aboutsummaryrefslogtreecommitdiff
path: root/research/deorummolae.cc
blob: e5716cf0ab3817aec01fafc6a6e897ec98bc0383 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#include "deorummolae.h"

#include <array>
#include <cstdio>

#include "third_party/esaxx/sais.hxx"

#if defined(_MSC_VER)
#include <intrin.h>  /* __popcnt64 */
#endif

/* Used for quick SA-entry to file mapping. Each file is padded to size that
   is a multiple of chunk size. */
#define CHUNK_SIZE 64
/* Length of substring that is considered to be covered by dictionary string. */
#define CUT_MATCH 6
/* Minimal dictionary entry size. */
#define MIN_MATCH 24

/* Non tunable definitions. */
#define CHUNK_MASK (CHUNK_SIZE - 1)
#define COVERAGE_SIZE (1 << (DM_LOG_MAX_FILES - 6))

/* File coverage: every bit set to 1 denotes a file covered by an isle. */
typedef std::array<uint64_t, COVERAGE_SIZE> Coverage;

/* Symbol of text alphabet. */
typedef int32_t TextChar;

/* Pointer to position in text. */
typedef uint32_t TextIdx;

/* SAIS sarray_type; unfortunately, must be a signed type. */
typedef int32_t TextSaIdx;

static size_t popcount(uint64_t u) {
#if defined(_MSC_VER)
  return static_cast<size_t>(__popcnt64(u));
#else
  return static_cast<size_t>(__builtin_popcountll(u));
#endif
}

/* Condense terminators and pad file entries. */
static void rewriteText(std::vector<TextChar>* text) {
  TextChar terminator = text->back();
  TextChar prev = terminator;
  TextIdx to = 0;
  for (TextIdx from = 0; from < text->size(); ++from) {
    TextChar next = text->at(from);
    if (next < 256 || prev < 256) {
      text->at(to++) = next;
      if (next >= 256) terminator = next;
    }
    prev = next;
  }
  text->resize(to);
  if (text->empty()) text->push_back(terminator);
  while (text->size() & CHUNK_MASK) text->push_back(terminator);
}

/* Reenumerate terminators for smaller alphabet. */
static void remapTerminators(std::vector<TextChar>* text,
    TextChar* next_terminator) {
  TextChar prev = -1;
  TextChar x = 256;
  for (TextIdx i = 0; i < text->size(); ++i) {
    TextChar next = text->at(i);
    if (next < 256) {  // Char.
      // Do nothing.
    } else if (prev < 256) {  // Terminator after char.
      next = x++;
    } else {  // Terminator after terminator.
      next = prev;
    }
    text->at(i) = next;
    prev = next;
  }
  *next_terminator = x;
}

/* Combine all file entries; create mapping position->file. */
static void buildFullText(std::vector<std::vector<TextChar>>* data,
    std::vector<TextChar>* full_text, std::vector<TextIdx>* file_map,
    std::vector<TextIdx>* file_offset, TextChar* next_terminator) {
  file_map->resize(0);
  file_offset->resize(0);
  full_text->resize(0);
  for (TextIdx i = 0; i < data->size(); ++i) {
    file_offset->push_back(full_text->size());
    std::vector<TextChar>& file = data->at(i);
    rewriteText(&file);
    full_text->insert(full_text->end(), file.begin(), file.end());
    file_map->insert(file_map->end(), file.size() / CHUNK_SIZE, i);
  }
  if (false) remapTerminators(full_text, next_terminator);
}

/* Build longest-common-prefix based on suffix array and text.
   TODO(eustas): borrowed -> unknown efficiency. */
static void buildLcp(std::vector<TextChar>* text, std::vector<TextIdx>* sa,
    std::vector<TextIdx>* lcp, std::vector<TextIdx>* invese_sa) {
  TextIdx size = static_cast<TextIdx>(text->size());
  lcp->resize(size);
  TextIdx k = 0;
  lcp->at(size - 1) = 0;
  for (TextIdx i = 0; i < size; ++i) {
    if (invese_sa->at(i) == size - 1) {
      k = 0;
      continue;
    }
    // Suffix which follow i-th suffix.
    TextIdx j = sa->at(invese_sa->at(i) + 1);
    while (i + k < size && j + k < size && text->at(i + k) == text->at(j + k)) {
      ++k;
    }
    lcp->at(invese_sa->at(i)) = k;
    if (k > 0) --k;
  }
}

