1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
# SPDX-License-Identifier: Apache-2.0
# Copyright 2013-2021 The Meson development team
from __future__ import annotations
from .. import mparser
from .exceptions import InvalidCode, InvalidArguments
from .helpers import flatten, resolve_second_level_holders
from .operator import MesonOperator
from ..mesonlib import HoldableObject, MesonBugException
import textwrap
import typing as T
from abc import ABCMeta
from contextlib import AbstractContextManager
if T.TYPE_CHECKING:
from typing_extensions import TypeAlias
# Object holders need the actual interpreter
from ..interpreter import Interpreter
TV_func = T.TypeVar('TV_func', bound=T.Callable[..., T.Any])
TYPE_elementary: TypeAlias = T.Union[str, int, bool, T.Sequence['TYPE_elementary'], T.Dict[str, 'TYPE_elementary']]
TYPE_var: TypeAlias = T.Union[TYPE_elementary, HoldableObject, 'MesonInterpreterObject', T.Sequence['TYPE_var'], T.Dict[str, 'TYPE_var']]
TYPE_nvar = T.Union[TYPE_var, mparser.BaseNode]
TYPE_kwargs = T.Dict[str, TYPE_var]
TYPE_nkwargs = T.Dict[str, TYPE_nvar]
TYPE_key_resolver = T.Callable[[mparser.BaseNode], str]
TYPE_op_arg = T.TypeVar('TYPE_op_arg', bound='TYPE_var', contravariant=True)
TYPE_op_func = T.Callable[[TYPE_op_arg, TYPE_op_arg], TYPE_var]
TYPE_method_func = T.Callable[['InterpreterObject', T.List[TYPE_var], TYPE_kwargs], TYPE_var]
SubProject = T.NewType('SubProject', str)
class InterpreterObject:
TRIVIAL_OPERATORS: T.Dict[
MesonOperator,
T.Tuple[
T.Union[T.Type, T.Tuple[T.Type, ...]],
TYPE_op_func
]
] = {}
OPERATORS: T.Dict[MesonOperator, TYPE_op_func] = {}
METHODS: T.Dict[
str,
TYPE_method_func,
] = {}
def __init_subclass__(cls: T.Type[InterpreterObject], **kwargs: T.Any) -> None:
super().__init_subclass__(**kwargs)
saved_trivial_operators = cls.TRIVIAL_OPERATORS
cls.METHODS = {}
cls.OPERATORS = {}
cls.TRIVIAL_OPERATORS = {}
# Compute inherited operators and methods according to the Python resolution
# order. Reverse the result of mro() because update() will overwrite entries
# that are set by the superclass with those that are set by the subclass.
for superclass in reversed(cls.mro()[1:]):
if superclass is InterpreterObject:
# InterpreterObject cannot use @InterpreterObject.operator because
# __init_subclass__ does not operate on InterpreterObject itself
cls.OPERATORS.update({
MesonOperator.EQUALS: InterpreterObject.op_equals,
MesonOperator.NOT_EQUALS: InterpreterObject.op_not_equals
})
elif issubclass(superclass, InterpreterObject):
cls.METHODS.update(superclass.METHODS)
cls.OPERATORS.update(superclass.OPERATORS)
cls.TRIVIAL_OPERATORS.update(superclass.TRIVIAL_OPERATORS)
for name, method in cls.__dict__.items():
if hasattr(method, 'meson_method'):
cls.METHODS[method.meson_method] = method
if hasattr(method, 'meson_operator'):
cls.OPERATORS[method.meson_operator] = method
cls.TRIVIAL_OPERATORS.update(saved_trivial_operators)
@staticmethod
def method(name: str) -> T.Callable[[TV_func], TV_func]:
'''Decorator that tags a Python method as the implementation of a method
for the Meson interpreter'''
def decorator(f: TV_func) -> TV_func:
f.meson_method = name # type: ignore[attr-defined]
return f
return decorator
@staticmethod
def operator(op: MesonOperator) -> T.Callable[[TV_func], TV_func]:
'''Decorator that tags a method as the implementation of an operator
for the Meson interpreter'''
def decorator(f: TV_func) -> TV_func:
f.meson_operator = op # type: ignore[attr-defined]
return f
return decorator
def __init__(self, *, subproject: T.Optional['SubProject'] = None) -> None:
# Current node set during a method call. This can be used as location
# when printing a warning message during a method call.
self.current_node: mparser.BaseNode = None
self.subproject = subproject or SubProject('')
# The type of the object that can be printed to the user
def display_name(self) -> str:
return type(self).__name__
def method_call(
self,
method_name: str,
args: T.List[TYPE_var],
kwargs: TYPE_kwargs
) -> TYPE_var:
if method_name in self.METHODS:
method = self.METHODS[method_name]
if not getattr(method, 'no-args-flattening', False):
args = flatten(args)
if not getattr(method, 'no-second-level-holder-flattening', False):
args, kwargs = resolve_second_level_holders(args, kwargs)
return method(self, args, kwargs)
raise InvalidCode(f'Unknown method "{method_name}" in object {self} of type {type(self).__name__}.')
