aboutsummaryrefslogtreecommitdiff
path: root/mesonbuild/environment.py
blob: 19b9e81b53b556e3a33cc2c534dee7a8e87a4eb5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
# SPDX-License-Identifier: Apache-2.0
# Copyright 2012-2020 The Meson development team
# Copyright © 2023 Intel Corporation

from __future__ import annotations

import itertools
import os, platform, re, sys, shutil
import typing as T
import collections

from . import coredata
from . import mesonlib
from .mesonlib import (
    MesonException, MachineChoice, Popen_safe, PerMachine,
    PerMachineDefaultable, PerThreeMachineDefaultable, split_args, quote_arg, OptionKey,
    search_version, MesonBugException
)
from . import mlog
from .programs import ExternalProgram

from .envconfig import (
    BinaryTable, MachineInfo, Properties, known_cpu_families, CMakeVariables,
)
from . import compilers
from .compilers import (
    is_assembly,
    is_header,
    is_library,
    is_llvm_ir,
    is_object,
    is_source,
)

from functools import lru_cache
from mesonbuild import envconfig

if T.TYPE_CHECKING:
    from configparser import ConfigParser

    from .compilers import Compiler
    from .wrap.wrap import Resolver

    CompilersDict = T.Dict[str, Compiler]


build_filename = 'meson.build'


def _get_env_var(for_machine: MachineChoice, is_cross: bool, var_name: str) -> T.Optional[str]:
    """
    Returns the exact env var and the value.
    """
    candidates = PerMachine(
        # The prefixed build version takes priority, but if we are native
        # compiling we fall back on the unprefixed host version. This
        # allows native builds to never need to worry about the 'BUILD_*'
        # ones.
        ([var_name + '_FOR_BUILD'] if is_cross else [var_name]),
        # Always just the unprefixed host versions
        [var_name]
    )[for_machine]
    for var in candidates:
        value = os.environ.get(var)
        if value is not None:
            break
    else:
        formatted = ', '.join([f'{var!r}' for var in candidates])
        mlog.debug(f'None of {formatted} are defined in the environment, not changing global flags.')
        return None
    mlog.debug(f'Using {var!r} from environment with value: {value!r}')
    return value


def detect_gcovr(gcovr_exe: str = 'gcovr', min_version: str = '3.3', log: bool = False):
    try:
        p, found = Popen_safe([gcovr_exe, '--version'])[0:2]
    except (FileNotFoundError, PermissionError):
        # Doesn't exist in PATH or isn't executable
        return None, None
    found = search_version(found)
    if p.returncode == 0 and mesonlib.version_compare(found, '>=' + min_version):
        if log:
            mlog.log('Found gcovr-{} at {}'.format(found, quote_arg(shutil.which(gcovr_exe))))
        return gcovr_exe, found
    return None, None

def detect_lcov(lcov_exe: str = 'lcov', log: bool = False):
    try:
        p, found = Popen_safe([lcov_exe, '--version'])[0:2]
    except (FileNotFoundError, PermissionError):
        # Doesn't exist in PATH or isn't executable
        return None, None
    found = search_version(found)
    if p.returncode == 0 and found:
        if log:
            mlog.log('Found lcov-{} at {}'.format(found, quote_arg(shutil.which(lcov_exe))))
        return lcov_exe, found
    return None, None

def detect_llvm_cov(suffix: T.Optional[str] = None):
    # If there's a known suffix or forced lack of suffix, use that
    if suffix is not None:
        if suffix == '':
            tool = 'llvm-cov'
        else:
            tool = f'llvm-cov-{suffix}'
        if mesonlib.exe_exists([tool, '--version']):
            return tool
    else:
        # Otherwise guess in the dark
        tools = get_llvm_tool_names('llvm-cov')
        for tool in tools:
            if mesonlib.exe_exists([tool, '--version']):
                return tool
    return None

def compute_llvm_suffix(coredata: coredata.CoreData):
    # Check to see if the user is trying to do coverage for either a C or C++ project
    compilers = coredata.compilers[MachineChoice.BUILD]
    cpp_compiler_is_clang = 'cpp' in compilers and compilers['cpp'].id == 'clang'
    c_compiler_is_clang = 'c' in compilers and compilers['c'].id == 'clang'
    # Extract first the C++ compiler if available. If it's a Clang of some kind, compute the suffix if possible
    if cpp_compiler_is_clang:
        suffix = compilers['cpp'].version.split('.')[0]
        return suffix

    # Then the C compiler, again checking if it's some kind of Clang and computing the suffix
    if c_compiler_is_clang:
        suffix = compilers['c'].version.split('.')[0]
        return suffix

