aboutsummaryrefslogtreecommitdiff
path: root/doc/crypto/des.pod
diff options
context:
space:
mode:
Diffstat (limited to 'doc/crypto/des.pod')
-rw-r--r--doc/crypto/des.pod376
1 files changed, 0 insertions, 376 deletions
diff --git a/doc/crypto/des.pod b/doc/crypto/des.pod
deleted file mode 100644
index 9908039..0000000
--- a/doc/crypto/des.pod
+++ /dev/null
@@ -1,376 +0,0 @@
-=pod
-
-=head1 NAME
-
-des_random_key, des_set_key, des_key_sched, des_set_key_checked,
-des_set_key_unchecked, des_set_odd_parity, des_is_weak_key,
-des_ecb_encrypt, des_ecb2_encrypt, des_ecb3_encrypt, des_ncbc_encrypt,
-des_cfb_encrypt, des_ofb_encrypt, des_pcbc_encrypt, des_cfb64_encrypt,
-des_ofb64_encrypt, des_xcbc_encrypt, des_ede2_cbc_encrypt,
-des_ede2_cfb64_encrypt, des_ede2_ofb64_encrypt, des_ede3_cbc_encrypt,
-des_ede3_cbcm_encrypt, des_ede3_cfb64_encrypt, des_ede3_ofb64_encrypt,
-des_read_password, des_read_2passwords, des_read_pw_string,
-des_cbc_cksum, des_quad_cksum, des_string_to_key, des_string_to_2keys,
-des_fcrypt, des_crypt, des_enc_read, des_enc_write - DES encryption
-
-=head1 SYNOPSIS
-
- #include <openssl/des.h>
-
- void des_random_key(des_cblock *ret);
-
- int des_set_key(const_des_cblock *key, des_key_schedule schedule);
- int des_key_sched(const_des_cblock *key, des_key_schedule schedule);
- int des_set_key_checked(const_des_cblock *key,
- des_key_schedule schedule);
- void des_set_key_unchecked(const_des_cblock *key,
- des_key_schedule schedule);
-
- void des_set_odd_parity(des_cblock *key);
- int des_is_weak_key(const_des_cblock *key);
-
- void des_ecb_encrypt(const_des_cblock *input, des_cblock *output,
- des_key_schedule ks, int enc);
- void des_ecb2_encrypt(const_des_cblock *input, des_cblock *output,
- des_key_schedule ks1, des_key_schedule ks2, int enc);
- void des_ecb3_encrypt(const_des_cblock *input, des_cblock *output,
- des_key_schedule ks1, des_key_schedule ks2,
- des_key_schedule ks3, int enc);
-
- void des_ncbc_encrypt(const unsigned char *input, unsigned char *output,
- long length, des_key_schedule schedule, des_cblock *ivec,
- int enc);
- void des_cfb_encrypt(const unsigned char *in, unsigned char *out,
- int numbits, long length, des_key_schedule schedule,
- des_cblock *ivec, int enc);
- void des_ofb_encrypt(const unsigned char *in, unsigned char *out,
- int numbits, long length, des_key_schedule schedule,
- des_cblock *ivec);
- void des_pcbc_encrypt(const unsigned char *input, unsigned char *output,
- long length, des_key_schedule schedule, des_cblock *ivec,
- int enc);
- void des_cfb64_encrypt(const unsigned char *in, unsigned char *out,
- long length, des_key_schedule schedule, des_cblock *ivec,
- int *num, int enc);
- void des_ofb64_encrypt(const unsigned char *in, unsigned char *out,
- long length, des_key_schedule schedule, des_cblock *ivec,
- int *num);
-
- void des_xcbc_encrypt(const unsigned char *input, unsigned char *output,
- long length, des_key_schedule schedule, des_cblock *ivec,
- const_des_cblock *inw, const_des_cblock *outw, int enc);
-
- void des_ede2_cbc_encrypt(const unsigned char *input,
- unsigned char *output, long length, des_key_schedule ks1,
- des_key_schedule ks2, des_cblock *ivec, int enc);
- void des_ede2_cfb64_encrypt(const unsigned char *in,
- unsigned char *out, long length, des_key_schedule ks1,
- des_key_schedule ks2, des_cblock *ivec, int *num, int enc);
- void des_ede2_ofb64_encrypt(const unsigned char *in,
- unsigned char *out, long length, des_key_schedule ks1,
- des_key_schedule ks2, des_cblock *ivec, int *num);
-
- void des_ede3_cbc_encrypt(const unsigned char *input,
- unsigned char *output, long length, des_key_schedule ks1,
- des_key_schedule ks2, des_key_schedule ks3, des_cblock *ivec,
- int enc);
- void des_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out,
- long length, des_key_schedule ks1, des_key_schedule ks2,
- des_key_schedule ks3, des_cblock *ivec1, des_cblock *ivec2,
- int enc);
- void des_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
- long length, des_key_schedule ks1, des_key_schedule ks2,
- des_key_schedule ks3, des_cblock *ivec, int *num, int enc);
- void des_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
- long length, des_key_schedule ks1,
