aboutsummaryrefslogtreecommitdiff
path: root/rust/bssl-crypto/src/hpke.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/bssl-crypto/src/hpke.rs')
-rw-r--r--rust/bssl-crypto/src/hpke.rs503
1 files changed, 503 insertions, 0 deletions
diff --git a/rust/bssl-crypto/src/hpke.rs b/rust/bssl-crypto/src/hpke.rs
new file mode 100644
index 0000000..bd4e8fd
--- /dev/null
+++ b/rust/bssl-crypto/src/hpke.rs
@@ -0,0 +1,503 @@
+/* Copyright (c) 2024, Google Inc.
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
+ * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
+ * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
+ * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+//! Hybrid Public Key Encryption
+//!
+//! HPKE provides a variant of public key encryption of arbitrary-sized plaintexts
+//! for a recipient public key. It works for any combination of an asymmetric key
+//! encapsulation mechanism (KEM), key derivation function (KDF), and authenticated
+//! encryption with additional data (AEAD) function.
+//!
+//! See RFC 9180 for more details.
+//!
+//! Note that key generation is currently not supported.
+//!
+//! ```
+//! use bssl_crypto::hpke::{Params, RecipientContext, SenderContext};
+//!
+//! let params = Params::new_from_rfc_ids(32, 1, 1).unwrap();
+//! let recipient_pub_key = ...;
+//! let info = ...;
+//! let mut sender_ctx =
+//! SenderContext::new(&params, &recipient_pub_key, &info).unwrap();
+//!
+//! let pt = b"plaintext";
+//! let ad = b"associated_data";
+//! let ct = sender_ctx.seal(pt, ad);
+//!
+//! let recipient_priv_key = ...;
+//! let mut recipient_ctx = RecipientContext::new(
+//! &params,
+//! &recipient_priv_key,
+//! &sender_ctx.encapsulated_key(),
+//! &info,
+//! ).unwrap();
+//!
+//! let got_pt = recipient_ctx.open(&ct, ad);
+//! ```
+
+use crate::{scoped, with_output_vec, with_output_vec_fallible, FfiSlice};
+use alloc::vec::Vec;
+
+/// Supported KEM algorithms with values detailed in RFC 9180.
+#[derive(PartialEq)]
+#[allow(missing_docs)]
+pub enum Kem {
+ X25519HkdfSha256 = 32,
+}
+
+/// Supported KDF algorithms with values detailed in RFC 9180.
+#[derive(PartialEq)]
+#[allow(missing_docs)]
+pub enum Kdf {
+ HkdfSha256 = 1,
+}
+
+/// Supported AEAD algorithms with values detailed in RFC 9180.
+#[derive(PartialEq)]
+#[allow(missing_docs)]
+pub enum Aead {
+ Aes128Gcm = 1,
+}
+
+/// Maximum length of the encapsulated key for all currently supported KEMs.
+const MAX_ENCAPSULATED_KEY_LEN: usize = bssl_sys::EVP_HPKE_MAX_ENC_LENGTH as usize;
+
+/// HPKE parameters, including KEM, KDF, and AEAD.
+pub struct Params {
+ kem: *const bssl_sys::EVP_HPKE_KEM,
+ kdf: *const bssl_sys::EVP_HPKE_KDF,
+ aead: *const bssl_sys::EVP_HPKE_AEAD,
+}
+
+impl Params {
+ /// New Params from KEM, KDF, and AEAD enums.
+ pub fn new(kem: Kem, kdf: Kdf, aead: Aead) -> Option<Self> {
+ if kem != Kem::X25519HkdfSha256 || kdf != Kdf::HkdfSha256 || aead != Aead::Aes128Gcm {
+ return None;
+ }
+ // Safety: EVP_hpke_x25519_hkdf_sha256, EVP_hpke_hkdf_sha256, and EVP_hpke_aes_128_gcm
+ // initialize structs containing constants and cannot return an error.
+ unsafe {
+ Some(Self {
+ kem: bssl_sys::EVP_hpke_x25519_hkdf_sha256() as *const bssl_sys::EVP_HPKE_KEM,
+ kdf: bssl_sys::EVP_hpke_hkdf_sha256() as *const bssl_sys::EVP_HPKE_KDF,
+ aead: bssl_sys::EVP_hpke_aes_128_gcm() as *const bssl_sys::EVP_HPKE_AEAD,
+ })
+ }
+ }
+
+ /// New Params from KEM, KDF, and AEAD IDs as detailed in RFC 9180.