    # Neither compiler is a Clang, or no compilers are for C or C++
    return None

def detect_lcov_genhtml(lcov_exe: str = 'lcov', genhtml_exe: str = 'genhtml'):
    lcov_exe, lcov_version = detect_lcov(lcov_exe)
    if not mesonlib.exe_exists([genhtml_exe, '--version']):
        genhtml_exe = None

    return lcov_exe, lcov_version, genhtml_exe

def find_coverage_tools(coredata: coredata.CoreData) -> T.Tuple[T.Optional[str], T.Optional[str], T.Optional[str], T.Optional[str], T.Optional[str], T.Optional[str]]:
    gcovr_exe, gcovr_version = detect_gcovr()

    llvm_cov_exe = detect_llvm_cov(compute_llvm_suffix(coredata))

    lcov_exe, lcov_version, genhtml_exe = detect_lcov_genhtml()

    return gcovr_exe, gcovr_version, lcov_exe, lcov_version, genhtml_exe, llvm_cov_exe

def detect_ninja(version: str = '1.8.2', log: bool = False) -> T.List[str]:
    r = detect_ninja_command_and_version(version, log)
    return r[0] if r else None

def detect_ninja_command_and_version(version: str = '1.8.2', log: bool = False) -> T.Tuple[T.List[str], str]:
    env_ninja = os.environ.get('NINJA', None)
    for n in [env_ninja] if env_ninja else ['ninja', 'ninja-build', 'samu']:
        prog = ExternalProgram(n, silent=True)
        if not prog.found():
            continue
        try:
            p, found = Popen_safe(prog.command + ['--version'])[0:2]
        except (FileNotFoundError, PermissionError):
            # Doesn't exist in PATH or isn't executable
            continue
        found = found.strip()
        # Perhaps we should add a way for the caller to know the failure mode
        # (not found or too old)
        if p.returncode == 0 and mesonlib.version_compare(found, '>=' + version):
            if log:
                name = os.path.basename(n)
                if name.endswith('-' + found):
                    name = name[0:-1 - len(found)]
                if name == 'ninja-build':
                    name = 'ninja'
                if name == 'samu':
                    name = 'samurai'
                mlog.log('Found {}-{} at {}'.format(name, found,
                         ' '.join([quote_arg(x) for x in prog.command])))
            return (prog.command, found)

def get_llvm_tool_names(tool: str) -> T.List[str]:
    # Ordered list of possible suffixes of LLVM executables to try. Start with
    # base, then try newest back to oldest (3.5 is arbitrary), and finally the
    # devel version. Please note that the development snapshot in Debian does
    # not have a distinct name. Do not move it to the beginning of the list
    # unless it becomes a stable release.
    suffixes = [
        '', # base (no suffix)
        '-18.1', '18.1',
        '-18',  '18',
        '-17',  '17',
        '-16',  '16',
        '-15',  '15',
        '-14',  '14',
        '-13',  '13',
        '-12',  '12',
        '-11',  '11',
        '-10',  '10',
        '-9',   '90',
        '-8',   '80',
        '-7',   '70',
        '-6.0', '60',
        '-5.0', '50',
        '-4.0', '40',
        '-3.9', '39',
        '-3.8', '38',
        '-3.7', '37',
        '-3.6', '36',
        '-3.5', '35',
        '-19',    # Debian development snapshot
        '-devel', # FreeBSD development snapshot
    ]
    names: T.List[str] = []
    for suffix in suffixes:
        names.append(tool + suffix)
    return names

def detect_scanbuild() -> T.List[str]:
    """ Look for scan-build binary on build platform

    First, if a SCANBUILD env variable has been provided, give it precedence
    on all platforms.

    For most platforms, scan-build is found is the PATH contains a binary
    named "scan-build". However, some distribution's package manager (FreeBSD)
    don't. For those, loop through a list of candidates to see if one is
    available.

    Return: a single-element list of the found scan-build binary ready to be
        passed to Popen()
    """
    exelist: T.List[str] = []
    if 'SCANBUILD' in os.environ:
        exelist = split_args(os.environ['SCANBUILD'])

    else:
        tools = get_llvm_tool_names('scan-build')
        for tool in tools:
            which = shutil.which(tool)
            if which is not None:
                exelist = [which]
                break

    if exelist:
        tool = exelist[0]
        if os.path.isfile(tool) and os.access(tool, os.X_OK):
            return [tool]
    return []

def detect_clangformat() -> T.List[str]:
    """ Look for clang-format binary on build platform

    Do the same thing as detect_scanbuild to find clang-format except it
    currently does not check the environment variable.

    Return: a single-element list of the found clang-format binary ready to be
        passed to Popen()
    """
    tools = get_llvm_tool_names('clang-format')
    for tool in tools:
        path = shutil.which(tool)
        if path is not None:
            return [path]
    return []

def detect_windows_arch(compilers: CompilersDict) -> str:
    """
    Detecting the 'native' architecture of Windows is not a trivial task. We
    cannot trust that the architecture that Python is built for is the 'native'
    one because you can run 32-bit apps on 64-bit Windows using WOW64 and
    people sometimes install 32-bit Python on 64-bit Windows.

