1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2012 The Bochs Project
// Copyright (C) 2017 Google Inc.
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, see
// <https://www.gnu.org/licenses/>.
/////////////////////////////////////////////////////////////////////////
/*
* flags functions
*/
#include "qemu/osdep.h"
#include "panic.h"
#include "cpu.h"
#include "x86_flags.h"
#include "x86.h"
/*
* The algorithms here are similar to those in Bochs. After an ALU
* operation, CC_DST can be used to compute ZF, SF and PF, whereas
* CC_SRC is used to compute AF, CF and OF. In reality, SF and PF are the
* XOR of the value computed from CC_DST and the value found in bits 7 and 2
* of CC_SRC; this way the same logic can be used to compute the flags
* both before and after an ALU operation.
*
* Compared to the TCG CC_OP codes, this avoids conditionals when converting
* to and from the RFLAGS representation.
*/
#define LF_SIGN_BIT (TARGET_LONG_BITS - 1)
#define LF_BIT_PD (2) /* lazy Parity Delta, same bit as PF */
#define LF_BIT_AF (3) /* lazy Adjust flag */
#define LF_BIT_SD (7) /* lazy Sign Flag Delta, same bit as SF */
#define LF_BIT_CF (TARGET_LONG_BITS - 1) /* lazy Carry Flag */
#define LF_BIT_PO (TARGET_LONG_BITS - 2) /* lazy Partial Overflow = CF ^ OF */
#define LF_MASK_PD ((target_ulong)0x01 << LF_BIT_PD)
#define LF_MASK_AF ((target_ulong)0x01 << LF_BIT_AF)
#define LF_MASK_SD ((target_ulong)0x01 << LF_BIT_SD)
#define LF_MASK_CF ((target_ulong)0x01 << LF_BIT_CF)
#define LF_MASK_PO ((target_ulong)0x01 << LF_BIT_PO)
/* ******************* */
/* OSZAPC */
/* ******************* */
/* use carries to fill in AF, PO and CF, while ensuring PD and SD are clear.
* for full-word operations just clear PD and SD; for smaller operand
* sizes only keep AF in the low byte and shift the carries left to
* place PO and CF in the top two bits.
*/
#define SET_FLAGS_OSZAPC_SIZE(size, lf_carries, lf_result) { \
env->cc_dst = (target_ulong)(int##size##_t)(lf_result); \
target_ulong temp = (lf_carries); \
if ((size) == TARGET_LONG_BITS) { \
temp = temp & ~(LF_MASK_PD | LF_MASK_SD); \
} else { \
temp = (temp & LF_MASK_AF) | (temp << (TARGET_LONG_BITS - (size))); \
} \
env->cc_src = temp; \
}
/* carries, result */
#define SET_FLAGS_OSZAPC_8(carries, result) \
SET_FLAGS_OSZAPC_SIZE(8, carries, result)
#define SET_FLAGS_OSZAPC_16(carries, result) \
SET_FLAGS_OSZAPC_SIZE(16, carries, result)
#define SET_FLAGS_OSZAPC_32(carries, result) \
SET_FLAGS_OSZAPC_SIZE(32, carries, result)
/* ******************* */
/* OSZAP */
/* ******************* */
/* same as setting OSZAPC, but preserve CF and flip PO if the old value of CF
* did not match the high bit of lf_carries. */
#define SET_FLAGS_OSZAP_SIZE(size, lf_carries, lf_result) { \
env->cc_dst = (target_ulong)(int##size##_t)(lf_result); \
target_ulong temp = (lf_carries); \
if ((size) == TARGET_LONG_BITS) { \
temp = (temp & ~(LF_MASK_PD | LF_MASK_SD)); \
} else { \
temp = (temp & LF_MASK_AF) | (temp << (TARGET_LONG_BITS - (size))); \
} \
target_ulong cf_changed = ((target_long)(env->cc_src ^ temp)) < 0; \
env->cc_src = temp ^ (cf_changed * (LF_MASK_PO | LF_MASK_CF)); \
}
/* carries, result */
#define SET_FLAGS_OSZAP_8(carries, result) \
SET_FLAGS_OSZAP_SIZE(8, carries, result)
#define SET_FLAGS_OSZAP_16(carries, result) \
SET_FLAGS_OSZAP_SIZE(16, carries, result)
#define SET_FLAGS_OSZAP_32(carries, result) \
SET_FLAGS_OSZAP_SIZE(32, carries, result)
void SET_FLAGS_OxxxxC(CPUX86State *env, bool new_of, bool new_cf)
{
env->cc_src &= ~(LF_MASK_PO | LF_MASK_CF);
env->cc_src |= (-(target_ulong)new_cf << LF_BIT_PO);
env->cc_src ^= ((target_ulong)new_of << LF_BIT_PO);
}
void SET_FLAGS_OSZAPC_SUB32(CPUX86State *env, uint32_t v1, uint32_t v2,
uint32_t diff)
