1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
/*
* MAX78000 True Random Number Generator
*
* Copyright (c) 2025 Jackson Donaldson <jcksn@duck.com>
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "trace.h"
#include "hw/irq.h"
#include "migration/vmstate.h"
#include "hw/misc/max78000_trng.h"
#include "qemu/guest-random.h"
static uint64_t max78000_trng_read(void *opaque, hwaddr addr,
unsigned int size)
{
uint32_t data;
Max78000TrngState *s = opaque;
switch (addr) {
case CTRL:
return s->ctrl;
case STATUS:
return 1;
case DATA:
/*
* When interrupts are enabled, reading random data should cause a
* new interrupt to be generated; since there's always a random number
* available, we could qemu_set_irq(s->irq, s->ctrl & RND_IE). Because
* of how trng_write is set up, this is always a noop, so don't
*/
qemu_guest_getrandom_nofail(&data, sizeof(data));
return data;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%"
HWADDR_PRIx "\n", __func__, addr);
break;
}
return 0;
}
static void max78000_trng_write(void *opaque, hwaddr addr,
uint64_t val64, unsigned int size)
{
Max78000TrngState *s = opaque;
uint32_t val = val64;
switch (addr) {
case CTRL:
/* TODO: implement AES keygen */
s->ctrl = val;
/*
* This device models random number generation as taking 0 time.
* A new random number is always available, so the condition for the
* RND interrupt is always fulfilled; we can just set irq to 1.
*/
if (val & RND_IE) {
qemu_set_irq(s->irq, 1);
} else{
qemu_set_irq(s->irq, 0);
}
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%"
HWADDR_PRIx "\n", __func__, addr);
break;
}
}
static void max78000_trng_reset_hold(Object *obj, ResetType type)
{
Max78000TrngState *s = MAX78000_TRNG(obj);
s->ctrl = 0;
s->status = 0;
s->data = 0;
}
static const MemoryRegionOps max78000_trng_ops = {
.read = max78000_trng_read,
.write = max78000_trng_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
};
static const VMStateDescription max78000_trng_vmstate = {
.name = TYPE_MAX78000_TRNG,
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(ctrl, Max78000TrngState),
VMSTATE_UINT32(status, Max78000TrngState),
VMSTATE_UINT32(data, Max78000TrngState),
VMSTATE_END_OF_LIST()
}
};
static void max78000_trng_init(Object *obj)
{
Max78000TrngState *s = MAX78000_TRNG(obj);
sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq);
memory_region_init_io(&s->mmio, obj, &max78000_trng_ops, s,
TYPE_MAX78000_TRNG, 0x1000);
sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
}
static void max78000_trng_class_init(ObjectClass *klass, const void *data)
{
ResettableClass *rc = RESETTABLE_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
rc->phases.hold = max78000_trng_reset_hold;
dc->vmsd = &max78000_trng_vmstate;
}
static const TypeInfo max78000_trng_info = {
.name = TYPE_MAX78000_TRNG,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(Max78000TrngState),
.instance_init = max78000_trng_init,
.class_init = max78000_trng_class_init,
};
static void max78000_trng_register_types(void)
{
type_register_static(&max78000_trng_info);
}
type_init(max78000_trng_register_types)
|