    We also can't rely on the architecture of the OS itself, since it's
    perfectly normal to compile and run 32-bit applications on Windows as if
    they were native applications. It's a terrible experience to require the
    user to supply a cross-info file to compile 32-bit applications on 64-bit
    Windows. Thankfully, the only way to compile things with Visual Studio on
    Windows is by entering the 'msvc toolchain' environment, which can be
    easily detected.

    In the end, the sanest method is as follows:
    1. Check environment variables that are set by Windows and WOW64 to find out
       if this is x86 (possibly in WOW64), if so use that as our 'native'
       architecture.
    2. If the compiler toolchain target architecture is x86, use that as our
      'native' architecture.
    3. Otherwise, use the actual Windows architecture

    """
    os_arch = mesonlib.windows_detect_native_arch()
    if os_arch == 'x86':
        return os_arch
    # If we're on 64-bit Windows, 32-bit apps can be compiled without
    # cross-compilation. So if we're doing that, just set the native arch as
    # 32-bit and pretend like we're running under WOW64. Else, return the
    # actual Windows architecture that we deduced above.
    for compiler in compilers.values():
        if compiler.id == 'msvc' and (compiler.target in {'x86', '80x86'}):
            return 'x86'
        if compiler.id == 'clang-cl' and compiler.target == 'x86':
            return 'x86'
        if compiler.id == 'gcc' and compiler.has_builtin_define('__i386__'):
            return 'x86'
    return os_arch

def any_compiler_has_define(compilers: CompilersDict, define: str) -> bool:
    for c in compilers.values():
        try:
            if c.has_builtin_define(define):
                return True
        except mesonlib.MesonException:
            # Ignore compilers that do not support has_builtin_define.
            pass
    return False

def detect_cpu_family(compilers: CompilersDict) -> str:
    """
    Python is inconsistent in its platform module.
    It returns different values for the same cpu.
    For x86 it might return 'x86', 'i686' or somesuch.
    Do some canonicalization.
    """
    if mesonlib.is_windows():
        trial = detect_windows_arch(compilers)
    elif mesonlib.is_freebsd() or mesonlib.is_netbsd() or mesonlib.is_openbsd() or mesonlib.is_qnx() or mesonlib.is_aix():
        trial = platform.processor().lower()
    else:
        trial = platform.machine().lower()
    if trial.startswith('i') and trial.endswith('86'):
        trial = 'x86'
    elif trial == 'bepc':
        trial = 'x86'
    elif trial == 'arm64':
        trial = 'aarch64'
    elif trial.startswith('aarch64'):
        # This can be `aarch64_be`
        trial = 'aarch64'
    elif trial.startswith('arm') or trial.startswith('earm'):
        trial = 'arm'
    elif trial.startswith(('powerpc64', 'ppc64')):
        trial = 'ppc64'
    elif trial.startswith(('powerpc', 'ppc')) or trial in {'macppc', 'power macintosh'}:
        trial = 'ppc'
    elif trial in {'amd64', 'x64', 'i86pc'}:
        trial = 'x86_64'
    elif trial in {'sun4u', 'sun4v'}:
        trial = 'sparc64'
    elif trial.startswith('mips'):
        if '64' not in trial:
            trial = 'mips'
        else:
            trial = 'mips64'
    elif trial in {'ip30', 'ip35'}:
        trial = 'mips64'

    # On Linux (and maybe others) there can be any mixture of 32/64 bit code in
    # the kernel, Python, system, 32-bit chroot on 64-bit host, etc. The only
    # reliable way to know is to check the compiler defines.
    if trial == 'x86_64':
        if any_compiler_has_define(compilers, '__i386__'):
            trial = 'x86'
    elif trial == 'aarch64':
        if any_compiler_has_define(compilers, '__arm__'):
            trial = 'arm'
    # Add more quirks here as bugs are reported. Keep in sync with detect_cpu()
    # below.
    elif trial == 'parisc64':
        # ATM there is no 64 bit userland for PA-RISC. Thus always
        # report it as 32 bit for simplicity.
        trial = 'parisc'
    elif trial == 'ppc':
        # AIX always returns powerpc, check here for 64-bit
        if any_compiler_has_define(compilers, '__64BIT__'):
            trial = 'ppc64'
    # MIPS64 is able to run MIPS32 code natively, so there is a chance that
    # such mixture mentioned above exists.
    elif trial == 'mips64':
        if compilers and not any_compiler_has_define(compilers, '__mips64'):
            trial = 'mips'