- des_key_schedule ks2, des_key_schedule ks3,
- des_cblock *ivec, int *num);
-
- int des_read_password(des_cblock *key, const char *prompt, int verify);
- int des_read_2passwords(des_cblock *key1, des_cblock *key2,
- const char *prompt, int verify);
- int des_read_pw_string(char *buf, int length, const char *prompt,
- int verify);
-
- DES_LONG des_cbc_cksum(const unsigned char *input, des_cblock *output,
- long length, des_key_schedule schedule,
- const_des_cblock *ivec);
- DES_LONG des_quad_cksum(const unsigned char *input, des_cblock output[],
- long length, int out_count, des_cblock *seed);
- void des_string_to_key(const char *str, des_cblock *key);
- void des_string_to_2keys(const char *str, des_cblock *key1,
- des_cblock *key2);
-
- char *des_fcrypt(const char *buf, const char *salt, char *ret);
- char *des_crypt(const char *buf, const char *salt);
- char *crypt(const char *buf, const char *salt);
-
- int des_enc_read(int fd, void *buf, int len, des_key_schedule sched,
- des_cblock *iv);
- int des_enc_write(int fd, const void *buf, int len,
- des_key_schedule sched, des_cblock *iv);
-
-=head1 DESCRIPTION
-
-This library contains a fast implementation of the DES encryption
-algorithm.
-
-There are two phases to the use of DES encryption. The first is the
-generation of a I<des_key_schedule> from a key, the second is the
-actual encryption. A DES key is of type I<des_cblock>. This type is
-consists of 8 bytes with odd parity. The least significant bit in
-each byte is the parity bit. The key schedule is an expanded form of
-the key; it is used to speed the encryption process.
-
-des_random_key() generates a random key. The PRNG must be seeded
-prior to using this function (see L<rand(3)|rand(3)>; for backward
-compatibility the function des_random_seed() is available as well).
-If the PRNG could not generate a secure key, 0 is returned. In
-earlier versions of the library, des_random_key() did not generate
-secure keys.
-
-Before a DES key can be used, it must be converted into the
-architecture dependent I<des_key_schedule> via the
-des_set_key_checked() or des_set_key_unchecked() function.
-
-des_set_key_checked() will check that the key passed is of odd parity
-and is not a week or semi-weak key. If the parity is wrong, then -1
-is returned. If the key is a weak key, then -2 is returned. If an
-error is returned, the key schedule is not generated.
-
-des_set_key() (called des_key_sched() in the MIT library) works like
-des_set_key_checked() if the I<des_check_key> flag is non-zero,
-otherwise like des_set_key_unchecked(). These functions are available
-for compatibility; it is recommended to use a function that does not
-depend on a global variable.
-
-des_set_odd_parity() (called des_fixup_key_parity() in the MIT
-library) sets the parity of the passed I<key> to odd.
-
-des_is_weak_key() returns 1 is the passed key is a weak key, 0 if it
-is ok. The probability that a randomly generated key is weak is
-1/2^52, so it is not really worth checking for them.
-
-The following routines mostly operate on an input and output stream of
-I<des_cblock>s.
-
-des_ecb_encrypt() is the basic DES encryption routine that encrypts or
-decrypts a single 8-byte I<des_cblock> in I<electronic code book>
-(ECB) mode. It always transforms the input data, pointed to by
-I<input>, into the output data, pointed to by the I<output> argument.
-If the I<encrypt> argument is non-zero (DES_ENCRYPT), the I<input>
-(cleartext) is encrypted in to the I<output> (ciphertext) using the
-key_schedule specified by the I<schedule> argument, previously set via
-I<des_set_key>. If I<encrypt> is zero (DES_DECRYPT), the I<input> (now
-ciphertext) is decrypted into the I<output> (now cleartext). Input
-and output may overlap. des_ecb_encrypt() does not return a value.
-
-des_ecb3_encrypt() encrypts/decrypts the I<input> block by using
-three-key Triple-DES encryption in ECB mode. This involves encrypting
-the input with I<ks1>, decrypting with the key schedule I<ks2>, and
-then encrypting with I<ks3>. This routine greatly reduces the chances
-of brute force breaking of DES and has the advantage of if I<ks1>,
-I<ks2> and I<ks3> are the same, it is equivalent to just encryption
-using ECB mode and I<ks1> as the key.
