aboutsummaryrefslogtreecommitdiff
path: root/clients/net-snk/app/biosemu/device.c
blob: 514b87e620107b8df2a8fdcb123ba06036ee8bd7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
/******************************************************************************
 * Copyright (c) 2004, 2008 IBM Corporation
 * All rights reserved.
 * This program and the accompanying materials
 * are made available under the terms of the BSD License
 * which accompanies this distribution, and is available at
 * http://www.opensource.org/licenses/bsd-license.php
 *
 * Contributors:
 *     IBM Corporation - initial implementation
 *****************************************************************************/


#include "device.h"
#include "rtas.h"
#include <stdio.h>
#include <string.h>
#include <of.h>         // use translate_address_dev and get_puid from net-snk
#include "debug.h"

typedef struct {
	uint8_t info;
	uint8_t bus;
	uint8_t devfn;
	uint8_t cfg_space_offset;
	uint64_t address;
	uint64_t size;
} __attribute__ ((__packed__)) assigned_address_t;


// scan all adresses assigned to the device ("assigned-addresses" and "reg")
// store in translate_address_array for faster translation using dev_translate_address
static void
dev_get_addr_info(void)
{
	// get bus/dev/fn from assigned-addresses
	int32_t len;
	//max. 6 BARs and 1 Exp.ROM plus CfgSpace and 3 legacy ranges
	assigned_address_t buf[11];
	len =
	    of_getprop(bios_device.phandle, "assigned-addresses", buf,
		       sizeof(buf));
	bios_device.bus = buf[0].bus;
	bios_device.devfn = buf[0].devfn;
	DEBUG_PRINTF("bus: %x, devfn: %x\n", bios_device.bus,
		     bios_device.devfn);
	//store address translations for all assigned-addresses and regs in
	//translate_address_array for faster translation later on...
	int i = 0;
	// index to insert data into translate_address_array
	int taa_index = 0;
	uint64_t address_offset;
	for (i = 0; i < (len / sizeof(assigned_address_t)); i++, taa_index++) {
		//copy all info stored in assigned-addresses
		translate_address_array[taa_index].info = buf[i].info;
		translate_address_array[taa_index].bus = buf[i].bus;
		translate_address_array[taa_index].devfn = buf[i].devfn;
		translate_address_array[taa_index].cfg_space_offset =
		    buf[i].cfg_space_offset;
		translate_address_array[taa_index].address = buf[i].address;
		translate_address_array[taa_index].size = buf[i].size;
		// translate first address and store it as address_offset
		address_offset = buf[i].address;
		translate_address_dev(&address_offset, bios_device.phandle);
		translate_address_array[taa_index].address_offset =
		    address_offset - buf[i].address;
	}
	//get "reg" property
	len = of_getprop(bios_device.phandle, "reg", buf, sizeof(buf));
	for (i = 0; i < (len / sizeof(assigned_address_t)); i++) {
		if ((buf[i].size == 0) || (buf[i].cfg_space_offset != 0)) {
			// we dont care for ranges with size 0 and
			// BARs and Expansion ROM must be in assigned-addresses... so in reg
			// we only look for those without config space offset set...
			// i.e. the legacy ranges
			continue;
		}
		//copy all info stored in assigned-addresses
		translate_address_array[taa_index].info = buf[i].info;
		translate_address_array[taa_index].bus = buf[i].bus;
		translate_address_array[taa_index].devfn = buf[i].devfn;
		translate_address_array[taa_index].cfg_space_offset =
		    buf[i].cfg_space_offset;
		translate_address_array[taa_index].address = buf[i].address;
		translate_address_array[taa_index].size = buf[i].size;
		// translate first address and store it as address_offset
		address_offset = buf[i].address;
		translate_address_dev(&address_offset, bios_device.phandle);
		translate_address_array[taa_index].address_offset =
		    address_offset - buf[i].address;
		taa_index++;
	}
	// store last entry index of translate_address_array
	taa_last_entry = taa_index - 1;
#ifdef DEBUG
	//dump translate_address_array
	printf("translate_address_array: \n");
	translate_address_t ta;
	for (i = 0; i <= taa_last_entry; i++) {
		ta = translate_address_array[i];
		printf
		    ("%d: %02x%02x%02x%02x\n\taddr: %016llx\n\toffs: %016llx\n\tsize: %016llx\n",
		     i, ta.info, ta.bus, ta.devfn, ta.cfg_space_offset,
		     ta.address, ta.address_offset, ta.size);
	}
#endif
}