    if trial not in known_cpu_families:
        mlog.warning(f'Unknown CPU family {trial!r}, please report this at '
                     'https://github.com/mesonbuild/meson/issues/new with the '
                     'output of `uname -a` and `cat /proc/cpuinfo`')

    return trial

def detect_cpu(compilers: CompilersDict) -> str:
    if mesonlib.is_windows():
        trial = detect_windows_arch(compilers)
    elif mesonlib.is_freebsd() or mesonlib.is_netbsd() or mesonlib.is_openbsd() or mesonlib.is_aix():
        trial = platform.processor().lower()
    else:
        trial = platform.machine().lower()

    if trial in {'amd64', 'x64', 'i86pc'}:
        trial = 'x86_64'
    if trial == 'x86_64':
        # Same check as above for cpu_family
        if any_compiler_has_define(compilers, '__i386__'):
            trial = 'i686' # All 64 bit cpus have at least this level of x86 support.
    elif trial.startswith('aarch64') or trial.startswith('arm64'):
        # Same check as above for cpu_family
        if any_compiler_has_define(compilers, '__arm__'):
            trial = 'arm'
        else:
            # for aarch64_be
            trial = 'aarch64'
    elif trial.startswith('earm'):
        trial = 'arm'
    elif trial == 'e2k':
        # Make more precise CPU detection for Elbrus platform.
        trial = platform.processor().lower()
    elif trial.startswith('mips'):
        if '64' not in trial:
            trial = 'mips'
        else:
            if compilers and not any_compiler_has_define(compilers, '__mips64'):
                trial = 'mips'
            else:
                trial = 'mips64'
    elif trial == 'ppc':
        # AIX always returns powerpc, check here for 64-bit
        if any_compiler_has_define(compilers, '__64BIT__'):
            trial = 'ppc64'

    # Add more quirks here as bugs are reported. Keep in sync with
    # detect_cpu_family() above.
    return trial

KERNEL_MAPPINGS: T.Mapping[str, str] = {'freebsd': 'freebsd',
                                        'openbsd': 'openbsd',
                                        'netbsd': 'netbsd',
                                        'windows': 'nt',
                                        'android': 'linux',
                                        'linux': 'linux',
                                        'cygwin': 'nt',
                                        'darwin': 'xnu',
                                        'dragonfly': 'dragonfly',
                                        'haiku': 'haiku',
                                        }

def detect_kernel(system: str) -> T.Optional[str]:
    if system == 'sunos':
        # Solaris 5.10 uname doesn't support the -o switch, and illumos started
        # with version 5.11 so shortcut the logic to report 'solaris' in such
        # cases where the version is 5.10 or below.
        if mesonlib.version_compare(platform.uname().release, '<=5.10'):
            return 'solaris'
        # This needs to be /usr/bin/uname because gnu-uname could be installed and
        # won't provide the necessary information
        p, out, _ = Popen_safe(['/usr/bin/uname', '-o'])
        if p.returncode != 0:
            raise MesonException('Failed to run "/usr/bin/uname -o"')
        out = out.lower().strip()
        if out not in {'illumos', 'solaris'}:
            mlog.warning(f'Got an unexpected value for kernel on a SunOS derived platform, expcted either "illumos" or "solaris", but got "{out}".'
                         "Please open a Meson issue with the OS you're running and the value detected for your kernel.")
            return None
        return out
    return KERNEL_MAPPINGS.get(system, None)

def detect_subsystem(system: str) -> T.Optional[str]:
    if system == 'darwin':
        return 'macos'
    return system

def detect_system() -> str:
    if sys.platform == 'cygwin':
        return 'cygwin'
    return platform.system().lower()

def detect_msys2_arch() -> T.Optional[str]:
    return os.environ.get('MSYSTEM_CARCH', None)

def detect_machine_info(compilers: T.Optional[CompilersDict] = None) -> MachineInfo:
    """Detect the machine we're running on

    If compilers are not provided, we cannot know as much. None out those
    fields to avoid accidentally depending on partial knowledge. The
    underlying ''detect_*'' method can be called to explicitly use the
    partial information.
    """
    system = detect_system()
    return MachineInfo(
        system,
        detect_cpu_family(compilers) if compilers is not None else None,
        detect_cpu(compilers) if compilers is not None else None,
        sys.byteorder,
        detect_kernel(system),
        detect_subsystem(system))

# TODO make this compare two `MachineInfo`s purely. How important is the
# `detect_cpu_family({})` distinction? It is the one impediment to that.
def machine_info_can_run(machine_info: MachineInfo):
    """Whether we can run binaries for this machine on the current machine.