{
SET_FLAGS_OSZAPC_32(SUB_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAPC_SUB16(CPUX86State *env, uint16_t v1, uint16_t v2,
uint16_t diff)
{
SET_FLAGS_OSZAPC_16(SUB_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAPC_SUB8(CPUX86State *env, uint8_t v1, uint8_t v2,
uint8_t diff)
{
SET_FLAGS_OSZAPC_8(SUB_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAPC_ADD32(CPUX86State *env, uint32_t v1, uint32_t v2,
uint32_t diff)
{
SET_FLAGS_OSZAPC_32(ADD_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAPC_ADD16(CPUX86State *env, uint16_t v1, uint16_t v2,
uint16_t diff)
{
SET_FLAGS_OSZAPC_16(ADD_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAPC_ADD8(CPUX86State *env, uint8_t v1, uint8_t v2,
uint8_t diff)
{
SET_FLAGS_OSZAPC_8(ADD_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAP_SUB32(CPUX86State *env, uint32_t v1, uint32_t v2,
uint32_t diff)
{
SET_FLAGS_OSZAP_32(SUB_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAP_SUB16(CPUX86State *env, uint16_t v1, uint16_t v2,
uint16_t diff)
{
SET_FLAGS_OSZAP_16(SUB_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAP_SUB8(CPUX86State *env, uint8_t v1, uint8_t v2,
uint8_t diff)
{
SET_FLAGS_OSZAP_8(SUB_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAP_ADD32(CPUX86State *env, uint32_t v1, uint32_t v2,
uint32_t diff)
{
SET_FLAGS_OSZAP_32(ADD_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAP_ADD16(CPUX86State *env, uint16_t v1, uint16_t v2,
uint16_t diff)
{
SET_FLAGS_OSZAP_16(ADD_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAP_ADD8(CPUX86State *env, uint8_t v1, uint8_t v2,
uint8_t diff)
{
SET_FLAGS_OSZAP_8(ADD_COUT_VEC(v1, v2, diff), diff);
}
void SET_FLAGS_OSZAPC_LOGIC32(CPUX86State *env, uint32_t v1, uint32_t v2,
uint32_t diff)
{
SET_FLAGS_OSZAPC_32(0, diff);
}
void SET_FLAGS_OSZAPC_LOGIC16(CPUX86State *env, uint16_t v1, uint16_t v2,
uint16_t diff)
{
SET_FLAGS_OSZAPC_16(0, diff);
}
void SET_FLAGS_OSZAPC_LOGIC8(CPUX86State *env, uint8_t v1, uint8_t v2,
uint8_t diff)
{
SET_FLAGS_OSZAPC_8(0, diff);
}
static inline uint32_t get_PF(CPUX86State *env)
{
return ((parity8(env->cc_dst) - 1) ^ env->cc_src) & CC_P;
}
static inline uint32_t get_OF(CPUX86State *env)
{
return ((env->cc_src >> (LF_BIT_CF - 11)) + CC_O / 2) & CC_O;
}
bool get_CF(CPUX86State *env)
{
return ((target_long)env->cc_src) < 0;
}
void set_CF(CPUX86State *env, bool val)
{
/* If CF changes, flip PO and CF */
target_ulong temp = -(target_ulong)val;
target_ulong cf_changed = ((target_long)(env->cc_src ^ temp)) < 0;
env->cc_src ^= cf_changed * (LF_MASK_PO | LF_MASK_CF);
}
static inline uint32_t get_ZF(CPUX86State *env)
{
return env->cc_dst ? 0 : CC_Z;
}
static inline uint32_t get_SF(CPUX86State *env)
{
return ((env->cc_dst >> (LF_SIGN_BIT - LF_BIT_SD)) ^
env->cc_src) & CC_S;
}
void lflags_to_rflags(CPUX86State *env)
{
env->eflags &= ~(CC_C|CC_P|CC_A|CC_Z|CC_S|CC_O);
/* rotate left by one to move carry-out bits into CF and AF */
env->eflags |= (
(env->cc_src << 1) |
(env->cc_src >> (TARGET_LONG_BITS - 1))) & (CC_C | CC_A);
env->eflags |= get_SF(env);
env->eflags |= get_PF(env);
env->eflags |= get_ZF(env);
env->eflags |= get_OF(env);
}
void rflags_to_lflags(CPUX86State *env)
{
target_ulong cf_af, cf_xor_of;
/* Leave the low byte zero so that parity is always even... */
env->cc_dst = !(env->eflags & CC_Z) << 8;
/* ... and therefore cc_src always uses opposite polarity. */
env->cc_src = CC_P;
env->cc_src ^= env->eflags & (CC_S | CC_P);
/* rotate right by one to move CF and AF into the carry-out positions */
cf_af = env->eflags & (CC_C | CC_A);
env->cc_src |= ((cf_af >> 1) | (cf_af << (TARGET_LONG_BITS - 1)));
cf_xor_of = ((env->eflags & (CC_C | CC_O)) + (CC_O - CC_C)) & CC_O;
env->cc_src |= -cf_xor_of & LF_MASK_PO;
}
|