aboutsummaryrefslogtreecommitdiff
path: root/crypto/internal.h
blob: f93c2e5ecb592deb4208de47f61daa3c826fcb8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */
/* ====================================================================
 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com). */

#ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
#define OPENSSL_HEADER_CRYPTO_INTERNAL_H

#include <openssl/arm_arch.h>
#include <openssl/crypto.h>
#include <openssl/ex_data.h>
#include <openssl/stack.h>
#include <openssl/thread.h>

#include <assert.h>
#include <string.h>

#if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
#include <valgrind/memcheck.h>
#endif

#if defined(BORINGSSL_FIPS_BREAK_TESTS)
#include <stdlib.h>
#endif

#if !defined(__cplusplus)
#if !defined(__STDC_VERSION__) || __STDC_VERSION__ < 201112L
// BoringSSL requires C11 to build the library. The most likely cause of
// pre-C11 modes is stale -std=c99 or -std=gnu99 flags in build configuration.
// Such flags can be removed. If building with MSVC, build with /std:c11.
#error "BoringSSL must be built in C11 mode or higher."
#endif
#include <stdalign.h>
#endif

#if defined(OPENSSL_THREADS) && \
    (!defined(OPENSSL_WINDOWS) || defined(__MINGW32__))
#include <pthread.h>
#define OPENSSL_PTHREADS
#endif

#if defined(OPENSSL_THREADS) && !defined(OPENSSL_PTHREADS) && \
    defined(OPENSSL_WINDOWS)
#define OPENSSL_WINDOWS_THREADS
#endif

// Determine the atomics implementation to use with C.
#if !defined(__cplusplus)
#if !defined(OPENSSL_C11_ATOMIC) && defined(OPENSSL_THREADS) && \
    !defined(__STDC_NO_ATOMICS__)
#define OPENSSL_C11_ATOMIC
#endif

#if defined(OPENSSL_C11_ATOMIC)
#include <stdatomic.h>
#endif

// Older MSVC does not support C11 atomics, so we fallback to the Windows APIs.
// When both are available (e.g. clang-cl), we prefer the C11 ones. The Windows
// APIs don't allow some operations to be implemented as efficiently. This can
// be removed once we can rely on
// https://devblogs.microsoft.com/cppblog/c11-atomics-in-visual-studio-2022-version-17-5-preview-2/
#if !defined(OPENSSL_C11_ATOMIC) && defined(OPENSSL_THREADS) && \
    defined(OPENSSL_WINDOWS)
#define OPENSSL_WINDOWS_ATOMIC
#endif
#endif  // !__cplusplus

#if defined(OPENSSL_WINDOWS_THREADS) || defined(OPENSSL_WINDOWS_ATOMIC)
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <windows.h>
OPENSSL_MSVC_PRAGMA(warning(pop))
#endif

#if defined(__cplusplus)
extern "C" {
#endif


#if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_STATIC_ARMCAP) && \
    (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) ||            \
     defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
// x86, x86_64, and the ARMs need to record the result of a cpuid/getauxval call
// for the asm to work correctly, unless compiled without asm code.
#define NEED_CPUID

// OPENSSL_cpuid_setup initializes the platform-specific feature cache. This
// function should not be called directly. Call |OPENSSL_init_cpuid| instead.
void OPENSSL_cpuid_setup(void);

// OPENSSL_init_cpuid initializes the platform-specific feature cache, if
// needed. This function is idempotent and may be called concurrently.
void OPENSSL_init_cpuid(void);
#else
OPENSSL_INLINE void OPENSSL_init_cpuid(void) {}
#endif

#if (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \
    !defined(OPENSSL_STATIC_ARMCAP)
// OPENSSL_get_armcap_pointer_for_test returns a pointer to |OPENSSL_armcap_P|
// for unit tests. Any modifications to the value must be made before any other
// function call in BoringSSL.
OPENSSL_EXPORT uint32_t *OPENSSL_get_armcap_pointer_for_test(void);
#endif


// On non-MSVC 64-bit targets, we expect __uint128_t support. This includes
// clang-cl, which defines both __clang__ and _MSC_VER.
#if (!defined(_MSC_VER) || defined(__clang__)) && defined(OPENSSL_64_BIT)
#define BORINGSSL_HAS_UINT128
typedef __int128_t int128_t;
typedef __uint128_t uint128_t;

// __uint128_t division depends on intrinsics in the compiler runtime. Those
// intrinsics are missing in clang-cl (https://crbug.com/787617) and nanolibc.
// These may be bugs in the toolchain definition, but just disable it for now.
#if !defined(_MSC_VER) && !defined(OPENSSL_NANOLIBC)
#define BORINGSSL_CAN_DIVIDE_UINT128
#endif
#endif

#define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))

// Have a generic fall-through for different versions of C/C++.
#if defined(__cplusplus) && __cplusplus >= 201703L
#define OPENSSL_FALLTHROUGH [[fallthrough]]
#elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__clang__)
#define OPENSSL_FALLTHROUGH [[clang::fallthrough]]
#elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__GNUC__) && \
    __GNUC__ >= 7
#define OPENSSL_FALLTHROUGH [[gnu::fallthrough]]
#elif defined(__GNUC__) && __GNUC__ >= 7 // gcc 7
#define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
#elif defined(__clang__)
#if __has_attribute(fallthrough) && __clang_major__ >= 5
// Clang 3.5, at least, complains about "error: declaration does not declare
// anything", possibily because we put a semicolon after this macro in
// practice. Thus limit it to >= Clang 5, which does work.
#define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
#else // clang versions that do not support fallthrough.
#define OPENSSL_FALLTHROUGH
#endif
#else // C++11 on gcc 6, and all other cases
#define OPENSSL_FALLTHROUGH
#endif

// GCC-like compilers indicate SSE2 with |__SSE2__|. MSVC leaves the caller to
// know that x86_64 has SSE2, and uses _M_IX86_FP to indicate SSE2 on x86.
// https://learn.microsoft.com/en-us/cpp/preprocessor/predefined-macros?view=msvc-170
#if defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || \
    (defined(_M_IX86_FP) && _M_IX86_FP >= 2)
#define OPENSSL_SSE2
#endif

#if defined(OPENSSL_X86) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_SSE2)
#error \
    "x86 assembly requires SSE2. Build with -msse2 (recommended), or disable assembly optimizations with -DOPENSSL_NO_ASM."
#endif

// For convenience in testing the fallback code, we allow disabling SSE2
// intrinsics via |OPENSSL_NO_SSE2_FOR_TESTING|. We require SSE2 on x86 and
// x86_64, so we would otherwise need to test such code on a non-x86 platform.
//
// This does not remove the above requirement for SSE2 support with assembly
// optimizations. It only disables some intrinsics-based optimizations so that
// we can test the fallback code on CI.
#if defined(OPENSSL_SSE2) && defined(OPENSSL_NO_SSE2_FOR_TESTING)
#undef OPENSSL_SSE2
#endif

#if defined(__GNUC__) || defined(__clang__)
#define OPENSSL_ATTR_PURE __attribute__((pure))
#else
#define OPENSSL_ATTR_PURE
#endif

#if defined(BORINGSSL_MALLOC_FAILURE_TESTING)
// OPENSSL_reset_malloc_counter_for_testing, when malloc testing is enabled,
// resets the internal malloc counter, to simulate further malloc failures. This
// should be called in between independent tests, at a point where failure from
// a previous test will not impact subsequent ones.
OPENSSL_EXPORT void OPENSSL_reset_malloc_counter_for_testing(void);