+ pub fn new_from_rfc_ids(kem: u16, kdf: u16, aead: u16) -> Option<Self> {
+ if kem != Kem::X25519HkdfSha256 as u16
+ || kdf != Kdf::HkdfSha256 as u16
+ || aead != Aead::Aes128Gcm as u16
+ {
+ return None;
+ }
+ // Safety: EVP_hpke_x25519_hkdf_sha256, EVP_hpke_hkdf_sha256, and EVP_hpke_aes_128_gcm
+ // initialize structs containing constants and cannot return an error.
+ unsafe {
+ Some(Self {
+ kem: bssl_sys::EVP_hpke_x25519_hkdf_sha256() as *const bssl_sys::EVP_HPKE_KEM,
+ kdf: bssl_sys::EVP_hpke_hkdf_sha256() as *const bssl_sys::EVP_HPKE_KDF,
+ aead: bssl_sys::EVP_hpke_aes_128_gcm() as *const bssl_sys::EVP_HPKE_AEAD,
+ })
+ }
+ }
+}
+
+/// HPKE recipient context. Callers may use `open()` to decrypt messages from the sender.
+pub struct RecipientContext {
+ ctx: scoped::EvpHpkeCtx,
+}
+
+/// HPKE sender context. Callers may use `seal()` to encrypt messages for the recipient.
+pub struct SenderContext {
+ ctx: RecipientContext,
+ encapsulated_key: Vec<u8>,
+}
+
+impl SenderContext {
+ /// New implements the SetupBaseS HPKE operation, which encapsulates a shared secret for
+ /// `recipient_pub_key` and sets up a sender context. These are stored and returned in the
+ /// newly created SenderContext.
+ ///
+ /// Note that `recipient_pub_key` may be invalid, in which case this function will return an
+ /// error.
+ ///
+ /// On success, callers may use `seal()` to encrypt messages for the recipient.
+ pub fn new(params: &Params, recipient_pub_key: &[u8], info: &[u8]) -> Option<Self> {
+ let mut ctx = scoped::EvpHpkeCtx::new();
+ unsafe {
+ with_output_vec_fallible(MAX_ENCAPSULATED_KEY_LEN, |enc_key_buf| {
+ let mut enc_key_len = 0usize;
+ // Safety: EVP_HPKE_CTX_setup_sender
+ // - is called with context created from EVP_HPKE_CTX_new,
+ // - is called with valid buffers with corresponding pointer and length, and
+ // - returns 0 on error.
+ let result = bssl_sys::EVP_HPKE_CTX_setup_sender(
+ ctx.as_mut_ffi_ptr(),
+ enc_key_buf,
+ &mut enc_key_len,
+ MAX_ENCAPSULATED_KEY_LEN,
+ params.kem,
+ params.kdf,
+ params.aead,
+ recipient_pub_key.as_ffi_ptr(),
+ recipient_pub_key.len(),
+ info.as_ffi_ptr(),
+ info.len(),
+ );
+ if result == 1 {
+ Some(enc_key_len)
+ } else {
+ None
+ }
+ })
+ }
+ .map(|enc_key| Self {
+ ctx: RecipientContext { ctx },
+ encapsulated_key: enc_key,
+ })
+ }
+
+ /// Seal encrypts `pt` and returns the resulting ciphertext, which is authenticated with `aad`.
+ ///
+ /// Note that HPKE encryption is stateful and ordered. The sender's first call to `seal()` must
+ /// correspond to the recipient's first call to `open()`, etc.
+ ///
+ /// This function panics if adding the `pt` length and bssl_sys::EVP_HPKE_CTX_max_overhead
+ /// overflows.
+ pub fn seal(&mut self, pt: &[u8], aad: &[u8]) -> Vec<u8> {
+ self.ctx.seal(pt, aad)
+ }
+
+ #[allow(missing_docs)]
+ pub fn encapsulated_key(&self) -> &[u8] {
+ &self.encapsulated_key
+ }
+}
+
+impl RecipientContext {
+ /// New implements the SetupBaseR HPKE operation, which decapsulates the shared secret in
+ /// `encapsulated_key` with `recipient_priv_key` and sets up a recipient context. These are
+ /// stored and returned in the newly created RecipientContext.