def operator_call(self, operator: MesonOperator, other: TYPE_var) -> TYPE_var:
if operator in self.TRIVIAL_OPERATORS:
op = self.TRIVIAL_OPERATORS[operator]
if op[0] is None and other is not None:
raise MesonBugException(f'The unary operator `{operator.value}` of {self.display_name()} was passed the object {other} of type {type(other).__name__}')
if op[0] is not None and not isinstance(other, op[0]):
raise InvalidArguments(f'The `{operator.value}` operator of {self.display_name()} does not accept objects of type {type(other).__name__} ({other})')
return op[1](self, other)
if operator in self.OPERATORS:
return self.OPERATORS[operator](self, other)
raise InvalidCode(f'Object {self} of type {self.display_name()} does not support the `{operator.value}` operator.')
# Default comparison operator support
def _throw_comp_exception(self, other: TYPE_var, opt_type: str) -> T.NoReturn:
raise InvalidArguments(textwrap.dedent(
f'''
Trying to compare values of different types ({self.display_name()}, {type(other).__name__}) using {opt_type}.
This was deprecated and undefined behavior previously and is as of 0.60.0 a hard error.
'''
))
def op_equals(self, other: TYPE_var) -> bool:
# We use `type(...) == type(...)` here to enforce an *exact* match for comparison. We
# don't want comparisons to be possible where `isinstance(derived_obj, type(base_obj))`
# would pass because this comparison must never be true: `derived_obj == base_obj`
if type(self) is not type(other):
self._throw_comp_exception(other, '==')
return self == other
def op_not_equals(self, other: TYPE_var) -> bool:
if type(self) is not type(other):
self._throw_comp_exception(other, '!=')
return self != other
class MesonInterpreterObject(InterpreterObject):
''' All non-elementary objects and non-object-holders should be derived from this '''
class MutableInterpreterObject:
''' Dummy class to mark the object type as mutable '''
class UnknownValue(MesonInterpreterObject):
'''This class is only used for the rewriter/static introspection tool and
indicates that a value cannot be determined statically, either because of
limitations in our code or because the value differs from machine to
machine.'''
class UndefinedVariable(MesonInterpreterObject):
'''This class is only used for the rewriter/static introspection tool and
represents the `value` a meson-variable has if it was never written to.'''
HoldableTypes = (HoldableObject, int, bool, str, list, dict)
TYPE_HoldableTypes = T.Union[TYPE_var, HoldableObject]
InterpreterObjectTypeVar = T.TypeVar('InterpreterObjectTypeVar', bound=TYPE_HoldableTypes)
class ObjectHolder(InterpreterObject, T.Generic[InterpreterObjectTypeVar]):
def __init__(self, obj: InterpreterObjectTypeVar, interpreter: 'Interpreter') -> None:
super().__init__(subproject=interpreter.subproject)
# This causes some type checkers to assume that obj is a base
# HoldableObject, not the specialized type, so only do this assert in
# non-type checking situations
if not T.TYPE_CHECKING:
assert isinstance(obj, HoldableTypes), f'This is a bug: Trying to hold object of type `{type(obj).__name__}` that is not in `{HoldableTypes}`'
self.held_object = obj
self.interpreter = interpreter
self.env = self.interpreter.environment
# Hide the object holder abstraction from the user
def display_name(self) -> str:
return type(self.held_object).__name__
# Override default comparison operators for the held object
@InterpreterObject.operator(MesonOperator.EQUALS)
def op_equals(self, other: TYPE_var) -> bool:
# See the comment from InterpreterObject why we are using `type()` here.
if type(self.held_object) is not type(other):
self._throw_comp_exception(other, '==')
return self.held_object == other
@InterpreterObject.operator(MesonOperator.NOT_EQUALS)
def op_not_equals(self, other: TYPE_var) -> bool:
if type(self.held_object) is not type(other):
self._throw_comp_exception(other, '!=')
return self.held_object != other
def __repr__(self) -> str:
return f'<[{type(self).__name__}] holds [{type(self.held_object).__name__}]: {self.held_object!r}>'
class IterableObject(metaclass=ABCMeta):
'''Base class for all objects that can be iterated over in a foreach loop'''
def iter_tuple_size(self) -> T.Optional[int]:
'''Return the size of the tuple for each iteration. Returns None if only a single value is returned.'''
raise MesonBugException(f'iter_tuple_size not implemented for {self.__class__.__name__}')
def iter_self(self) -> T.Iterator[T.Union[TYPE_var, T.Tuple[TYPE_var, ...]]]:
raise MesonBugException(f'iter not implemented for {self.__class__.__name__}')
def size(self) -> int:
raise MesonBugException(f'size not implemented for {self.__class__.__name__}')
class ContextManagerObject(MesonInterpreterObject, AbstractContextManager):
def __init__(self, subproject: 'SubProject') -> None:
super().__init__(subproject=subproject)
|