// OPENSSL_disable_malloc_failures_for_testing, when malloc testing is enabled,
// disables simulated malloc failures. Calls to |OPENSSL_malloc| will not
// increment the malloc counter or synthesize failures. This may be used to skip
// simulating malloc failures in some region of code.
OPENSSL_EXPORT void OPENSSL_disable_malloc_failures_for_testing(void);

// OPENSSL_enable_malloc_failures_for_testing, when malloc testing is enabled,
// re-enables simulated malloc failures.
OPENSSL_EXPORT void OPENSSL_enable_malloc_failures_for_testing(void);
#else
OPENSSL_INLINE void OPENSSL_reset_malloc_counter_for_testing(void) {}
OPENSSL_INLINE void OPENSSL_disable_malloc_failures_for_testing(void) {}
OPENSSL_INLINE void OPENSSL_enable_malloc_failures_for_testing(void) {}
#endif

#if defined(__has_builtin)
#define OPENSSL_HAS_BUILTIN(x) __has_builtin(x)
#else
#define OPENSSL_HAS_BUILTIN(x) 0
#endif


// Pointer utility functions.

// buffers_alias returns one if |a| and |b| alias and zero otherwise.
static inline int buffers_alias(const void *a, size_t a_bytes,
                                const void *b, size_t b_bytes) {
  // Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
  // objects are undefined whereas pointer to integer conversions are merely
  // implementation-defined. We assume the implementation defined it in a sane
  // way.
  uintptr_t a_u = (uintptr_t)a;
  uintptr_t b_u = (uintptr_t)b;
  return a_u + a_bytes > b_u && b_u + b_bytes > a_u;
}

// align_pointer returns |ptr|, advanced to |alignment|. |alignment| must be a
// power of two, and |ptr| must have at least |alignment - 1| bytes of scratch
// space.
static inline void *align_pointer(void *ptr, size_t alignment) {
  // |alignment| must be a power of two.
  assert(alignment != 0 && (alignment & (alignment - 1)) == 0);
  // Instead of aligning |ptr| as a |uintptr_t| and casting back, compute the
  // offset and advance in pointer space. C guarantees that casting from pointer
  // to |uintptr_t| and back gives the same pointer, but general
  // integer-to-pointer conversions are implementation-defined. GCC does define
  // it in the useful way, but this makes fewer assumptions.
  uintptr_t offset = (0u - (uintptr_t)ptr) & (alignment - 1);
  ptr = (char *)ptr + offset;
  assert(((uintptr_t)ptr & (alignment - 1)) == 0);
  return ptr;
}


// Constant-time utility functions.
//
// The following methods return a bitmask of all ones (0xff...f) for true and 0
// for false. This is useful for choosing a value based on the result of a
// conditional in constant time. For example,
//
// if (a < b) {
//   c = a;
// } else {
//   c = b;
// }
//
// can be written as
//
// crypto_word_t lt = constant_time_lt_w(a, b);
// c = constant_time_select_w(lt, a, b);

// crypto_word_t is the type that most constant-time functions use. Ideally we
// would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit
// pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64
// bits. Since we want to be able to do constant-time operations on a
// |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native
// word length.
#if defined(OPENSSL_64_BIT)
typedef uint64_t crypto_word_t;
#elif defined(OPENSSL_32_BIT)
typedef uint32_t crypto_word_t;
#else
#error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
#endif

#define CONSTTIME_TRUE_W ~((crypto_word_t)0)
#define CONSTTIME_FALSE_W ((crypto_word_t)0)
#define CONSTTIME_TRUE_8 ((uint8_t)0xff)
#define CONSTTIME_FALSE_8 ((uint8_t)0)

// value_barrier_w returns |a|, but prevents GCC and Clang from reasoning about
// the returned value. This is used to mitigate compilers undoing constant-time
// code, until we can express our requirements directly in the language.
//
// Note the compiler is aware that |value_barrier_w| has no side effects and
// always has the same output for a given input. This allows it to eliminate
// dead code, move computations across loops, and vectorize.
static inline crypto_word_t value_barrier_w(crypto_word_t a) {
#if defined(__GNUC__) || defined(__clang__)
  __asm__("" : "+r"(a) : /* no inputs */);
#endif
  return a;
}

// value_barrier_u32 behaves like |value_barrier_w| but takes a |uint32_t|.
static inline uint32_t value_barrier_u32(uint32_t a) {
#if defined(__GNUC__) || defined(__clang__)
  __asm__("" : "+r"(a) : /* no inputs */);
#endif
  return a;
}

// value_barrier_u64 behaves like |value_barrier_w| but takes a |uint64_t|.
static inline uint64_t value_barrier_u64(uint64_t a) {
#if defined(__GNUC__) || defined(__clang__)
  __asm__("" : "+r"(a) : /* no inputs */);
#endif
  return a;
}

// |value_barrier_u8| could be defined as above, but compilers other than
// clang seem to still materialize 0x00..00MM instead of reusing 0x??..??MM.

// constant_time_msb_w returns the given value with the MSB copied to all the
// other bits.
static inline crypto_word_t constant_time_msb_w(crypto_word_t a) {
  return 0u - (a >> (sizeof(a) * 8 - 1));
}

// constant_time_lt_w returns 0xff..f if a < b and 0 otherwise.
static inline crypto_word_t constant_time_lt_w(crypto_word_t a,
                                               crypto_word_t b) {
  // Consider the two cases of the problem:
  //   msb(a) == msb(b): a < b iff the MSB of a - b is set.
  //   msb(a) != msb(b): a < b iff the MSB of b is set.
  //
  // If msb(a) == msb(b) then the following evaluates as:
  //   msb(a^((a^b)|((a-b)^a))) ==
  //   msb(a^((a-b) ^ a))       ==   (because msb(a^b) == 0)
  //   msb(a^a^(a-b))           ==   (rearranging)
  //   msb(a-b)                      (because ∀x. x^x == 0)
  //
  // Else, if msb(a) != msb(b) then the following evaluates as:
  //   msb(a^((a^b)|((a-b)^a))) ==
  //   msb(a^(𝟙 | ((a-b)^a)))   ==   (because msb(a^b) == 1 and 𝟙
  //                                  represents a value s.t. msb(𝟙) = 1)
  //   msb(a^𝟙)                 ==   (because ORing with 1 results in 1)
  //   msb(b)
  //
  //
  // Here is an SMT-LIB verification of this formula:
  //
  // (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
  //   (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
  // )
  //
  // (declare-fun a () (_ BitVec 32))
  // (declare-fun b () (_ BitVec 32))
  //
  // (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
  // (check-sat)
  // (get-model)
  return constant_time_msb_w(a^((a^b)|((a-b)^a)));
}

// constant_time_lt_8 acts like |constant_time_lt_w| but returns an 8-bit
// mask.
static inline uint8_t constant_time_lt_8(crypto_word_t a, crypto_word_t b) {
  return (uint8_t)(constant_time_lt_w(a, b));
}

// constant_time_ge_w returns 0xff..f if a >= b and 0 otherwise.
static inline crypto_word_t constant_time_ge_w(crypto_word_t a,
                                               crypto_word_t b) {
  return ~constant_time_lt_w(a, b);
}

// constant_time_ge_8 acts like |constant_time_ge_w| but returns an 8-bit
// mask.
static inline uint8_t constant_time_ge_8(crypto_word_t a, crypto_word_t b) {
  return (uint8_t)(constant_time_ge_w(a, b));
}

// constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise.
static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) {
  // Here is an SMT-LIB verification of this formula:
  //
  // (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
  //   (bvand (bvnot a) (bvsub a #x00000001))
  // )
  //
  // (declare-fun a () (_ BitVec 32))
  //
  // (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
  // (check-sat)
  // (get-model)
  return constant_time_msb_w(~a & (a - 1));
}

// constant_time_is_zero_8 acts like |constant_time_is_zero_w| but returns an
// 8-bit mask.
static inline uint8_t constant_time_is_zero_8(crypto_word_t a) {
  return (uint8_t)(constant_time_is_zero_w(a));
}

// constant_time_eq_w returns 0xff..f if a == b and 0 otherwise.
static inline crypto_word_t constant_time_eq_w(crypto_word_t a,
                                               crypto_word_t b) {
  return constant_time_is_zero_w(a ^ b);
}

// constant_time_eq_8 acts like |constant_time_eq_w| but returns an 8-bit
// mask.
static inline uint8_t constant_time_eq_8(crypto_word_t a, crypto_word_t b) {
  return (uint8_t)(constant_time_eq_w(a, b));
}

// constant_time_eq_int acts like |constant_time_eq_w| but works on int
// values.
static inline crypto_word_t constant_time_eq_int(int a, int b) {
  return constant_time_eq_w((crypto_word_t)(a), (crypto_word_t)(b));
}

// constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
// mask.
static inline uint8_t constant_time_eq_int_8(int a, int b) {
  return constant_time_eq_8((crypto_word_t)(a), (crypto_word_t)(b));
}

// constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all
// 1s or all 0s (as returned by the methods above), the select methods return
// either |a| (if |mask| is nonzero) or |b| (if |mask| is zero).
static inline crypto_word_t constant_time_select_w(crypto_word_t mask,
                                                   crypto_word_t a,
                                                   crypto_word_t b) {
  // Clang recognizes this pattern as a select. While it usually transforms it
  // to a cmov, it sometimes further transforms it into a branch, which we do
  // not want.
  //
  // Hiding the value of the mask from the compiler evades this transformation.
  mask = value_barrier_w(mask);
  return (mask & a) | (~mask & b);
}

// constant_time_select_8 acts like |constant_time_select| but operates on
// 8-bit values.
static inline uint8_t constant_time_select_8(crypto_word_t mask, uint8_t a,
                                             uint8_t b) {
  // |mask| is a word instead of |uint8_t| to avoid materializing 0x000..0MM
  // Making both |mask| and its value barrier |uint8_t| would allow the compiler
  // to materialize 0x????..?MM instead, but only clang is that clever.
  // However, vectorization of bitwise operations seems to work better on
  // |uint8_t| than a mix of |uint64_t| and |uint8_t|, so |m| is cast to
  // |uint8_t| after the value barrier but before the bitwise operations.
  uint8_t m = value_barrier_w(mask);
  return (m & a) | (~m & b);
}

// constant_time_select_int acts like |constant_time_select| but operates on
// ints.
static inline int constant_time_select_int(crypto_word_t mask, int a, int b) {
  return (int)(constant_time_select_w(mask, (crypto_word_t)(a),
                                      (crypto_word_t)(b)));
}

// constant_time_conditional_memcpy copies |n| bytes from |src| to |dst| if
// |mask| is 0xff..ff and does nothing if |mask| is 0. The |n|-byte memory
// ranges at |dst| and |src| must not overlap, as when calling |memcpy|.
static inline void constant_time_conditional_memcpy(void *dst, const void *src,
                                                    const size_t n,
                                                    const crypto_word_t mask) {
  assert(!buffers_alias(dst, n, src, n));
  uint8_t *out = (uint8_t *)dst;
  const uint8_t *in = (const uint8_t *)src;
  for (size_t i = 0; i < n; i++) {
    out[i] = constant_time_select_8(mask, in[i], out[i]);
  }
}

// constant_time_conditional_memxor xors |n| bytes from |src| to |dst| if
// |mask| is 0xff..ff and does nothing if |mask| is 0. The |n|-byte memory
// ranges at |dst| and |src| must not overlap, as when calling |memcpy|.
static inline void constant_time_conditional_memxor(void *dst, const void *src,
                                                    const size_t n,
                                                    const crypto_word_t mask) {
  assert(!buffers_alias(dst, n, src, n));
  uint8_t *out = (uint8_t *)dst;
  const uint8_t *in = (const uint8_t *)src;
  for (size_t i = 0; i < n; i++) {
    out[i] ^= value_barrier_w(mask) & in[i];
  }
}

#if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)

// CONSTTIME_SECRET takes a pointer and a number of bytes and marks that region
// of memory as secret. Secret data is tracked as it flows to registers and
// other parts of a memory. If secret data is used as a condition for a branch,
// or as a memory index, it will trigger warnings in valgrind.
#define CONSTTIME_SECRET(ptr, len) VALGRIND_MAKE_MEM_UNDEFINED(ptr, len)

// CONSTTIME_DECLASSIFY takes a pointer and a number of bytes and marks that
// region of memory as public. Public data is not subject to constant-time
// rules.
#define CONSTTIME_DECLASSIFY(ptr, len) VALGRIND_MAKE_MEM_DEFINED(ptr, len)

#else

#define CONSTTIME_SECRET(ptr, len)
#define CONSTTIME_DECLASSIFY(ptr, len)

#endif  // BORINGSSL_CONSTANT_TIME_VALIDATION

static inline crypto_word_t constant_time_declassify_w(crypto_word_t v) {
  // Return |v| through a value barrier to be safe. Valgrind-based constant-time
  // validation is partly to check the compiler has not undone any constant-time
  // work. Any place |BORINGSSL_CONSTANT_TIME_VALIDATION| influences
  // optimizations, this validation is inaccurate.
  //
  // However, by sending pointers through valgrind, we likely inhibit escape
  // analysis. On local variables, particularly booleans, we likely
  // significantly impact optimizations.
  //
  // Thus, to be safe, stick a value barrier, in hopes of comparably inhibiting
  // compiler analysis.
  CONSTTIME_DECLASSIFY(&v, sizeof(v));
  return value_barrier_w(v);
}

static inline int constant_time_declassify_int(int v) {
  static_assert(sizeof(uint32_t) == sizeof(int),
                "int is not the same size as uint32_t");
  // See comment above.
  CONSTTIME_DECLASSIFY(&v, sizeof(v));
  return value_barrier_u32(v);
}

// declassify_assert behaves like |assert| but declassifies the result of
// evaluating |expr|. This allows the assertion to branch on the (presumably
// public) result, but still ensures that values leading up to the computation
// were secret.
#define declassify_assert(expr) assert(constant_time_declassify_int(expr))


// Thread-safe initialisation.

#if !defined(OPENSSL_THREADS)
typedef uint32_t CRYPTO_once_t;
#define CRYPTO_ONCE_INIT 0
#elif defined(OPENSSL_WINDOWS_THREADS)
typedef INIT_ONCE CRYPTO_once_t;
#define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT
#elif defined(OPENSSL_PTHREADS)
typedef pthread_once_t CRYPTO_once_t;
#define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT
#else
#error "Unknown threading library"
#endif

// CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
// concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
// then they will block until |init| completes, but |init| will have only been
// called once.
//
// The |once| argument must be a |CRYPTO_once_t| that has been initialised with
// the value |CRYPTO_ONCE_INIT|.
OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));


// Atomics.
//
// The following functions provide an API analogous to <stdatomic.h> from C11
// and abstract between a few variations on atomics we need to support.