// to simulate accesses to legacy VGA Memory (0xA0000-0xBFFFF)
// we look for the first prefetchable memory BAR, if no prefetchable BAR found,
// we use the first memory BAR
// dev_translate_addr will translate accesses to the legacy VGA Memory into the found vmem BAR
static void
dev_find_vmem_addr(void)
{
	int i = 0;
	translate_address_t ta;
	int8_t tai_np = -1, tai_p = -1;	// translate_address_array index for non-prefetchable and prefetchable memory
	//search backwards to find first entry
	for (i = taa_last_entry; i >= 0; i--) {
		ta = translate_address_array[i];
		if ((ta.cfg_space_offset >= 0x10)
		    && (ta.cfg_space_offset <= 0x24)) {
			//only BARs
			if ((ta.info & 0x03) >= 0x02) {
				//32/64bit memory
				tai_np = i;
				if ((ta.info & 0x40) != 0) {
					// prefetchable
					tai_p = i;
				}
			}
		}
	}
	if (tai_p != -1) {
		ta = translate_address_array[tai_p];
		bios_device.vmem_addr = ta.address;
		bios_device.vmem_size = ta.size;
		DEBUG_PRINTF
		    ("%s: Found prefetchable Virtual Legacy Memory BAR: %llx, size: %llx\n",
		     __FUNCTION__, bios_device.vmem_addr,
		     bios_device.vmem_size);
	} else if (tai_np != -1) {
		ta = translate_address_array[tai_np];
		bios_device.vmem_addr = ta.address;
		bios_device.vmem_size = ta.size;
		DEBUG_PRINTF
		    ("%s: Found non-prefetchable Virtual Legacy Memory BAR: %llx, size: %llx",
		     __FUNCTION__, bios_device.vmem_addr,
		     bios_device.vmem_size);
	}
	// disable vmem
	//bios_device.vmem_size = 0;
}

static void
dev_get_puid(void)
{
	// get puid
	bios_device.puid = get_puid(bios_device.phandle);
	DEBUG_PRINTF("puid: 0x%llx\n", bios_device.puid);
}

static void
dev_get_device_vendor_id(void)
{
	uint32_t pci_config_0 =
	    rtas_pci_config_read(bios_device.puid, 4, bios_device.bus,
				 bios_device.devfn, 0x0);
	bios_device.pci_device_id =
	    (uint16_t) ((pci_config_0 & 0xFFFF0000) >> 16);
	bios_device.pci_vendor_id = (uint16_t) (pci_config_0 & 0x0000FFFF);
	DEBUG_PRINTF("PCI Device ID: %04x, PCI Vendor ID: %x\n",
		     bios_device.pci_device_id, bios_device.pci_vendor_id);
}

