
}

// See Intel manual, volume 2A, table 3-10.

OPENSSL_INLINE int CRYPTO_is_PCLMUL_capable(void) {
#if defined(__PCLMUL__)
  return 1;
#else
  return (OPENSSL_ia32cap_get()[1] & (1 << 1)) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_SSSE3_capable(void) {
#if defined(__SSSE3__)
  return 1;
#else
  return (OPENSSL_ia32cap_get()[1] & (1 << 9)) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_SSE4_1_capable(void) {
#if defined(__SSE4_1__)
  return 1;
#else
  return (OPENSSL_ia32cap_P[1] & (1 << 19)) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_MOVBE_capable(void) {
#if defined(__MOVBE__)
  return 1;
#else
  return (OPENSSL_ia32cap_get()[1] & (1 << 22)) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_AESNI_capable(void) {
#if defined(__AES__)
  return 1;
#else
  return (OPENSSL_ia32cap_get()[1] & (1 << 25)) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_AVX_capable(void) {
#if defined(__AVX__)
  return 1;
#else
  return (OPENSSL_ia32cap_get()[1] & (1 << 28)) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_RDRAND_capable(void) {
  // The GCC/Clang feature name and preprocessor symbol for RDRAND are "rdrnd"
  // and |__RDRND__|, respectively.
#if defined(__RDRND__)
  return 1;
#else
  return (OPENSSL_ia32cap_get()[1] & (1u << 30)) != 0;
#endif
}

// See Intel manual, volume 2A, table 3-8.

OPENSSL_INLINE int CRYPTO_is_BMI1_capable(void) {
#if defined(__BMI1__)
  return 1;
#else
  return (OPENSSL_ia32cap_get()[2] & (1 << 3)) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_AVX2_capable(void) {
#if defined(__AVX2__)
  return 1;
#else
  return (OPENSSL_ia32cap_get()[2] & (1 << 5)) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_BMI2_capable(void) {
#if defined(__BMI2__)
  return 1;
#else
  return (OPENSSL_ia32cap_get()[2] & (1 << 8)) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_ADX_capable(void) {
#if defined(__ADX__)
  return 1;
#else
  return (OPENSSL_ia32cap_get()[2] & (1 << 19)) != 0;
#endif
}

#endif  // OPENSSL_X86 || OPENSSL_X86_64

#if defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)

#if defined(OPENSSL_APPLE) && defined(OPENSSL_ARM)
// We do not detect any features at runtime for Apple's 32-bit ARM platforms. On
// 64-bit ARM, we detect some post-ARMv8.0 features.
#define OPENSSL_STATIC_ARMCAP
#endif

// Normalize some older feature flags to their modern ACLE values.
// https://developer.arm.com/architectures/system-architectures/software-standards/acle
#if defined(__ARM_NEON__) && !defined(__ARM_NEON)
#define __ARM_NEON 1
#endif
#if defined(__ARM_FEATURE_CRYPTO)
#if !defined(__ARM_FEATURE_AES)
#define __ARM_FEATURE_AES 1
#endif
#if !defined(__ARM_FEATURE_SHA2)
#define __ARM_FEATURE_SHA2 1
#endif
#endif

#if !defined(OPENSSL_STATIC_ARMCAP)
// CRYPTO_is_NEON_capable_at_runtime returns true if the current CPU has a NEON
// unit. Note that |OPENSSL_armcap_P| also exists and contains the same
// information in a form that's easier for assembly to use.
OPENSSL_EXPORT int CRYPTO_is_NEON_capable_at_runtime(void);

// CRYPTO_is_ARMv8_AES_capable_at_runtime returns true if the current CPU
// supports the ARMv8 AES instruction.
int CRYPTO_is_ARMv8_AES_capable_at_runtime(void);

// CRYPTO_is_ARMv8_PMULL_capable_at_runtime returns true if the current CPU
// supports the ARMv8 PMULL instruction.
int CRYPTO_is_ARMv8_PMULL_capable_at_runtime(void);
#endif  // !OPENSSL_STATIC_ARMCAP

// CRYPTO_is_NEON_capable returns true if the current CPU has a NEON unit. If
// this is known statically, it is a constant inline function.
OPENSSL_INLINE int CRYPTO_is_NEON_capable(void) {
#if defined(OPENSSL_STATIC_ARMCAP_NEON) || defined(__ARM_NEON)
  return 1;
#elif defined(OPENSSL_STATIC_ARMCAP)
  return 0;
#else
  return CRYPTO_is_NEON_capable_at_runtime();
#endif
}

OPENSSL_INLINE int CRYPTO_is_ARMv8_AES_capable(void) {
#if defined(OPENSSL_STATIC_ARMCAP_AES) || defined(__ARM_FEATURE_AES)
  return 1;
#elif defined(OPENSSL_STATIC_ARMCAP)
  return 0;
#else
  return CRYPTO_is_ARMv8_AES_capable_at_runtime();
#endif
}

OPENSSL_INLINE int CRYPTO_is_ARMv8_PMULL_capable(void) {
#if defined(OPENSSL_STATIC_ARMCAP_PMULL) || defined(__ARM_FEATURE_AES)
  return 1;
#elif defined(OPENSSL_STATIC_ARMCAP)
  return 0;
#else
  return CRYPTO_is_ARMv8_PMULL_capable_at_runtime();
#endif
}

#endif  // OPENSSL_ARM || OPENSSL_AARCH64

#if defined(OPENSSL_PPC64LE)

// CRYPTO_is_PPC64LE_vcrypto_capable returns true iff the current CPU supports
// the Vector.AES category of instructions.
int CRYPTO_is_PPC64LE_vcrypto_capable(void);

extern unsigned long OPENSSL_ppc64le_hwcap2;

#endif  // OPENSSL_PPC64LE

#if defined(BORINGSSL_DISPATCH_TEST)
// Runtime CPU dispatch testing support

// BORINGSSL_function_hit is an array of flags. The following functions will
// set these flags if BORINGSSL_DISPATCH_TEST is defined.
//   0: aes_hw_ctr32_encrypt_blocks
//   1: aes_hw_encrypt
//   2: aesni_gcm_encrypt
//   3: aes_hw_set_encrypt_key
//   4: vpaes_encrypt
//   5: vpaes_set_encrypt_key
extern uint8_t BORINGSSL_function_hit[7];
#endif  // BORINGSSL_DISPATCH_TEST


#if defined(__cplusplus)
}  // extern C
#endif

#endif  // OPENSSL_HEADER_CRYPTO_INTERNAL_H