#if defined(__cplusplus)

// In C++, we can't easily detect whether C will use |OPENSSL_C11_ATOMIC| or
// |OPENSSL_WINDOWS_ATOMIC|. Instead, we define a layout-compatible type without
// the corresponding functions. When we can rely on C11 atomics in MSVC, that
// will no longer be a concern.
typedef uint32_t CRYPTO_atomic_u32;

#elif defined(OPENSSL_C11_ATOMIC)

typedef _Atomic uint32_t CRYPTO_atomic_u32;

// This should be const, but the |OPENSSL_WINDOWS_ATOMIC| implementation is not
// const due to Windows limitations. When we can rely on C11 atomics, make this
// const-correct.
OPENSSL_INLINE uint32_t CRYPTO_atomic_load_u32(CRYPTO_atomic_u32 *val) {
  return atomic_load(val);
}

OPENSSL_INLINE int CRYPTO_atomic_compare_exchange_weak_u32(
    CRYPTO_atomic_u32 *val, uint32_t *expected, uint32_t desired) {
  return atomic_compare_exchange_weak(val, expected, desired);
}

OPENSSL_INLINE void CRYPTO_atomic_store_u32(CRYPTO_atomic_u32 *val,
                                            uint32_t desired) {
  atomic_store(val, desired);
}

#elif defined(OPENSSL_WINDOWS_ATOMIC)

typedef LONG CRYPTO_atomic_u32;

OPENSSL_INLINE uint32_t CRYPTO_atomic_load_u32(volatile CRYPTO_atomic_u32 *val) {
  // This is not ideal because it still writes to a cacheline. MSVC is not able
  // to optimize this to a true atomic read, and Windows does not provide an
  // InterlockedLoad function.
  //
  // The Windows documentation [1] does say "Simple reads and writes to
  // properly-aligned 32-bit variables are atomic operations", but this is not
  // phrased in terms of the C11 and C++11 memory models, and indeed a read or
  // write seems to produce slightly different code on MSVC than a sequentially
  // consistent std::atomic::load in C++. Moreover, it is unclear if non-MSVC
  // compilers on Windows provide the same guarantees. Thus we avoid relying on
  // this and instead still use an interlocked function. This is still
  // preferable a global mutex, and eventually this code will be replaced by
  // [2]. Additionally, on clang-cl, we'll use the |OPENSSL_C11_ATOMIC| path.
  //
  // [1] https://learn.microsoft.com/en-us/windows/win32/sync/interlocked-variable-access
  // [2] https://devblogs.microsoft.com/cppblog/c11-atomics-in-visual-studio-2022-version-17-5-preview-2/
  return (uint32_t)InterlockedCompareExchange(val, 0, 0);
}

OPENSSL_INLINE int CRYPTO_atomic_compare_exchange_weak_u32(
    volatile CRYPTO_atomic_u32 *val, uint32_t *expected32, uint32_t desired) {
  LONG expected = (LONG)*expected32;
  LONG actual = InterlockedCompareExchange(val, (LONG)desired, expected);
  *expected32 = (uint32_t)actual;
  return actual == expected;
}

OPENSSL_INLINE void CRYPTO_atomic_store_u32(volatile CRYPTO_atomic_u32 *val,
                                            uint32_t desired) {
  InterlockedExchange(val, (LONG)desired);
}

#elif !defined(OPENSSL_THREADS)

typedef uint32_t CRYPTO_atomic_u32;

OPENSSL_INLINE uint32_t CRYPTO_atomic_load_u32(CRYPTO_atomic_u32 *val) {
  return *val;
}

OPENSSL_INLINE int CRYPTO_atomic_compare_exchange_weak_u32(
    CRYPTO_atomic_u32 *val, uint32_t *expected, uint32_t desired) {
  if (*val != *expected) {
    *expected = *val;
    return 0;
  }
  *val = desired;
  return 1;
}

OPENSSL_INLINE void CRYPTO_atomic_store_u32(CRYPTO_atomic_u32 *val,
                                            uint32_t desired) {
  *val = desired;
}

#else

// Require some atomics implementation. Contact BoringSSL maintainers if you
// have a platform with fails this check.
#error "Thread-compatible configurations require atomics"

#endif

// See the comment in the |__cplusplus| section above.
static_assert(sizeof(CRYPTO_atomic_u32) == sizeof(uint32_t),
              "CRYPTO_atomic_u32 does not match uint32_t size");
static_assert(alignof(CRYPTO_atomic_u32) == alignof(uint32_t),
              "CRYPTO_atomic_u32 does not match uint32_t alignment");


// Reference counting.

// CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates.
#define CRYPTO_REFCOUNT_MAX 0xffffffff

// CRYPTO_refcount_inc atomically increments the value at |*count| unless the
// value would overflow. It's safe for multiple threads to concurrently call
// this or |CRYPTO_refcount_dec_and_test_zero| on the same
// |CRYPTO_refcount_t|.
OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);

// CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
//   if it's zero, it crashes the address space.
//   if it's the maximum value, it returns zero.
//   otherwise, it atomically decrements it and returns one iff the resulting
//       value is zero.
//
// It's safe for multiple threads to concurrently call this or
// |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|.
OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);


// Locks.

#if !defined(OPENSSL_THREADS)
typedef struct crypto_mutex_st {
  char padding;  // Empty structs have different sizes in C and C++.
} CRYPTO_MUTEX;
#define CRYPTO_MUTEX_INIT { 0 }
#elif defined(OPENSSL_WINDOWS_THREADS)
typedef SRWLOCK CRYPTO_MUTEX;
#define CRYPTO_MUTEX_INIT SRWLOCK_INIT
#elif defined(OPENSSL_PTHREADS)
typedef pthread_rwlock_t CRYPTO_MUTEX;
#define CRYPTO_MUTEX_INIT PTHREAD_RWLOCK_INITIALIZER
#else
#error "Unknown threading library"
#endif

// CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
// |CRYPTO_MUTEX_INIT|.
OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);

// CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
// read lock, but none may have a write lock.
OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);

// CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
// of lock on it.
OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);

// CRYPTO_MUTEX_unlock_read unlocks |lock| for reading.
OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock);

// CRYPTO_MUTEX_unlock_write unlocks |lock| for writing.
OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock);

// CRYPTO_MUTEX_cleanup releases all resources held by |lock|.
OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);

#if defined(__cplusplus)
extern "C++" {

BSSL_NAMESPACE_BEGIN

namespace internal {

// MutexLockBase is a RAII helper for CRYPTO_MUTEX locking.
template <void (*LockFunc)(CRYPTO_MUTEX *), void (*ReleaseFunc)(CRYPTO_MUTEX *)>
class MutexLockBase {
 public:
  explicit MutexLockBase(CRYPTO_MUTEX *mu) : mu_(mu) {
    assert(mu_ != nullptr);
    LockFunc(mu_);
  }
  ~MutexLockBase() { ReleaseFunc(mu_); }
  MutexLockBase(const MutexLockBase<LockFunc, ReleaseFunc> &) = delete;
  MutexLockBase &operator=(const MutexLockBase<LockFunc, ReleaseFunc> &) =
      delete;

 private:
  CRYPTO_MUTEX *const mu_;
};

}  // namespace internal

using MutexWriteLock =
    internal::MutexLockBase<CRYPTO_MUTEX_lock_write, CRYPTO_MUTEX_unlock_write>;
using MutexReadLock =
    internal::MutexLockBase<CRYPTO_MUTEX_lock_read, CRYPTO_MUTEX_unlock_read>;

BSSL_NAMESPACE_END

}  // extern "C++"
#endif  // defined(__cplusplus)


// Thread local storage.