-
-The macro des_ecb2_encrypt() is provided to perform two-key Triple-DES
-encryption by using I<ks1> for the final encryption.
-
-des_ncbc_encrypt() encrypts/decrypts using the I<cipher-block-chaining>
-(CBC) mode of DES. If the I<encrypt> argument is non-zero, the
-routine cipher-block-chain encrypts the cleartext data pointed to by
-the I<input> argument into the ciphertext pointed to by the I<output>
-argument, using the key schedule provided by the I<schedule> argument,
-and initialization vector provided by the I<ivec> argument. If the
-I<length> argument is not an integral multiple of eight bytes, the
-last block is copied to a temporary area and zero filled. The output
-is always an integral multiple of eight bytes.
-
-des_xcbc_encrypt() is RSA's DESX mode of DES. It uses I<inw> and
-I<outw> to 'whiten' the encryption. I<inw> and I<outw> are secret
-(unlike the iv) and are as such, part of the key. So the key is sort
-of 24 bytes. This is much better than CBC DES.
-
-des_ede3_cbc_encrypt() implements outer triple CBC DES encryption with
-three keys. This means that each DES operation inside the CBC mode is
-really an C<C=E(ks3,D(ks2,E(ks1,M)))>. This mode is used by SSL.
-
-The des_ede2_cbc_encrypt() macro implements two-key Triple-DES by
-reusing I<ks1> for the final encryption. C<C=E(ks1,D(ks2,E(ks1,M)))>.
-This form of Triple-DES is used by the RSAREF library.
-
-des_pcbc_encrypt() encrypt/decrypts using the propagating cipher block
-chaining mode used by Kerberos v4. Its parameters are the same as
-des_ncbc_encrypt().
-
-des_cfb_encrypt() encrypt/decrypts using cipher feedback mode. This
-method takes an array of characters as input and outputs and array of
-characters. It does not require any padding to 8 character groups.
-Note: the I<ivec> variable is changed and the new changed value needs to
-be passed to the next call to this function. Since this function runs
-a complete DES ECB encryption per I<numbits>, this function is only
-suggested for use when sending small numbers of characters.
-
-des_cfb64_encrypt()
-implements CFB mode of DES with 64bit feedback. Why is this
-useful you ask? Because this routine will allow you to encrypt an
-arbitrary number of bytes, no 8 byte padding. Each call to this
-routine will encrypt the input bytes to output and then update ivec
-and num. num contains 'how far' we are though ivec. If this does
-not make much sense, read more about cfb mode of DES :-).
-
-des_ede3_cfb64_encrypt() and des_ede2_cfb64_encrypt() is the same as
-des_cfb64_encrypt() except that Triple-DES is used.
-
-des_ofb_encrypt() encrypts using output feedback mode. This method
-takes an array of characters as input and outputs and array of
-characters. It does not require any padding to 8 character groups.
-Note: the I<ivec> variable is changed and the new changed value needs to
-be passed to the next call to this function. Since this function runs
-a complete DES ECB encryption per numbits, this function is only
-suggested for use when sending small numbers of characters.
-
-des_ofb64_encrypt() is the same as des_cfb64_encrypt() using Output
-Feed Back mode.
-
-des_ede3_ofb64_encrypt() and des_ede2_ofb64_encrypt() is the same as
-des_ofb64_encrypt(), using Triple-DES.
-
-The following functions are included in the DES library for
-compatibility with the MIT Kerberos library. des_read_pw_string()
-is also available under the name EVP_read_pw_string().
-
-des_read_pw_string() writes the string specified by I<prompt> to
-standard output, turns echo off and reads in input string from the
-terminal. The string is returned in I<buf>, which must have space for
-at least I<length> bytes. If I<verify> is set, the user is asked for
-the password twice and unless the two copies match, an error is
-returned. A return code of -1 indicates a system error, 1 failure due
-to use interaction, and 0 is success.
-
-des_read_password() does the same and converts the password to a DES
-key by calling des_string_to_key(); des_read_2password() operates in
-the same way as des_read_password() except that it generates two keys
-by using the des_string_to_2key() function. des_string_to_key() is
-available for backward compatibility with the MIT library. New
-applications should use a cryptographic hash function. The same
-applies for des_string_to_2key().
-
-des_cbc_cksum() produces an 8 byte checksum based on the input stream
-(via CBC encryption). The last 4 bytes of the checksum are returned
-and the complete 8 bytes are placed in I<output>. This function is
-used by Kerberos v4. Other applications should use
-L<EVP_DigestInit(3)|EVP_DigestInit(3)> etc. instead.