    Can almost always run 32-bit binaries on 64-bit natively if the host
    and build systems are the same. We don't pass any compilers to
    detect_cpu_family() here because we always want to know the OS
    architecture, not what the compiler environment tells us.
    """
    if machine_info.system != detect_system():
        return False
    true_build_cpu_family = detect_cpu_family({})
    return \
        (machine_info.cpu_family == true_build_cpu_family) or \
        ((true_build_cpu_family == 'x86_64') and (machine_info.cpu_family == 'x86')) or \
        ((true_build_cpu_family == 'mips64') and (machine_info.cpu_family == 'mips')) or \
        ((true_build_cpu_family == 'aarch64') and (machine_info.cpu_family == 'arm'))

class Environment:
    private_dir = 'meson-private'
    log_dir = 'meson-logs'
    info_dir = 'meson-info'

    def __init__(self, source_dir: str, build_dir: str, options: coredata.SharedCMDOptions) -> None:
        self.source_dir = source_dir
        self.build_dir = build_dir
        # Do not try to create build directories when build_dir is none.
        # This reduced mode is used by the --buildoptions introspector
        if build_dir is not None:
            self.scratch_dir = os.path.join(build_dir, Environment.private_dir)
            self.log_dir = os.path.join(build_dir, Environment.log_dir)
            self.info_dir = os.path.join(build_dir, Environment.info_dir)
            os.makedirs(self.scratch_dir, exist_ok=True)
            os.makedirs(self.log_dir, exist_ok=True)
            os.makedirs(self.info_dir, exist_ok=True)
            try:
                self.coredata: coredata.CoreData = coredata.load(self.get_build_dir(), suggest_reconfigure=False)
                self.first_invocation = False
            except FileNotFoundError:
                self.create_new_coredata(options)
            except coredata.MesonVersionMismatchException as e:
                # This is routine, but tell the user the update happened
                mlog.log('Regenerating configuration from scratch:', str(e))
                coredata.read_cmd_line_file(self.build_dir, options)
                self.create_new_coredata(options)
            except MesonException as e:
                # If we stored previous command line options, we can recover from
                # a broken/outdated coredata.
                if os.path.isfile(coredata.get_cmd_line_file(self.build_dir)):
                    mlog.warning('Regenerating configuration from scratch.', fatal=False)
                    mlog.log('Reason:', mlog.red(str(e)))
                    coredata.read_cmd_line_file(self.build_dir, options)
                    self.create_new_coredata(options)
                else:
                    raise MesonException(f'{str(e)} Try regenerating using "meson setup --wipe".')
        else:
            # Just create a fresh coredata in this case
            self.scratch_dir = ''
            self.create_new_coredata(options)

        ## locally bind some unfrozen configuration

        # Stores machine infos, the only *three* machine one because we have a
        # target machine info on for the user (Meson never cares about the
        # target machine.)
        machines: PerThreeMachineDefaultable[MachineInfo] = PerThreeMachineDefaultable()

        # Similar to coredata.compilers, but lower level in that there is no
        # meta data, only names/paths.
        binaries: PerMachineDefaultable[BinaryTable] = PerMachineDefaultable()

        # Misc other properties about each machine.
        properties: PerMachineDefaultable[Properties] = PerMachineDefaultable()

        # CMake toolchain variables
        cmakevars: PerMachineDefaultable[CMakeVariables] = PerMachineDefaultable()

        ## Setup build machine defaults

        # Will be fully initialized later using compilers later.
        machines.build = detect_machine_info()

        # Just uses hard-coded defaults and environment variables. Might be
        # overwritten by a native file.
        binaries.build = BinaryTable()
        properties.build = Properties()

        # Options with the key parsed into an OptionKey type.
        #
        # Note that order matters because of 'buildtype', if it is after
        # 'optimization' and 'debug' keys, it override them.
        self.options: T.MutableMapping[OptionKey, T.Union[str, T.List[str]]] = collections.OrderedDict()

        ## Read in native file(s) to override build machine configuration

        if self.coredata.config_files is not None:
            config = coredata.parse_machine_files(self.coredata.config_files, self.source_dir)
            binaries.build = BinaryTable(config.get('binaries', {}))
            properties.build = Properties(config.get('properties', {}))
            cmakevars.build = CMakeVariables(config.get('cmake', {}))
            self._load_machine_file_options(
                config, properties.build,
                MachineChoice.BUILD if self.coredata.cross_files else MachineChoice.HOST)

        ## Read in cross file(s) to override host machine configuration

        if self.coredata.cross_files:
            config = coredata.parse_machine_files(self.coredata.cross_files, self.source_dir)
            properties.host = Properties(config.get('properties', {}))
            binaries.host = BinaryTable(config.get('binaries', {}))
            cmakevars.host = CMakeVariables(config.get('cmake', {}))
            if 'host_machine' in config:
                machines.host = MachineInfo.from_literal(config['host_machine'])
            if 'target_machine' in config:
                machines.target = MachineInfo.from_literal(config['target_machine'])
            # Keep only per machine options from the native file. The cross
            # file takes precedence over all other options.
            for key, value in list(self.options.items()):
                if self.coredata.is_per_machine_option(key):
                    self.options[key.as_build()] = value
            self._load_machine_file_options(config, properties.host, MachineChoice.HOST)