// thread_local_data_t enumerates the types of thread-local data that can be
// stored.
typedef enum {
  OPENSSL_THREAD_LOCAL_ERR = 0,
  OPENSSL_THREAD_LOCAL_RAND,
  OPENSSL_THREAD_LOCAL_FIPS_COUNTERS,
  OPENSSL_THREAD_LOCAL_FIPS_SERVICE_INDICATOR_STATE,
  OPENSSL_THREAD_LOCAL_TEST,
  NUM_OPENSSL_THREAD_LOCALS,
} thread_local_data_t;

// thread_local_destructor_t is the type of a destructor function that will be
// called when a thread exits and its thread-local storage needs to be freed.
typedef void (*thread_local_destructor_t)(void *);

// CRYPTO_get_thread_local gets the pointer value that is stored for the
// current thread for the given index, or NULL if none has been set.
OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);

// CRYPTO_set_thread_local sets a pointer value for the current thread at the
// given index. This function should only be called once per thread for a given
// |index|: rather than update the pointer value itself, update the data that
// is pointed to.
//
// The destructor function will be called when a thread exits to free this
// thread-local data. All calls to |CRYPTO_set_thread_local| with the same
// |index| should have the same |destructor| argument. The destructor may be
// called with a NULL argument if a thread that never set a thread-local
// pointer for |index|, exits. The destructor may be called concurrently with
// different arguments.
//
// This function returns one on success or zero on error. If it returns zero
// then |destructor| has been called with |value| already.
OPENSSL_EXPORT int CRYPTO_set_thread_local(
    thread_local_data_t index, void *value,
    thread_local_destructor_t destructor);


// ex_data

typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;

// CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
// supports ex_data. It should defined as a static global within the module
// which defines that type.
typedef struct {
  CRYPTO_MUTEX lock;
  // funcs is a linked list of |CRYPTO_EX_DATA_FUNCS| structures. It may be
  // traversed without serialization only up to |num_funcs|. last points to the
  // final entry of |funcs|, or NULL if empty.
  CRYPTO_EX_DATA_FUNCS *funcs, *last;
  // num_funcs is the number of entries in |funcs|.
  CRYPTO_atomic_u32 num_funcs;
  // num_reserved is one if the ex_data index zero is reserved for legacy
  // |TYPE_get_app_data| functions.
  uint8_t num_reserved;
} CRYPTO_EX_DATA_CLASS;

#define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_MUTEX_INIT, NULL, NULL, 0, 0}
#define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \
    {CRYPTO_MUTEX_INIT, NULL, NULL, 0, 1}

// CRYPTO_get_ex_new_index_ex allocates a new index for |ex_data_class|. Each
// class of object should provide a wrapper function that uses the correct
// |CRYPTO_EX_DATA_CLASS|. It returns the new index on success and -1 on error.
OPENSSL_EXPORT int CRYPTO_get_ex_new_index_ex(
    CRYPTO_EX_DATA_CLASS *ex_data_class, long argl, void *argp,
    CRYPTO_EX_free *free_func);

// CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
// of object should provide a wrapper function.
OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);

// CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
// if no such index exists. Each class of object should provide a wrapper
// function.
OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);

// CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|.
OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad);

// CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
// object of the given class.
OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
                                        void *obj, CRYPTO_EX_DATA *ad);


// Endianness conversions.

#if defined(__GNUC__) && __GNUC__ >= 2
static inline uint16_t CRYPTO_bswap2(uint16_t x) {
  return __builtin_bswap16(x);
}

static inline uint32_t CRYPTO_bswap4(uint32_t x) {
  return __builtin_bswap32(x);
}

static inline uint64_t CRYPTO_bswap8(uint64_t x) {
  return __builtin_bswap64(x);
}
#elif defined(_MSC_VER)
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <stdlib.h>
OPENSSL_MSVC_PRAGMA(warning(pop))
#pragma intrinsic(_byteswap_uint64, _byteswap_ulong, _byteswap_ushort)
static inline uint16_t CRYPTO_bswap2(uint16_t x) {
  return _byteswap_ushort(x);
}

static inline uint32_t CRYPTO_bswap4(uint32_t x) {
  return _byteswap_ulong(x);
}

static inline uint64_t CRYPTO_bswap8(uint64_t x) {
  return _byteswap_uint64(x);
}
#else
static inline uint16_t CRYPTO_bswap2(uint16_t x) {
  return (x >> 8) | (x << 8);
}

static inline uint32_t CRYPTO_bswap4(uint32_t x) {
  x = (x >> 16) | (x << 16);
  x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8);
  return x;
}

static inline uint64_t CRYPTO_bswap8(uint64_t x) {
  return CRYPTO_bswap4(x >> 32) | (((uint64_t)CRYPTO_bswap4(x)) << 32);
}
#endif


// Language bug workarounds.
//
// Most C standard library functions are undefined if passed NULL, even when the
// corresponding length is zero. This gives them (and, in turn, all functions
// which call them) surprising behavior on empty arrays. Some compilers will
// miscompile code due to this rule. See also
// https://www.imperialviolet.org/2016/06/26/nonnull.html
//
// These wrapper functions behave the same as the corresponding C standard
// functions, but behave as expected when passed NULL if the length is zero.
//
// Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|.

// C++ defines |memchr| as a const-correct overload.
#if defined(__cplusplus)
extern "C++" {

static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) {
  if (n == 0) {
    return NULL;
  }

  return memchr(s, c, n);
}

static inline void *OPENSSL_memchr(void *s, int c, size_t n) {
  if (n == 0) {
    return NULL;
  }

  return memchr(s, c, n);
}

}  // extern "C++"
#else  // __cplusplus

static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
  if (n == 0) {
    return NULL;
  }

  return memchr(s, c, n);
}

#endif  // __cplusplus

static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) {
  if (n == 0) {
    return 0;
  }

  return memcmp(s1, s2, n);
}

static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) {
  if (n == 0) {
    return dst;
  }

  return memcpy(dst, src, n);
}

static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) {
  if (n == 0) {
    return dst;
  }

  return memmove(dst, src, n);
}

static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
  if (n == 0) {
    return dst;
  }

  return memset(dst, c, n);
}


// Loads and stores.
//
// The following functions load and store sized integers with the specified
// endianness. They use |memcpy|, and so avoid alignment or strict aliasing
// requirements on the input and output pointers.