-
-des_quad_cksum() is a Kerberos v4 function. It returns a 4 byte
-checksum from the input bytes. The algorithm can be iterated over the
-input, depending on I<out_count>, 1, 2, 3 or 4 times. If I<output> is
-non-NULL, the 8 bytes generated by each pass are written into
-I<output>.
-
-The following are DES-based transformations:
-
-des_fcrypt() is a fast version of the Unix crypt(3) function. This
-version takes only a small amount of space relative to other fast
-crypt() implementations. This is different to the normal crypt in
-that the third parameter is the buffer that the return value is
-written into. It needs to be at least 14 bytes long. This function
-is thread safe, unlike the normal crypt.
-
-des_crypt() is a faster replacement for the normal system crypt().
-This function calls des_fcrypt() with a static array passed as the
-third parameter. This emulates the normal non-thread safe semantics
-of crypt(3).
-
-des_enc_write() writes I<len> bytes to file descriptor I<fd> from
-buffer I<buf>. The data is encrypted via I<pcbc_encrypt> (default)
-using I<sched> for the key and I<iv> as a starting vector. The actual
-data send down I<fd> consists of 4 bytes (in network byte order)
-containing the length of the following encrypted data. The encrypted
-data then follows, padded with random data out to a multiple of 8
-bytes.
-
-des_enc_read() is used to read I<len> bytes from file descriptor
-I<fd> into buffer I<buf>. The data being read from I<fd> is assumed to
-have come from des_enc_write() and is decrypted using I<sched> for
-the key schedule and I<iv> for the initial vector.
-
-B<Warning:> The data format used by des_enc_write() and des_enc_read()
-has a cryptographic weakness: When asked to write more than MAXWRITE
-bytes, des_enc_write() will split the data into several chunks that
-are all encrypted using the same IV. So don't use these functions
-unless you are sure you know what you do (in which case you might not
-want to use them anyway). They cannot handle non-blocking sockets.
-des_enc_read() uses an internal state and thus cannot be used on
-multiple files.
-
-I<des_rw_mode> is used to specify the encryption mode to use with
-des_enc_read() and des_end_write(). If set to I<DES_PCBC_MODE> (the
-default), des_pcbc_encrypt is used. If set to I<DES_CBC_MODE>
-des_cbc_encrypt is used.
-
-=head1 NOTES
-
-Single-key DES is insecure due to its short key size. ECB mode is
-not suitable for most applications; see L<des_modes(7)|des_modes(7)>.
-
-The L<evp(3)|evp(3)> library provides higher-level encryption functions.
-
-=head1 BUGS
-
-des_3cbc_encrypt() is flawed and must not be used in applications.
-
-des_cbc_encrypt() does not modify B<ivec>; use des_ncbc_encrypt()
-instead.
-
-des_cfb_encrypt() and des_ofb_encrypt() operates on input of 8 bits.
-What this means is that if you set numbits to 12, and length to 2, the
-first 12 bits will come from the 1st input byte and the low half of
-the second input byte. The second 12 bits will have the low 8 bits
-taken from the 3rd input byte and the top 4 bits taken from the 4th
-input byte. The same holds for output. This function has been
-implemented this way because most people will be using a multiple of 8
-and because once you get into pulling bytes input bytes apart things
-get ugly!
-
-des_read_pw_string() is the most machine/OS dependent function and
-normally generates the most problems when porting this code.
-
-=head1 CONFORMING TO
-
-ANSI X3.106
-
-The B<des> library was written to be source code compatible with
-the MIT Kerberos library.
-
-=head1 SEE ALSO
-
-crypt(3), L<des_modes(7)|des_modes(7)>, L<evp(3)|evp(3)>, L<rand(3)|rand(3)>
-
-=head1 HISTORY
-
-des_cbc_cksum(), des_cbc_encrypt(), des_ecb_encrypt(),
-des_is_weak_key(), des_key_sched(), des_pcbc_encrypt(),
-des_quad_cksum(), des_random_key(), des_read_password() and
-des_string_to_key() are available in the MIT Kerberos library;
-des_check_key_parity(), des_fixup_key_parity() and des_is_weak_key()
-are available in newer versions of that library.
-
-des_set_key_checked() and des_set_key_unchecked() were added in
-OpenSSL 0.9.5.
-
-des_generate_random_block(), des_init_random_number_generator(),
-des_new_random_key(), des_set_random_generator_seed() and
-des_set_sequence_number() and des_rand_data() are used in newer
-versions of Kerberos but are not implemented here.
-
-des_random_key() generated cryptographically weak random data in
-SSLeay and in OpenSSL prior version 0.9.5, as well as in the original
-MIT library.
-
-=head1 AUTHOR
-
-Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project
-(http://www.openssl.org).
-
-=cut