        ## "freeze" now initialized configuration, and "save" to the class.

        self.machines = machines.default_missing()
        self.binaries = binaries.default_missing()
        self.properties = properties.default_missing()
        self.cmakevars = cmakevars.default_missing()

        # Command line options override those from cross/native files
        self.options.update(options.cmd_line_options)

        # Take default value from env if not set in cross/native files or command line.
        self._set_default_options_from_env()
        self._set_default_binaries_from_env()
        self._set_default_properties_from_env()

        # Warn if the user is using two different ways of setting build-type
        # options that override each other
        bt = OptionKey('buildtype')
        db = OptionKey('debug')
        op = OptionKey('optimization')
        if bt in self.options and (db in self.options or op in self.options):
            mlog.warning('Recommend using either -Dbuildtype or -Doptimization + -Ddebug. '
                         'Using both is redundant since they override each other. '
                         'See: https://mesonbuild.com/Builtin-options.html#build-type-options',
                         fatal=False)

        exe_wrapper = self.lookup_binary_entry(MachineChoice.HOST, 'exe_wrapper')
        if exe_wrapper is not None:
            self.exe_wrapper = ExternalProgram.from_bin_list(self, MachineChoice.HOST, 'exe_wrapper')
        else:
            self.exe_wrapper = None

        self.default_cmake = ['cmake']
        self.default_pkgconfig = ['pkg-config']
        self.wrap_resolver: T.Optional['Resolver'] = None

    def _load_machine_file_options(self, config: 'ConfigParser', properties: Properties, machine: MachineChoice) -> None:
        """Read the contents of a Machine file and put it in the options store."""

        # Look for any options in the deprecated paths section, warn about
        # those, then assign them. They will be overwritten by the ones in the
        # "built-in options" section if they're in both sections.
        paths = config.get('paths')
        if paths:
            mlog.deprecation('The [paths] section is deprecated, use the [built-in options] section instead.')
            for k, v in paths.items():
                self.options[OptionKey.from_string(k).evolve(machine=machine)] = v

        # Next look for compiler options in the "properties" section, this is
        # also deprecated, and these will also be overwritten by the "built-in
        # options" section. We need to remove these from this section, as well.
        deprecated_properties: T.Set[str] = set()
        for lang in compilers.all_languages:
            deprecated_properties.add(lang + '_args')
            deprecated_properties.add(lang + '_link_args')
        for k, v in properties.properties.copy().items():
            if k in deprecated_properties:
                mlog.deprecation(f'{k} in the [properties] section of the machine file is deprecated, use the [built-in options] section.')
                self.options[OptionKey.from_string(k).evolve(machine=machine)] = v
                del properties.properties[k]

        for section, values in config.items():
            if ':' in section:
                subproject, section = section.split(':')
            else:
                subproject = ''
            if section == 'built-in options':
                for k, v in values.items():
                    key = OptionKey.from_string(k)
                    # If we're in the cross file, and there is a `build.foo` warn about that. Later we'll remove it.
                    if machine is MachineChoice.HOST and key.machine is not machine:
                        mlog.deprecation('Setting build machine options in cross files, please use a native file instead, this will be removed in meson 0.60', once=True)
                    if key.subproject:
                        raise MesonException('Do not set subproject options in [built-in options] section, use [subproject:built-in options] instead.')
                    self.options[key.evolve(subproject=subproject, machine=machine)] = v
            elif section == 'project options' and machine is MachineChoice.HOST:
                # Project options are only for the host machine, we don't want
                # to read these from the native file
                for k, v in values.items():
                    # Project options are always for the host machine
                    key = OptionKey.from_string(k)
                    if key.subproject:
                        raise MesonException('Do not set subproject options in [built-in options] section, use [subproject:built-in options] instead.')
                    self.options[key.evolve(subproject=subproject)] = v

    def _set_default_options_from_env(self) -> None:
        opts: T.List[T.Tuple[str, str]] = (
            [(v, f'{k}_args') for k, v in compilers.compilers.CFLAGS_MAPPING.items()] +
            [
                ('PKG_CONFIG_PATH', 'pkg_config_path'),
                ('CMAKE_PREFIX_PATH', 'cmake_prefix_path'),
                ('LDFLAGS', 'ldflags'),
                ('CPPFLAGS', 'cppflags'),
            ]
        )

        env_opts: T.DefaultDict[OptionKey, T.List[str]] = collections.defaultdict(list)