static inline uint32_t CRYPTO_load_u32_le(const void *in) {
  uint32_t v;
  OPENSSL_memcpy(&v, in, sizeof(v));
  return v;
}

static inline void CRYPTO_store_u32_le(void *out, uint32_t v) {
  OPENSSL_memcpy(out, &v, sizeof(v));
}

static inline uint32_t CRYPTO_load_u32_be(const void *in) {
  uint32_t v;
  OPENSSL_memcpy(&v, in, sizeof(v));
  return CRYPTO_bswap4(v);
}

static inline void CRYPTO_store_u32_be(void *out, uint32_t v) {
  v = CRYPTO_bswap4(v);
  OPENSSL_memcpy(out, &v, sizeof(v));
}

static inline uint64_t CRYPTO_load_u64_le(const void *in) {
  uint64_t v;
  OPENSSL_memcpy(&v, in, sizeof(v));
  return v;
}

static inline void CRYPTO_store_u64_le(void *out, uint64_t v) {
  OPENSSL_memcpy(out, &v, sizeof(v));
}

static inline uint64_t CRYPTO_load_u64_be(const void *ptr) {
  uint64_t ret;
  OPENSSL_memcpy(&ret, ptr, sizeof(ret));
  return CRYPTO_bswap8(ret);
}

static inline void CRYPTO_store_u64_be(void *out, uint64_t v) {
  v = CRYPTO_bswap8(v);
  OPENSSL_memcpy(out, &v, sizeof(v));
}

static inline crypto_word_t CRYPTO_load_word_le(const void *in) {
  crypto_word_t v;
  OPENSSL_memcpy(&v, in, sizeof(v));
  return v;
}

static inline void CRYPTO_store_word_le(void *out, crypto_word_t v) {
  OPENSSL_memcpy(out, &v, sizeof(v));
}

static inline crypto_word_t CRYPTO_load_word_be(const void *in) {
  crypto_word_t v;
  OPENSSL_memcpy(&v, in, sizeof(v));
#if defined(OPENSSL_64_BIT)
  static_assert(sizeof(v) == 8, "crypto_word_t has unexpected size");
  return CRYPTO_bswap8(v);
#else
  static_assert(sizeof(v) == 4, "crypto_word_t has unexpected size");
  return CRYPTO_bswap4(v);
#endif
}


// Bit rotation functions.
//
// Note these functions use |(-shift) & 31|, etc., because shifting by the bit
// width is undefined. Both Clang and GCC recognize this pattern as a rotation,
// but MSVC does not. Instead, we call MSVC's built-in functions.

static inline uint32_t CRYPTO_rotl_u32(uint32_t value, int shift) {
#if defined(_MSC_VER)
  return _rotl(value, shift);
#else
  return (value << shift) | (value >> ((-shift) & 31));
#endif
}

static inline uint32_t CRYPTO_rotr_u32(uint32_t value, int shift) {
#if defined(_MSC_VER)
  return _rotr(value, shift);
#else
  return (value >> shift) | (value << ((-shift) & 31));
#endif
}

static inline uint64_t CRYPTO_rotl_u64(uint64_t value, int shift) {
#if defined(_MSC_VER)
  return _rotl64(value, shift);
#else
  return (value << shift) | (value >> ((-shift) & 63));
#endif
}

static inline uint64_t CRYPTO_rotr_u64(uint64_t value, int shift) {
#if defined(_MSC_VER)
  return _rotr64(value, shift);
#else
  return (value >> shift) | (value << ((-shift) & 63));
#endif
}


// Arithmetic functions.

// The most efficient versions of these functions on GCC and Clang depend on C11
// |_Generic|. If we ever need to call these from C++, we'll need to add a
// variant that uses C++ overloads instead.
#if !defined(__cplusplus)

// CRYPTO_addc_* returns |x + y + carry|, and sets |*out_carry| to the carry
// bit. |carry| must be zero or one.
#if OPENSSL_HAS_BUILTIN(__builtin_addc)

#define CRYPTO_GENERIC_ADDC(x, y, carry, out_carry) \
  (_Generic((x),                                    \
      unsigned: __builtin_addc,                     \
      unsigned long: __builtin_addcl,               \
      unsigned long long: __builtin_addcll))((x), (y), (carry), (out_carry))

static inline uint32_t CRYPTO_addc_u32(uint32_t x, uint32_t y, uint32_t carry,
                                       uint32_t *out_carry) {
  declassify_assert(carry <= 1);
  return CRYPTO_GENERIC_ADDC(x, y, carry, out_carry);
}

static inline uint64_t CRYPTO_addc_u64(uint64_t x, uint64_t y, uint64_t carry,
                                       uint64_t *out_carry) {
  declassify_assert(carry <= 1);
  return CRYPTO_GENERIC_ADDC(x, y, carry, out_carry);
}

#else

static inline uint32_t CRYPTO_addc_u32(uint32_t x, uint32_t y, uint32_t carry,
                                       uint32_t *out_carry) {
  declassify_assert(carry <= 1);
  uint64_t ret = carry;
  ret += (uint64_t)x + y;
  *out_carry = (uint32_t)(ret >> 32);
  return (uint32_t)ret;
}

static inline uint64_t CRYPTO_addc_u64(uint64_t x, uint64_t y, uint64_t carry,
                                       uint64_t *out_carry) {
  declassify_assert(carry <= 1);
#if defined(BORINGSSL_HAS_UINT128)
  uint128_t ret = carry;
  ret += (uint128_t)x + y;
  *out_carry = (uint64_t)(ret >> 64);
  return (uint64_t)ret;
#else
  x += carry;
  carry = x < carry;
  uint64_t ret = x + y;
  carry += ret < x;
  *out_carry = carry;
  return ret;
#endif
}
#endif

// CRYPTO_subc_* returns |x - y - borrow|, and sets |*out_borrow| to the borrow
// bit. |borrow| must be zero or one.
#if OPENSSL_HAS_BUILTIN(__builtin_subc)

#define CRYPTO_GENERIC_SUBC(x, y, borrow, out_borrow) \
  (_Generic((x),                                      \
      unsigned: __builtin_subc,                       \
      unsigned long: __builtin_subcl,                 \
      unsigned long long: __builtin_subcll))((x), (y), (borrow), (out_borrow))

static inline uint32_t CRYPTO_subc_u32(uint32_t x, uint32_t y, uint32_t borrow,
                                       uint32_t *out_borrow) {
  declassify_assert(borrow <= 1);
  return CRYPTO_GENERIC_SUBC(x, y, borrow, out_borrow);
}

static inline uint64_t CRYPTO_subc_u64(uint64_t x, uint64_t y, uint64_t borrow,
                                       uint64_t *out_borrow) {
  declassify_assert(borrow <= 1);
  return CRYPTO_GENERIC_SUBC(x, y, borrow, out_borrow);
}

#else

static inline uint32_t CRYPTO_subc_u32(uint32_t x, uint32_t y, uint32_t borrow,
                                       uint32_t *out_borrow) {
  declassify_assert(borrow <= 1);
  uint32_t ret = x - y - borrow;
  *out_borrow = (x < y) | ((x == y) & borrow);
  return ret;
}

static inline uint64_t CRYPTO_subc_u64(uint64_t x, uint64_t y, uint64_t borrow,
                                       uint64_t *out_borrow) {
  declassify_assert(borrow <= 1);
  uint64_t ret = x - y - borrow;
  *out_borrow = (x < y) | ((x == y) & borrow);
  return ret;
}
#endif

#if defined(OPENSSL_64_BIT)
#define CRYPTO_addc_w CRYPTO_addc_u64
#define CRYPTO_subc_w CRYPTO_subc_u64
#else
#define CRYPTO_addc_w CRYPTO_addc_u32
#define CRYPTO_subc_w CRYPTO_subc_u32
#endif

#endif  // !__cplusplus


// FIPS functions.