+ ///
+ /// Note that `encapsulated_key` may be invalid, in which case this function will return an
+ /// error.
+ ///
+ /// On success, callers may use `open()` to decrypt messages from the sender.
+ pub fn new(
+ params: &Params,
+ recipient_priv_key: &[u8],
+ encapsulated_key: &[u8],
+ info: &[u8],
+ ) -> Option<Self> {
+ let mut hpke_key = scoped::EvpHpkeKey::new();
+
+ // Safety: EVP_HPKE_KEY_init returns 0 on error.
+ let result = unsafe {
+ bssl_sys::EVP_HPKE_KEY_init(
+ hpke_key.as_mut_ffi_ptr(),
+ params.kem,
+ recipient_priv_key.as_ffi_ptr(),
+ recipient_priv_key.len(),
+ )
+ };
+ if result != 1 {
+ return None;
+ }
+
+ let mut ctx = scoped::EvpHpkeCtx::new();
+
+ // Safety: EVP_HPKE_CTX_setup_recipient
+ // - is called with context created from EVP_HPKE_CTX_new,
+ // - is called with HPKE key created from EVP_HPKE_KEY_init,
+ // - is called with valid buffers with corresponding pointer and length, and
+ // - returns 0 on error.
+ let result = unsafe {
+ bssl_sys::EVP_HPKE_CTX_setup_recipient(
+ ctx.as_mut_ffi_ptr(),
+ hpke_key.as_ffi_ptr(),
+ params.kdf,
+ params.aead,
+ encapsulated_key.as_ffi_ptr(),
+ encapsulated_key.len(),
+ info.as_ffi_ptr(),
+ info.len(),
+ )
+ };
+ if result == 1 {
+ Some(Self { ctx })
+ } else {
+ None
+ }
+ }
+
+ /// Seal encrypts `pt` and returns the resulting ciphertext, which is authenticated with `aad`.
+ ///
+ /// Note that HPKE encryption is stateful and ordered. The sender's first call to `seal()` must
+ /// correspond to the recipient's first call to `open()`, etc.
+ ///
+ /// This function panics if adding the `pt` length and bssl_sys::EVP_HPKE_CTX_max_overhead
+ /// overflows.
+ pub fn seal(&mut self, pt: &[u8], aad: &[u8]) -> Vec<u8> {
+ // Safety: EVP_HPKE_CTX_max_overhead panics if ctx is not set up as a sender.
+ #[allow(clippy::expect_used)]
+ let max_out_len = pt
+ .len()
+ .checked_add(unsafe { bssl_sys::EVP_HPKE_CTX_max_overhead(self.ctx.as_mut_ffi_ptr()) })
+ .expect("Maximum output length calculation overflow");
+ unsafe {
+ with_output_vec(max_out_len, |out_buf| {
+ let mut out_len = 0usize;
+ // Safety: EVP_HPKE_CTX_seal
+ // - is called with context created from EVP_HPKE_CTX_new and
+ // - is called with valid buffers with corresponding pointer and length.
+ let result = bssl_sys::EVP_HPKE_CTX_seal(
+ self.ctx.as_mut_ffi_ptr(),
+ out_buf,
+ &mut out_len,
+ max_out_len,
+ pt.as_ffi_ptr(),
+ pt.len(),
+ aad.as_ffi_ptr(),
+ aad.len(),
+ );
+ assert_eq!(result, 1);
+ out_len
+ })
+ }
+ }
+
+ /// Open authenticates `aad` and decrypts `ct`. It returns an error on failure.
+ ///
+ /// Note that HPKE encryption is stateful and ordered. The sender's first call to `seal()` must
+ /// correspond to the recipient's first call to `open()`, etc.
+ pub fn open(&mut self, ct: &[u8], aad: &[u8]) -> Option<Vec<u8>> {
+ let max_out_len = ct.len();
+ unsafe {
+ with_output_vec_fallible(max_out_len, |out_buf| {
+ let mut out_len = 0usize;
+ // Safety: EVP_HPKE_CTX_open
+ // - is called with context created from EVP_HPKE_CTX_new and
+ // - is called with valid buffers with corresponding pointer and length.