        for (evar, keyname), for_machine in itertools.product(opts, MachineChoice):
            p_env = _get_env_var(for_machine, self.is_cross_build(), evar)
            if p_env is not None:
                # these may contain duplicates, which must be removed, else
                # a duplicates-in-array-option warning arises.
                if keyname == 'cmake_prefix_path':
                    if self.machines[for_machine].is_windows():
                        # Cannot split on ':' on Windows because its in the drive letter
                        _p_env = p_env.split(os.pathsep)
                    else:
                        # https://github.com/mesonbuild/meson/issues/7294
                        _p_env = re.split(r':|;', p_env)
                    p_list = list(mesonlib.OrderedSet(_p_env))
                elif keyname == 'pkg_config_path':
                    p_list = list(mesonlib.OrderedSet(p_env.split(os.pathsep)))
                else:
                    p_list = split_args(p_env)
                p_list = [e for e in p_list if e]  # filter out any empty elements

                # Take env vars only on first invocation, if the env changes when
                # reconfiguring it gets ignored.
                # FIXME: We should remember if we took the value from env to warn
                # if it changes on future invocations.
                if self.first_invocation:
                    if keyname == 'ldflags':
                        key = OptionKey('link_args', machine=for_machine, lang='c')  # needs a language to initialize properly
                        for lang in compilers.compilers.LANGUAGES_USING_LDFLAGS:
                            key = key.evolve(lang=lang)
                            env_opts[key].extend(p_list)
                    elif keyname == 'cppflags':
                        key = OptionKey('env_args', machine=for_machine, lang='c')
                        for lang in compilers.compilers.LANGUAGES_USING_CPPFLAGS:
                            key = key.evolve(lang=lang)
                            env_opts[key].extend(p_list)
                    else:
                        key = OptionKey.from_string(keyname).evolve(machine=for_machine)
                        if evar in compilers.compilers.CFLAGS_MAPPING.values():
                            # If this is an environment variable, we have to
                            # store it separately until the compiler is
                            # instantiated, as we don't know whether the
                            # compiler will want to use these arguments at link
                            # time and compile time (instead of just at compile
                            # time) until we're instantiating that `Compiler`
                            # object. This is required so that passing
                            # `-Dc_args=` on the command line and `$CFLAGS`
                            # have subtly different behavior. `$CFLAGS` will be
                            # added to the linker command line if the compiler
                            # acts as a linker driver, `-Dc_args` will not.
                            #
                            # We still use the original key as the base here, as
                            # we want to inherit the machine and the compiler
                            # language
                            key = key.evolve('env_args')
                        env_opts[key].extend(p_list)

        # Only store options that are not already in self.options,
        # otherwise we'd override the machine files
        for k, v in env_opts.items():
            if k not in self.options:
                self.options[k] = v

    def _set_default_binaries_from_env(self) -> None:
        """Set default binaries from the environment.

        For example, pkg-config can be set via PKG_CONFIG, or in the machine
        file. We want to set the default to the env variable.
        """
        opts = itertools.chain(envconfig.DEPRECATED_ENV_PROG_MAP.items(),
                               envconfig.ENV_VAR_PROG_MAP.items())

        for (name, evar), for_machine in itertools.product(opts, MachineChoice):
            p_env = _get_env_var(for_machine, self.is_cross_build(), evar)
            if p_env is not None:
                if os.path.exists(p_env):
                    self.binaries[for_machine].binaries.setdefault(name, [p_env])
                else:
                    self.binaries[for_machine].binaries.setdefault(name, mesonlib.split_args(p_env))

    def _set_default_properties_from_env(self) -> None:
        """Properties which can also be set from the environment."""
        # name, evar, split
        opts: T.List[T.Tuple[str, T.List[str], bool]] = [
            ('boost_includedir', ['BOOST_INCLUDEDIR'], False),
            ('boost_librarydir', ['BOOST_LIBRARYDIR'], False),
            ('boost_root', ['BOOST_ROOT', 'BOOSTROOT'], True),
            ('java_home', ['JAVA_HOME'], False),
        ]

        for (name, evars, split), for_machine in itertools.product(opts, MachineChoice):
            for evar in evars:
                p_env = _get_env_var(for_machine, self.is_cross_build(), evar)
                if p_env is not None:
                    if split:
                        self.properties[for_machine].properties.setdefault(name, p_env.split(os.pathsep))
                    else:
                        self.properties[for_machine].properties.setdefault(name, p_env)
                    break

    def create_new_coredata(self, options: coredata.SharedCMDOptions) -> None:
        # WARNING: Don't use any values from coredata in __init__. It gets
        # re-initialized with project options by the interpreter during
        # build file parsing.
        # meson_command is used by the regenchecker script, which runs meson
        self.coredata = coredata.CoreData(options, self.scratch_dir, mesonlib.get_meson_command())
        self.first_invocation = True

    def is_cross_build(self, when_building_for: MachineChoice = MachineChoice.HOST) -> bool:
        return self.coredata.is_cross_build(when_building_for)