#if defined(BORINGSSL_FIPS)

// BORINGSSL_FIPS_abort is called when a FIPS power-on or continuous test
// fails. It prevents any further cryptographic operations by the current
// process.
void BORINGSSL_FIPS_abort(void) __attribute__((noreturn));

// boringssl_self_test_startup runs all startup self tests and returns one on
// success or zero on error. Startup self tests do not include lazy tests.
// Call |BORINGSSL_self_test| to run every self test.
int boringssl_self_test_startup(void);

// boringssl_ensure_rsa_self_test checks whether the RSA self-test has been run
// in this address space. If not, it runs it and crashes the address space if
// unsuccessful.
void boringssl_ensure_rsa_self_test(void);

// boringssl_ensure_ecc_self_test checks whether the ECDSA and ECDH self-test
// has been run in this address space. If not, it runs it and crashes the
// address space if unsuccessful.
void boringssl_ensure_ecc_self_test(void);

// boringssl_ensure_ffdh_self_test checks whether the FFDH self-test has been
// run in this address space. If not, it runs it and crashes the address space
// if unsuccessful.
void boringssl_ensure_ffdh_self_test(void);

#else

// Outside of FIPS mode, the lazy tests are no-ops.

OPENSSL_INLINE void boringssl_ensure_rsa_self_test(void) {}
OPENSSL_INLINE void boringssl_ensure_ecc_self_test(void) {}
OPENSSL_INLINE void boringssl_ensure_ffdh_self_test(void) {}

#endif  // FIPS

// boringssl_self_test_sha256 performs a SHA-256 KAT.
int boringssl_self_test_sha256(void);

// boringssl_self_test_sha512 performs a SHA-512 KAT.
int boringssl_self_test_sha512(void);

// boringssl_self_test_hmac_sha256 performs an HMAC-SHA-256 KAT.
int boringssl_self_test_hmac_sha256(void);

#if defined(BORINGSSL_FIPS_COUNTERS)
void boringssl_fips_inc_counter(enum fips_counter_t counter);
#else
OPENSSL_INLINE void boringssl_fips_inc_counter(enum fips_counter_t counter) {}
#endif

#if defined(BORINGSSL_FIPS_BREAK_TESTS)
OPENSSL_INLINE int boringssl_fips_break_test(const char *test) {
  const char *const value = getenv("BORINGSSL_FIPS_BREAK_TEST");
  return value != NULL && strcmp(value, test) == 0;
}
#else
OPENSSL_INLINE int boringssl_fips_break_test(const char *test) {
  return 0;
}
#endif  // BORINGSSL_FIPS_BREAK_TESTS


// Runtime CPU feature support

#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
// OPENSSL_ia32cap_P contains the Intel CPUID bits when running on an x86 or
// x86-64 system.
//
//   Index 0:
//     EDX for CPUID where EAX = 1
//     Bit 20 is always zero
//     Bit 28 is adjusted to reflect whether the data cache is shared between
//       multiple logical cores
//     Bit 30 is used to indicate an Intel CPU
//   Index 1:
//     ECX for CPUID where EAX = 1
//     Bit 11 is used to indicate AMD XOP support, not SDBG
//   Index 2:
//     EBX for CPUID where EAX = 7
//   Index 3:
//     ECX for CPUID where EAX = 7
//
// Note: the CPUID bits are pre-adjusted for the OSXSAVE bit and the YMM and XMM
// bits in XCR0, so it is not necessary to check those. (WARNING: See caveats
// in cpu_intel.c.)
//
// From C, this symbol should only be accessed with |OPENSSL_get_ia32cap|.
extern uint32_t OPENSSL_ia32cap_P[4];

// OPENSSL_get_ia32cap initializes the library if needed and returns the |idx|th
// entry of |OPENSSL_ia32cap_P|. It is marked as a pure function so duplicate
// calls can be merged by the compiler, at least when indices match.
OPENSSL_ATTR_PURE uint32_t OPENSSL_get_ia32cap(int idx);

// See Intel manual, volume 2A, table 3-11.

OPENSSL_INLINE int CRYPTO_is_FXSR_capable(void) {
#if defined(__FXSR__)
  return 1;
#else
  return (OPENSSL_get_ia32cap(0) & (1u << 24)) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_intel_cpu(void) {
  // The reserved bit 30 is used to indicate an Intel CPU.
  return (OPENSSL_get_ia32cap(0) & (1u << 30)) != 0;
}

// See Intel manual, volume 2A, table 3-10.

OPENSSL_INLINE int CRYPTO_is_PCLMUL_capable(void) {
#if defined(__PCLMUL__)
  return 1;
#else
  return (OPENSSL_get_ia32cap(1) & (1u << 1)) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_SSSE3_capable(void) {
#if defined(__SSSE3__)
  return 1;
#else
  return (OPENSSL_get_ia32cap(1) & (1u << 9)) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_SSE4_1_capable(void) {
#if defined(__SSE4_1__)
  return 1;
#else
  return (OPENSSL_get_ia32cap(1) & (1u << 19)) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_MOVBE_capable(void) {
#if defined(__MOVBE__)
  return 1;
#else
  return (OPENSSL_get_ia32cap(1) & (1u << 22)) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_AESNI_capable(void) {
#if defined(__AES__)
  return 1;
#else
  return (OPENSSL_get_ia32cap(1) & (1u << 25)) != 0;
#endif
}

// We intentionally avoid defining a |CRYPTO_is_XSAVE_capable| function. See
// |CRYPTO_cpu_perf_is_like_silvermont|.

OPENSSL_INLINE int CRYPTO_is_AVX_capable(void) {
#if defined(__AVX__)
  return 1;
#else
  return (OPENSSL_get_ia32cap(1) & (1u << 28)) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_RDRAND_capable(void) {
  // We intentionally do not check |__RDRND__| here. On some AMD processors, we
  // will act as if the hardware is RDRAND-incapable, even it actually supports
  // it. See cpu_intel.c.
  return (OPENSSL_get_ia32cap(1) & (1u << 30)) != 0;
}

// See Intel manual, volume 2A, table 3-8.

OPENSSL_INLINE int CRYPTO_is_BMI1_capable(void) {
#if defined(__BMI__)
  return 1;
#else
  return (OPENSSL_get_ia32cap(2) & (1u << 3)) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_AVX2_capable(void) {
#if defined(__AVX2__)
  return 1;
#else
  return (OPENSSL_get_ia32cap(2) & (1u << 5)) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_BMI2_capable(void) {
#if defined(__BMI2__)
  return 1;
#else
  return (OPENSSL_get_ia32cap(2) & (1u << 8)) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_ADX_capable(void) {
#if defined(__ADX__)
  return 1;
#else
  return (OPENSSL_get_ia32cap(2) & (1u << 19)) != 0;
#endif
}

// SHA-1 and SHA-256 are defined as a single extension.
OPENSSL_INLINE int CRYPTO_is_x86_SHA_capable(void) {
  // We should check __SHA__ here, but for now we ignore it. We've run into a
  // few places where projects build with -march=goldmont, but need a build that
  // does not require SHA extensions:
  //
  // - Some CrOS toolchain definitions are incorrect and build with
  //   -march=goldmont when targetting boards that are not Goldmont. b/320482539
  //   tracks fixing this.
  //
  // - Sometimes projects build with -march=goldmont as a rough optimized
  //   baseline. However, Intel CPU capabilities are not strictly linear, so
  //   this does not quite work. Some combination of -mtune and
  //   -march=x86-64-v{1,2,3,4} would be a better strategy here.
  //
  // - QEMU versions before 8.2 do not support SHA extensions and disable it
  //   with a warning. Projects that target Goldmont and test on QEMU will
  //   break. The long-term fix is to update to 8.2. A principled short-term fix
  //   would be -march=goldmont -mno-sha, to reflect that the binary needs to
  //   run on both QEMU-8.1-Goldmont and actual-Goldmont.
  //
  // TODO(b/320482539): Once the CrOS toolchain is fixed, try this again.
  return (OPENSSL_get_ia32cap(2) & (1u << 29)) != 0;
}