/* Isle is a range in SA with LCP not less than some value.
   When we raise the LCP requirement, the isle sunks and smaller isles appear
   instead. */
typedef struct {
  TextIdx lcp;
  TextIdx l;
  TextIdx r;
  Coverage coverage;
} Isle;

/* Helper routine for `cutMatch`. */
static void poisonData(TextIdx pos, TextIdx length,
    std::vector<std::vector<TextChar>>* data, std::vector<TextIdx>* file_map,
    std::vector<TextIdx>* file_offset, TextChar* next_terminator) {
  TextIdx f = file_map->at(pos / CHUNK_SIZE);
  pos -= file_offset->at(f);
  std::vector<TextChar>& file = data->at(f);
  TextIdx l = (length == CUT_MATCH) ? CUT_MATCH : 1;
  for (TextIdx j = 0; j < l; j++, pos++) {
    if (file[pos] >= 256) continue;
    if (file[pos + 1] >= 256) {
      file[pos] = file[pos + 1];
    } else if (pos > 0 && file[pos - 1] >= 256) {
      file[pos] = file[pos - 1];
    } else {
      file[pos] = (*next_terminator)++;
    }
  }
}

/* Remove substrings of a given match from files.
   Substrings are replaced with unique terminators, so next iteration SA would
   not allow to cross removed areas. */
static void cutMatch(std::vector<std::vector<TextChar>>* data, TextIdx index,
    TextIdx length, std::vector<TextIdx>* sa, std::vector<TextIdx>* lcp,
    std::vector<TextIdx>* invese_sa, TextChar* next_terminator,
    std::vector<TextIdx>* file_map, std::vector<TextIdx>* file_offset) {
  while (length >= CUT_MATCH) {
    TextIdx i = index;
    while (lcp->at(i) >= length) {
      i++;
      poisonData(
          sa->at(i), length, data, file_map, file_offset, next_terminator);
    }
    while (true) {
      poisonData(
          sa->at(index), length, data, file_map, file_offset, next_terminator);
      if (index == 0 || lcp->at(index - 1) < length) break;
      index--;
    }
    length--;
    index = invese_sa->at(sa->at(index) + 1);
  }
}

std::string DM_generate(size_t dictionary_size_limit,
    const std::vector<size_t>& sample_sizes, const uint8_t* sample_data) {
  {
    TextIdx tmp = static_cast<TextIdx>(dictionary_size_limit);
    if ((tmp != dictionary_size_limit) || (tmp > 1u << 30)) {
      fprintf(stderr, "dictionary_size_limit is too large\n");
      return "";
    }
  }

  /* Could use 256 + '0' for easier debugging. */
  TextChar next_terminator = 256;

  std::string output;
  std::vector<std::vector<TextChar>> data;

  TextIdx offset = 0;
  size_t num_samples = sample_sizes.size();
  if (num_samples > DM_MAX_FILES) num_samples = DM_MAX_FILES;
  for (size_t n = 0; n < num_samples; ++n) {
    TextIdx delta = static_cast<TextIdx>(sample_sizes[n]);
    if (delta != sample_sizes[n]) {
      fprintf(stderr, "sample is too large\n");
      return "";
    }
    if (delta == 0) {
      fprintf(stderr, "0-length samples are prohibited\n");
      return "";
    }
    TextIdx next_offset = offset + delta;
    if (next_offset <= offset) {
      fprintf(stderr, "corpus is too large\n");
      return "";
    }
    data.push_back(
        std::vector<TextChar>(sample_data + offset, sample_data + next_offset));
    offset = next_offset;
    data.back().push_back(next_terminator++);
  }

