aboutsummaryrefslogtreecommitdiff
path: root/lib/libtpm/sha256.c
blob: 2a09af6ddc63db838e5f7707f55fe8afd2290b5c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/*****************************************************************************
 * Copyright (c) 2015-2020 IBM Corporation
 * All rights reserved.
 * This program and the accompanying materials
 * are made available under the terms of the BSD License
 * which accompanies this distribution, and is available at
 * http://www.opensource.org/licenses/bsd-license.php
 *
 * Contributors:
 *     IBM Corporation - initial implementation
 *****************************************************************************/

/*
 *  See: NIST standard for SHA-256 in FIPS PUB 180-4
 */

#include "byteorder.h"
#include "sha256.h"
#include "string.h"

typedef struct _sha256_ctx {
	uint32_t h[8];
} sha256_ctx;

static inline uint32_t rotr(uint32_t x, uint8_t n)
{
	return (x >> n) | (x << (32 - n));
}

static inline uint32_t Ch(uint32_t x, uint32_t y, uint32_t z)
{
	return (x & y) | ((x ^ 0xffffffff) & z);
}

static inline uint32_t Maj(uint32_t x, uint32_t y, uint32_t z)
{
	return (x & y) | (x & z) | (y & z);
}

static inline uint32_t sum0(uint32_t x)
{
	return rotr(x, 2) ^ rotr(x, 13) ^ rotr(x, 22);
}

static inline uint32_t sum1(uint32_t x)
{
	return rotr(x, 6) ^ rotr(x, 11) ^ rotr(x, 25);
}

static inline uint32_t sigma0(uint32_t x)
{
	return rotr(x, 7) ^ rotr(x, 18) ^ (x >> 3);
}

static inline uint32_t sigma1(uint32_t x)
{
	return rotr(x, 17) ^ rotr(x, 19) ^ (x >> 10);
}

static void sha256_block(uint32_t *w, sha256_ctx *ctx)
{
	uint32_t t;
	uint32_t a, b, c, d, e, f, g, h;
	uint32_t T1, T2;

	/*
	 * FIPS 180-4 4.2.2: SHA256 Constants
	 */
	static const uint32_t sha_ko[64] = {
		0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
		0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
		0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
		0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
		0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
		0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
		0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
		0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
		0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
		0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
		0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
		0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
		0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
		0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
		0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
		0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
	};

	/*
	 * FIPS 180-4 6.2.2: step 1
	 *
	 *  0 <= i <= 15:
	 *    W(t) = M(t)
	 * 16 <= i <= 63:
	 *    W(t) = sigma1(W(t-2)) + W(t-7) + sigma0(W(t-15)) + W(t-16)
	 */

	/* w(0)..w(15) are in big endian format */
	for (t = 0; t <= 15; t++)
		w[t] = be32_to_cpu(w[t]);

	for (t = 16; t <= 63; t++)
		w[t] = sigma1(w[t-2]) + w[t-7] + sigma0(w[t-15]) + w[t-16];

	/*
	 * step 2: a = H0, b = H1, c = H2, d = H3, e = H4, f = H5, g = H6, h = H7
	 */
	a = ctx->h[0];
	b = ctx->h[1];
	c = ctx->h[2];
	d = ctx->h[3];
	e = ctx->h[4];
	f = ctx->h[5];
	g = ctx->h[6];
	h = ctx->h[7];

	/*
	 * step 3: For i = 0 to 63:
	 *    T1 = h + sum1(e) + Ch(e,f,g) + K(t) + W(t);
	 *    T2 = sum0(a) + Maj(a,b,c)
	 *    h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a + T1 + T2
	 */
	for (t = 0; t <= 63; t++) {
		T1 = h + sum1(e) + Ch(e, f, g) + sha_ko[t] + w[t];
		T2 = sum0(a) + Maj(a, b, c);
		h = g;
		g = f;
		f = e;
		e = d + T1;
		d = c;
		c = b;
		b = a;
		a = T1 + T2;
	}

	/*
	 * step 4:
	 *    H0 = a + H0, H1 = b + H1, H2 = c + H2, H3 = d + H3, H4 = e + H4
	 */
	ctx->h[0] += a;
	ctx->h[1] += b;
	ctx->h[2] += c;
	ctx->h[3] += d;
	ctx->h[4] += e;
	ctx->h[5] += f;
	ctx->h[6] += g;
	ctx->h[7] += h;
}

static void sha256_do(sha256_ctx *ctx, const uint8_t *data32, uint32_t length)
{
	uint32_t offset;
	uint16_t num;
	uint32_t bits = 0;
	uint32_t w[64];
	uint64_t tmp;

	/* treat data in 64-byte chunks */
	for (offset = 0; length - offset >= 64; offset += 64) {
		memcpy(w, data32 + offset, 64);
		sha256_block((uint32_t *)w, ctx);
		bits += (64 * 8);
	}

	/* last block with less than 64 bytes */
	num = length - offset;
	bits += (num << 3);

	memcpy(w, data32 + offset, num);
	/*
	 * FIPS 180-4 5.1: Padding the Message
	 */
	((uint8_t *)w)[num] = 0x80;
	if (64 - (num + 1) > 0)
		memset( &((uint8_t *)w)[num + 1], 0, 64 - (num + 1));

	if (num >= 56) {
		/* cannot append number of bits here */
		sha256_block((uint32_t *)w, ctx);
		memset(w, 0, 60);
	}

	/* write number of bits to end of block */
	tmp = cpu_to_be64(bits);
	memcpy(&w[14], &tmp, 8);

	sha256_block(w, ctx);

	/* need to switch result's endianness */
	for (num = 0; num < 8; num++)
		ctx->h[num] = cpu_to_be32(ctx->h[num]);
}

void sha256(const uint8_t *data, uint32_t length, uint8_t *hash)
{
	sha256_ctx ctx = {
		.h = {
			/*
			 * FIPS 180-4: 6.2.1
			 *   -> 5.3.3: initial hash value
			 */
			0x6a09e667,
			0xbb67ae85,
			0x3c6ef372,
			0xa54ff53a,
			0x510e527f,
			0x9b05688c,
			0x1f83d9ab,
			0x5be0cd19
		}
	};

	sha256_do(&ctx, data, length);
	memcpy(hash, ctx.h, sizeof(ctx.h));
}