// CRYPTO_cpu_perf_is_like_silvermont returns one if, based on a heuristic, the
// CPU has Silvermont-like performance characteristics. It is often faster to
// run different codepaths on these CPUs than the available instructions would
// otherwise select. See chacha-x86_64.pl.
//
// Bonnell, Silvermont's predecessor in the Atom lineup, will also be matched by
// this. Goldmont (Silvermont's successor in the Atom lineup) added XSAVE so it
// isn't matched by this. Various sources indicate AMD first implemented MOVBE
// and XSAVE at the same time in Jaguar, so it seems like AMD chips will not be
// matched by this. That seems to be the case for other x86(-64) CPUs.
OPENSSL_INLINE int CRYPTO_cpu_perf_is_like_silvermont(void) {
  // WARNING: This MUST NOT be used to guard the execution of the XSAVE
  // instruction. This is the "hardware supports XSAVE" bit, not the OSXSAVE bit
  // that indicates whether we can safely execute XSAVE. This bit may be set
  // even when XSAVE is disabled (by the operating system). See how the users of
  // this bit use it.
  //
  // Historically, the XSAVE bit was artificially cleared on Knights Landing
  // and Knights Mill chips, but as Intel has removed all support from GCC,
  // LLVM, and SDE, we assume they are no longer worth special-casing.
  int hardware_supports_xsave = (OPENSSL_get_ia32cap(1) & (1u << 26)) != 0;
  return !hardware_supports_xsave && CRYPTO_is_MOVBE_capable();
}

#endif  // OPENSSL_X86 || OPENSSL_X86_64

#if defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)

// OPENSSL_armcap_P contains ARM CPU capabilities. From C, this should only be
// accessed with |OPENSSL_get_armcap|.
extern uint32_t OPENSSL_armcap_P;

// OPENSSL_get_armcap initializes the library if needed and returns ARM CPU
// capabilities. It is marked as a pure function so duplicate calls can be
// merged by the compiler, at least when indices match.
OPENSSL_ATTR_PURE uint32_t OPENSSL_get_armcap(void);

// We do not detect any features at runtime on several 32-bit Arm platforms.
// Apple platforms and OpenBSD require NEON and moved to 64-bit to pick up Armv8
// extensions. Android baremetal does not aim to support 32-bit Arm at all, but
// it simplifies things to make it build.
#if defined(OPENSSL_ARM) && !defined(OPENSSL_STATIC_ARMCAP) && \
    (defined(OPENSSL_APPLE) || defined(OPENSSL_OPENBSD) ||     \
     defined(ANDROID_BAREMETAL))
#define OPENSSL_STATIC_ARMCAP
#endif

// Normalize some older feature flags to their modern ACLE values.
// https://developer.arm.com/architectures/system-architectures/software-standards/acle
#if defined(__ARM_NEON__) && !defined(__ARM_NEON)
#define __ARM_NEON 1
#endif
#if defined(__ARM_FEATURE_CRYPTO)
#if !defined(__ARM_FEATURE_AES)
#define __ARM_FEATURE_AES 1
#endif
#if !defined(__ARM_FEATURE_SHA2)
#define __ARM_FEATURE_SHA2 1
#endif
#endif

// CRYPTO_is_NEON_capable returns true if the current CPU has a NEON unit. If
// this is known statically, it is a constant inline function.
OPENSSL_INLINE int CRYPTO_is_NEON_capable(void) {
#if defined(OPENSSL_STATIC_ARMCAP_NEON) || defined(__ARM_NEON)
  return 1;
#elif defined(OPENSSL_STATIC_ARMCAP)
  return 0;
#else
  return (OPENSSL_get_armcap() & ARMV7_NEON) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_ARMv8_AES_capable(void) {
#if defined(OPENSSL_STATIC_ARMCAP_AES) || defined(__ARM_FEATURE_AES)
  return 1;
#elif defined(OPENSSL_STATIC_ARMCAP)
  return 0;
#else
  return (OPENSSL_get_armcap() & ARMV8_AES) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_ARMv8_PMULL_capable(void) {
#if defined(OPENSSL_STATIC_ARMCAP_PMULL) || defined(__ARM_FEATURE_AES)
  return 1;
#elif defined(OPENSSL_STATIC_ARMCAP)
  return 0;
#else
  return (OPENSSL_get_armcap() & ARMV8_PMULL) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_ARMv8_SHA1_capable(void) {
  // SHA-1 and SHA-2 (only) share |__ARM_FEATURE_SHA2| but otherwise
  // are dealt with independently.
#if defined(OPENSSL_STATIC_ARMCAP_SHA1) || defined(__ARM_FEATURE_SHA2)
  return 1;
#elif defined(OPENSSL_STATIC_ARMCAP)
  return 0;
#else
  return (OPENSSL_get_armcap() & ARMV8_SHA1) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_ARMv8_SHA256_capable(void) {
  // SHA-1 and SHA-2 (only) share |__ARM_FEATURE_SHA2| but otherwise
  // are dealt with independently.
#if defined(OPENSSL_STATIC_ARMCAP_SHA256) || defined(__ARM_FEATURE_SHA2)
  return 1;
#elif defined(OPENSSL_STATIC_ARMCAP)
  return 0;
#else
  return (OPENSSL_get_armcap() & ARMV8_SHA256) != 0;
#endif
}

OPENSSL_INLINE int CRYPTO_is_ARMv8_SHA512_capable(void) {
  // There is no |OPENSSL_STATIC_ARMCAP_SHA512|.
#if defined(__ARM_FEATURE_SHA512)
  return 1;
#elif defined(OPENSSL_STATIC_ARMCAP)
  return 0;
#else
  return (OPENSSL_get_armcap() & ARMV8_SHA512) != 0;
#endif
}

#endif  // OPENSSL_ARM || OPENSSL_AARCH64

#if defined(BORINGSSL_DISPATCH_TEST)
// Runtime CPU dispatch testing support

// BORINGSSL_function_hit is an array of flags. The following functions will
// set these flags if BORINGSSL_DISPATCH_TEST is defined.
//   0: aes_hw_ctr32_encrypt_blocks
//   1: aes_hw_encrypt
//   2: aesni_gcm_encrypt
//   3: aes_hw_set_encrypt_key
//   4: vpaes_encrypt
//   5: vpaes_set_encrypt_key
extern uint8_t BORINGSSL_function_hit[7];
#endif  // BORINGSSL_DISPATCH_TEST

// OPENSSL_vasprintf_internal is just like |vasprintf(3)|. If |system_malloc| is
// 0, memory will be allocated with |OPENSSL_malloc| and must be freed with
// |OPENSSL_free|. Otherwise the system |malloc| function is used and the memory
// must be freed with the system |free| function.
OPENSSL_EXPORT int OPENSSL_vasprintf_internal(char **str, const char *format,
                                              va_list args, int system_malloc)
    OPENSSL_PRINTF_FORMAT_FUNC(2, 0);

#if defined(__cplusplus)
}  // extern C
#endif

#endif  // OPENSSL_HEADER_CRYPTO_INTERNAL_H