  /* Most arrays are allocated once, and then just resized to smaller and
     smaller sizes. */
  std::vector<TextChar> full_text;
  std::vector<TextIdx> file_map;
  std::vector<TextIdx> file_offset;
  std::vector<TextIdx> sa;
  std::vector<TextIdx> invese_sa;
  std::vector<TextIdx> lcp;
  std::vector<Isle> isles;
  std::vector<char> output_data;
  TextIdx total = 0;
  TextIdx total_cost = 0;
  TextIdx best_cost;
  Isle best_isle;
  size_t min_count = num_samples;

  while (true) {
    TextIdx max_match = static_cast<TextIdx>(dictionary_size_limit) - total;
    buildFullText(&data, &full_text, &file_map, &file_offset, &next_terminator);
    sa.resize(full_text.size());
    /* Hopefully, non-negative TextSaIdx is the same sa TextIdx counterpart. */
    saisxx(full_text.data(), reinterpret_cast<TextSaIdx*>(sa.data()),
        static_cast<TextChar>(full_text.size()), next_terminator);
    invese_sa.resize(full_text.size());
    for (TextIdx i = 0; i < full_text.size(); ++i) {
      invese_sa[sa[i]] = i;
    }
    buildLcp(&full_text, &sa, &lcp, &invese_sa);

    /* Do not rebuild SA/LCP, just use different selection. */
  retry:
    best_cost = 0;
    best_isle = {0, 0, 0, {{0}}};
    isles.resize(0);
    isles.push_back(best_isle);

    for (TextIdx i = 0; i < lcp.size(); ++i) {
      TextIdx l = i;
      Coverage cov = {{0}};
      size_t f = file_map[sa[i] / CHUNK_SIZE];
      cov[f >> 6] = (static_cast<uint64_t>(1)) << (f & 63);
      while (lcp[i] < isles.back().lcp) {
        Isle& top = isles.back();
        top.r = i;
        l = top.l;
        for (size_t x = 0; x < cov.size(); ++x) cov[x] |= top.coverage[x];
        size_t count = 0;
        for (size_t x = 0; x < cov.size(); ++x) count += popcount(cov[x]);
        TextIdx effective_lcp = top.lcp;
        /* Restrict (last) dictionary entry length. */
        if (effective_lcp > max_match) effective_lcp = max_match;
        TextIdx cost = count * effective_lcp;
        if (cost > best_cost && count >= min_count &&
            effective_lcp >= MIN_MATCH) {
          best_cost = cost;
          best_isle = top;
          best_isle.lcp = effective_lcp;
        }
        isles.pop_back();
        for (size_t x = 0; x < cov.size(); ++x) {
          isles.back().coverage[x] |= cov[x];
        }
      }
      if (lcp[i] > isles.back().lcp) isles.push_back({lcp[i], l, 0, {{0}}});
      for (size_t x = 0; x < cov.size(); ++x) {
        isles.back().coverage[x] |= cov[x];
      }
    }

    /* When saturated matches do not match length restrictions, lower the
       saturation requirements. */
    if (best_cost == 0 || best_isle.lcp < MIN_MATCH) {
      if (min_count >= 8) {
        min_count = (min_count * 7) / 8;
        fprintf(stderr, "Retry: min_count=%zu\n", min_count);
        goto retry;
      }
      break;
    }

    /* Save the entry. */
    fprintf(stderr, "Savings: %d+%d, dictionary: %d+%d\n",
        total_cost, best_cost, total, best_isle.lcp);
    int* piece = &full_text[sa[best_isle.l]];
    output.insert(output.end(), piece, piece + best_isle.lcp);
    total += best_isle.lcp;
    total_cost += best_cost;
    cutMatch(&data, best_isle.l, best_isle.lcp, &sa, &lcp, &invese_sa,
        &next_terminator, &file_map, &file_offset);
    if (total >= dictionary_size_limit) break;
  }

  return output;
}