+ let result = bssl_sys::EVP_HPKE_CTX_open(
+ self.ctx.as_mut_ffi_ptr(),
+ out_buf,
+ &mut out_len,
+ max_out_len,
+ ct.as_ffi_ptr(),
+ ct.len(),
+ aad.as_ffi_ptr(),
+ aad.len(),
+ );
+ if result == 1 {
+ Some(out_len)
+ } else {
+ None
+ }
+ })
+ }
+ }
+}
+
+#[cfg(test)]
+mod test {
+ use super::*;
+ use crate::test_helpers::decode_hex;
+
+ struct TestVector {
+ kem_id: u16,
+ kdf_id: u16,
+ aead_id: u16,
+ info: [u8; 20],
+ seed_for_testing: [u8; 32], // skEm
+ recipient_pub_key: [u8; 32], // pkRm
+ recipient_priv_key: [u8; 32], // skRm
+ encapsulated_key: [u8; 32], // enc
+ plaintext: [u8; 29], // pt
+ associated_data: [u8; 7], // aad
+ ciphertext: [u8; 45], // ct
+ }
+
+ // https://www.rfc-editor.org/rfc/rfc9180.html#appendix-A.1
+ fn x25519_hkdf_sha256_hkdf_sha256_aes_128_gcm() -> TestVector {
+ TestVector {
+ kem_id: 32,
+ kdf_id: 1,
+ aead_id: 1,
+ info: decode_hex("4f6465206f6e2061204772656369616e2055726e"),
+ seed_for_testing: decode_hex("52c4a758a802cd8b936eceea314432798d5baf2d7e9235dc084ab1b9cfa2f736"),
+ recipient_pub_key: decode_hex("3948cfe0ad1ddb695d780e59077195da6c56506b027329794ab02bca80815c4d"),
+ recipient_priv_key: decode_hex("4612c550263fc8ad58375df3f557aac531d26850903e55a9f23f21d8534e8ac8"),
+ encapsulated_key: decode_hex("37fda3567bdbd628e88668c3c8d7e97d1d1253b6d4ea6d44c150f741f1bf4431"),
+ plaintext: decode_hex("4265617574792069732074727574682c20747275746820626561757479"),
+ associated_data: decode_hex("436f756e742d30"),
+ ciphertext: decode_hex("f938558b5d72f1a23810b4be2ab4f84331acc02fc97babc53a52ae8218a355a96d8770ac83d07bea87e13c512a"),
+ }
+ }
+
+ #[test]
+ fn seal_and_open() {
+ let vec: TestVector = x25519_hkdf_sha256_hkdf_sha256_aes_128_gcm();
+ let params = Params::new_from_rfc_ids(vec.kem_id, vec.kdf_id, vec.aead_id).unwrap();
+
+ let mut sender_ctx =
+ SenderContext::new(&params, &vec.recipient_pub_key, &vec.info).unwrap();
+
+ let mut recipient_ctx = RecipientContext::new(
+ &params,
+ &vec.recipient_priv_key,
+ &sender_ctx.encapsulated_key(),
+ &vec.info,
+ )
+ .unwrap();
+
+ let pt = b"plaintext";
+ let ad = b"associated_data";
+ let mut prev_ct: Vec<u8> = Vec::new();
+ for _ in 0..10 {
+ let ct = sender_ctx.seal(pt, ad);
+ assert_ne!(ct, prev_ct);
+ prev_ct = ct.clone();
+
+ let got_pt = recipient_ctx.open(&ct, ad).unwrap();
+ assert_eq!(got_pt, pt);
+ }
+ }
+
+ fn new_sender_context_for_testing(
+ params: &Params,
+ recipient_pub_key: &[u8],
+ info: &[u8],
+ seed_for_testing: &[u8],
+ ) -> Option<SenderContext> {
+ let mut ctx = scoped::EvpHpkeCtx::new();
+
+ unsafe {
+ with_output_vec_fallible(MAX_ENCAPSULATED_KEY_LEN, |enc_key_buf| {
+ let mut enc_key_len = 0usize;
+ // Safety: EVP_HPKE_CTX_setup_sender_with_seed_for_testing
+ // - is called with context created from EVP_HPKE_CTX_new,
+ // - is called with valid buffers with corresponding pointer and length, and
+ // - returns 0 on error.