/* check, wether the device has a valid Expansion ROM, also search the PCI Data Structure and
 * any Expansion ROM Header (using dev_scan_exp_header()) for needed information */
uint8_t
dev_check_exprom(void)
{
	int i = 0;
	translate_address_t ta;
	uint64_t rom_base_addr = 0;
	uint16_t pci_ds_offset;
	pci_data_struct_t pci_ds;
	// check for ExpROM Address (Offset 30) in taa
	for (i = 0; i <= taa_last_entry; i++) {
		ta = translate_address_array[i];
		if (ta.cfg_space_offset == 0x30) {
			rom_base_addr = ta.address + ta.address_offset;	//translated address
			break;
		}
	}
	// in the ROM there could be multiple Expansion ROM Images... start searching
	// them for a x86 image
	do {
		if (rom_base_addr == 0) {
			printf("Error: no Expansion ROM address found!\n");
			return -1;
		}
		set_ci();
		uint16_t rom_signature = *((uint16_t *) rom_base_addr);
		clr_ci();
		if (rom_signature != 0x55aa) {
			printf
			    ("Error: invalid Expansion ROM signature: %02x!\n",
			     *((uint16_t *) rom_base_addr));
			return -1;
		}
		set_ci();
		// at offset 0x18 is the (16bit little-endian) pointer to the PCI Data Structure
		pci_ds_offset = in16le((void *) (rom_base_addr + 0x18));
		//copy the PCI Data Structure
		memcpy(&pci_ds, (void *) (rom_base_addr + pci_ds_offset),
		       sizeof(pci_ds));
		clr_ci();
#ifdef DEBUG
		DEBUG_PRINTF("PCI Data Structure @%llx:\n",
			     rom_base_addr + pci_ds_offset);
		dump((void *) &pci_ds, sizeof(pci_ds));
#endif
		if (strncmp((const char *) pci_ds.signature, "PCIR", 4) != 0) {
			printf("Invalid PCI Data Structure found!\n");
			break;
		}
		//little-endian conversion
		pci_ds.vendor_id = in16le(&pci_ds.vendor_id);
		pci_ds.device_id = in16le(&pci_ds.device_id);
		pci_ds.img_length = in16le(&pci_ds.img_length);
		pci_ds.pci_ds_length = in16le(&pci_ds.pci_ds_length);
		if (pci_ds.vendor_id != bios_device.pci_vendor_id) {
			printf
			    ("Image has invalid Vendor ID: %04x, expected: %04x\n",
			     pci_ds.vendor_id, bios_device.pci_vendor_id);
			break;
		}
		if (pci_ds.device_id != bios_device.pci_device_id) {
			printf
			    ("Image has invalid Device ID: %04x, expected: %04x\n",
			     pci_ds.device_id, bios_device.pci_device_id);
			break;
		}
		//DEBUG_PRINTF("Image Length: %d\n", pci_ds.img_length * 512);
		//DEBUG_PRINTF("Image Code Type: %d\n", pci_ds.code_type);
		if (pci_ds.code_type == 0) {
			//x86 image
			//store image address and image length in bios_device struct
			bios_device.img_addr = rom_base_addr;
			bios_device.img_size = pci_ds.img_length * 512;
			// we found the image, exit the loop
			break;
		} else {
			// no x86 image, check next image (if any)
			rom_base_addr += pci_ds.img_length * 512;
		}
		if ((pci_ds.indicator & 0x80) == 0x80) {
			//last image found, exit the loop
			DEBUG_PRINTF("Last PCI Expansion ROM Image found.\n");
			break;
		}
	}
	while (bios_device.img_addr == 0);
	// in case we did not find a valid x86 Expansion ROM Image
	if (bios_device.img_addr == 0) {
		printf("Error: no valid x86 Expansion ROM Image found!\n");
		return -1;
	}
	return 0;
}

uint8_t
dev_init(char *device_name)
{
	uint8_t rval = 0;
	//init bios_device struct
	DEBUG_PRINTF("%s(%s)\n", __FUNCTION__, device_name);
	memset(&bios_device, 0, sizeof(bios_device));
	bios_device.ihandle = of_open(device_name);
	if (bios_device.ihandle == 0) {
		DEBUG_PRINTF("%s is no valid device!\n", device_name);
		return -1;
	}
	bios_device.phandle = of_finddevice(device_name);
	dev_get_addr_info();
	dev_find_vmem_addr();
	dev_get_puid();
	dev_get_device_vendor_id();
	return rval;
}

// translate address function using translate_address_array assembled
// by dev_get_addr_info... MUCH faster than calling translate_address_dev
// and accessing client interface for every translation...
// returns: 0 if addr not found in translate_address_array, 1 if found.
uint8_t
dev_translate_address(uint64_t * addr)
{
	int i = 0;
	translate_address_t ta;
	//check if it is an access to legacy VGA Mem... if it is, map the address
	//to the vmem BAR and then translate it...
	// (translation info provided by Ben Herrenschmidt)
	// NOTE: the translation seems to only work for NVIDIA cards... but it is needed
	// to make some NVIDIA cards work at all...
	if ((bios_device.vmem_size > 0)
	    && ((*addr >= 0xA0000) && (*addr < 0xB8000))) {
		*addr = (*addr - 0xA0000) * 4 + 2 + bios_device.vmem_addr;
	}
	if ((bios_device.vmem_size > 0)
	    && ((*addr >= 0xB8000) && (*addr < 0xC0000))) {
		uint8_t shift = *addr & 1;
		*addr &= 0xfffffffe;
		*addr = (*addr - 0xB8000) * 4 + shift + bios_device.vmem_addr;
	}
	for (i = 0; i <= taa_last_entry; i++) {
		ta = translate_address_array[i];
		if ((*addr >= ta.address) && (*addr <= (ta.address + ta.size))) {
			*addr += ta.address_offset;
			return 1;
		}
	}
	return 0;
}