    def dump_coredata(self) -> str:
        return coredata.save(self.coredata, self.get_build_dir())

    def get_log_dir(self) -> str:
        return self.log_dir

    def get_coredata(self) -> coredata.CoreData:
        return self.coredata

    @staticmethod
    def get_build_command(unbuffered: bool = False) -> T.List[str]:
        cmd = mesonlib.get_meson_command()
        if cmd is None:
            raise MesonBugException('No command?')
        cmd = cmd.copy()
        if unbuffered and 'python' in os.path.basename(cmd[0]):
            cmd.insert(1, '-u')
        return cmd

    def is_header(self, fname: 'mesonlib.FileOrString') -> bool:
        return is_header(fname)

    def is_source(self, fname: 'mesonlib.FileOrString') -> bool:
        return is_source(fname)

    def is_assembly(self, fname: 'mesonlib.FileOrString') -> bool:
        return is_assembly(fname)

    def is_llvm_ir(self, fname: 'mesonlib.FileOrString') -> bool:
        return is_llvm_ir(fname)

    def is_object(self, fname: 'mesonlib.FileOrString') -> bool:
        return is_object(fname)

    @lru_cache(maxsize=None)
    def is_library(self, fname: mesonlib.FileOrString):
        return is_library(fname)

    def lookup_binary_entry(self, for_machine: MachineChoice, name: str) -> T.Optional[T.List[str]]:
        return self.binaries[for_machine].lookup_entry(name)

    def get_scratch_dir(self) -> str:
        return self.scratch_dir

    def get_source_dir(self) -> str:
        return self.source_dir

    def get_build_dir(self) -> str:
        return self.build_dir

    def get_import_lib_dir(self) -> str:
        "Install dir for the import library (library used for linking)"
        return self.get_libdir()

    def get_shared_module_dir(self) -> str:
        "Install dir for shared modules that are loaded at runtime"
        return self.get_libdir()

    def get_shared_lib_dir(self) -> str:
        "Install dir for the shared library"
        m = self.machines.host
        # Windows has no RPATH or similar, so DLLs must be next to EXEs.
        if m.is_windows() or m.is_cygwin():
            return self.get_bindir()
        return self.get_libdir()

    def get_jar_dir(self) -> str:
        """Install dir for JAR files"""
        return f"{self.get_datadir()}/java"

    def get_static_lib_dir(self) -> str:
        "Install dir for the static library"
        return self.get_libdir()

    def get_prefix(self) -> str:
        return self.coredata.get_option(OptionKey('prefix'))

    def get_libdir(self) -> str:
        return self.coredata.get_option(OptionKey('libdir'))

    def get_libexecdir(self) -> str:
        return self.coredata.get_option(OptionKey('libexecdir'))

    def get_bindir(self) -> str:
        return self.coredata.get_option(OptionKey('bindir'))

    def get_includedir(self) -> str:
        return self.coredata.get_option(OptionKey('includedir'))

    def get_mandir(self) -> str:
        return self.coredata.get_option(OptionKey('mandir'))

    def get_datadir(self) -> str:
        return self.coredata.get_option(OptionKey('datadir'))

    def get_compiler_system_lib_dirs(self, for_machine: MachineChoice) -> T.List[str]:
        for comp in self.coredata.compilers[for_machine].values():
            if comp.id == 'clang':
                index = 1
                break
            elif comp.id == 'gcc':
                index = 2
                break
        else:
            # This option is only supported by gcc and clang. If we don't get a
            # GCC or Clang compiler return and empty list.
            return []

        p, out, _ = Popen_safe(comp.get_exelist() + ['-print-search-dirs'])
        if p.returncode != 0:
            raise mesonlib.MesonException('Could not calculate system search dirs')
        out = out.split('\n')[index].lstrip('libraries: =').split(':')
        return [os.path.normpath(p) for p in out]

    def get_compiler_system_include_dirs(self, for_machine: MachineChoice) -> T.List[str]:
        for comp in self.coredata.compilers[for_machine].values():
            if comp.id == 'clang':
                break
            elif comp.id == 'gcc':
                break
        else:
            # This option is only supported by gcc and clang. If we don't get a
            # GCC or Clang compiler return and empty list.
            return []
        return comp.get_default_include_dirs()

    def need_exe_wrapper(self, for_machine: MachineChoice = MachineChoice.HOST):
        value = self.properties[for_machine].get('needs_exe_wrapper', None)
        if value is not None:
            return value
        return not machine_info_can_run(self.machines[for_machine])

    def get_exe_wrapper(self) -> T.Optional[ExternalProgram]:
        if not self.need_exe_wrapper():
            return None
        return self.exe_wrapper

    def has_exe_wrapper(self) -> bool:
        return self.exe_wrapper and self.exe_wrapper.found()