+ let result = bssl_sys::EVP_HPKE_CTX_setup_sender_with_seed_for_testing(
+ ctx.as_mut_ffi_ptr(),
+ enc_key_buf,
+ &mut enc_key_len,
+ MAX_ENCAPSULATED_KEY_LEN,
+ params.kem,
+ params.kdf,
+ params.aead,
+ recipient_pub_key.as_ffi_ptr(),
+ recipient_pub_key.len(),
+ info.as_ffi_ptr(),
+ info.len(),
+ seed_for_testing.as_ffi_ptr(),
+ seed_for_testing.len(),
+ );
+ if result == 1 {
+ Some(enc_key_len)
+ } else {
+ None
+ }
+ })
+ }
+ .map(|enc_key| SenderContext {
+ ctx: RecipientContext { ctx },
+ encapsulated_key: enc_key,
+ })
+ }
+
+ #[test]
+ fn seal_with_vector() {
+ let vec: TestVector = x25519_hkdf_sha256_hkdf_sha256_aes_128_gcm();
+ let params = Params::new_from_rfc_ids(vec.kem_id, vec.kdf_id, vec.aead_id).unwrap();
+
+ let mut ctx = new_sender_context_for_testing(
+ &params,
+ &vec.recipient_pub_key,
+ &vec.info,
+ &vec.seed_for_testing,
+ )
+ .unwrap();
+
+ assert_eq!(ctx.encapsulated_key, vec.encapsulated_key.to_vec());
+
+ let ciphertext = ctx.seal(&vec.plaintext, &vec.associated_data);
+ assert_eq!(ciphertext, vec.ciphertext.to_vec());
+ }
+
+ #[test]
+ fn open_with_vector() {
+ let vec: TestVector = x25519_hkdf_sha256_hkdf_sha256_aes_128_gcm();
+ let params = Params::new_from_rfc_ids(vec.kem_id, vec.kdf_id, vec.aead_id).unwrap();
+
+ let mut ctx = RecipientContext::new(
+ &params,
+ &vec.recipient_priv_key,
+ &vec.encapsulated_key,
+ &vec.info,
+ )
+ .unwrap();
+
+ let plaintext = ctx.open(&vec.ciphertext, &vec.associated_data).unwrap();
+ assert_eq!(plaintext, vec.plaintext.to_vec());
+ }
+
+ #[test]
+ fn params_new() {
+ assert!(Params::new(Kem::X25519HkdfSha256, Kdf::HkdfSha256, Aead::Aes128Gcm).is_some());
+ }
+
+ #[test]
+ fn params_new_from_rfc_ids() {
+ let vec: TestVector = x25519_hkdf_sha256_hkdf_sha256_aes_128_gcm();
+ assert!(Params::new_from_rfc_ids(vec.kem_id, vec.kdf_id, vec.aead_id).is_some());
+ }
+
+ #[test]
+ fn disallowed_params_fail() {
+ let vec: TestVector = x25519_hkdf_sha256_hkdf_sha256_aes_128_gcm();
+
+ assert!(Params::new_from_rfc_ids(0, vec.kdf_id, vec.aead_id).is_none());
+ assert!(Params::new_from_rfc_ids(vec.kem_id, 0, vec.aead_id).is_none());
+ assert!(Params::new_from_rfc_ids(vec.kem_id, vec.kdf_id, 0).is_none());
+ assert!(Params::new_from_rfc_ids(
+ vec.kem_id,
+ vec.kdf_id,
+ bssl_sys::EVP_HPKE_AES_256_GCM as u16
+ )
+ .is_none());
+ }
+
+ #[test]
+ fn bad_recipient_pub_key_fails() {
+ let vec: TestVector = x25519_hkdf_sha256_hkdf_sha256_aes_128_gcm();
+ let params = Params::new_from_rfc_ids(vec.kem_id, vec.kdf_id, vec.aead_id).unwrap();
+
+ assert!(SenderContext::new(&params, b"", &vec.info).is_none());
+ }
+
+ #[test]
+ fn bad_recipient_priv_key_fails() {
+ let vec: TestVector = x25519_hkdf_sha256_hkdf_sha256_aes_128_gcm();
+ let params = Params::new_from_rfc_ids(vec.kem_id, vec.kdf_id, vec.aead_id).unwrap();
+
+ assert!(RecipientContext::new(&params, b"", &vec.encapsulated_key, &vec.info).is_none());
+ }
+}