1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
|
/*
* Virtual Machine Clock Device
*
* Copyright © 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Authors: David Woodhouse <dwmw2@infradead.org>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/module.h"
#include "hw/i386/e820_memory_layout.h"
#include "hw/acpi/acpi.h"
#include "hw/acpi/aml-build.h"
#include "hw/acpi/vmclock.h"
#include "hw/nvram/fw_cfg.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-properties-system.h"
#include "migration/vmstate.h"
#include "system/reset.h"
#include "standard-headers/linux/vmclock-abi.h"
void vmclock_build_acpi(VmclockState *vms, GArray *table_data,
BIOSLinker *linker, const char *oem_id)
{
Aml *ssdt, *dev, *scope, *crs;
AcpiTable table = { .sig = "SSDT", .rev = 1,
.oem_id = oem_id, .oem_table_id = "VMCLOCK" };
/* Put VMCLOCK into a separate SSDT table */
acpi_table_begin(&table, table_data);
ssdt = init_aml_allocator();
scope = aml_scope("\\_SB");
dev = aml_device("VCLK");
aml_append(dev, aml_name_decl("_HID", aml_string("AMZNC10C")));
aml_append(dev, aml_name_decl("_CID", aml_string("VMCLOCK")));
aml_append(dev, aml_name_decl("_DDN", aml_string("VMCLOCK")));
/* Simple status method */
aml_append(dev, aml_name_decl("_STA", aml_int(0xf)));
crs = aml_resource_template();
aml_append(crs, aml_qword_memory(AML_POS_DECODE,
AML_MIN_FIXED, AML_MAX_FIXED,
AML_CACHEABLE, AML_READ_ONLY,
0xffffffffffffffffULL,
vms->physaddr,
vms->physaddr + VMCLOCK_SIZE - 1,
0, VMCLOCK_SIZE));
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
aml_append(ssdt, scope);
g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
acpi_table_end(linker, &table);
free_aml_allocator();
}
static void vmclock_update_guest(VmclockState *vms)
{
uint64_t disruption_marker;
uint32_t seq_count;
if (!vms->clk) {
return;
}
seq_count = le32_to_cpu(vms->clk->seq_count) | 1;
vms->clk->seq_count = cpu_to_le32(seq_count);
/* These barriers pair with read barriers in the guest */
smp_wmb();
disruption_marker = le64_to_cpu(vms->clk->disruption_marker);
disruption_marker++;
vms->clk->disruption_marker = cpu_to_le64(disruption_marker);
/* These barriers pair with read barriers in the guest */
smp_wmb();
vms->clk->seq_count = cpu_to_le32(seq_count + 1);
}
/*
* After restoring an image, we need to update the guest memory to notify
* it of clock disruption.
*/
static int vmclock_post_load(void *opaque, int version_id)
{
VmclockState *vms = opaque;
vmclock_update_guest(vms);
return 0;
}
static const VMStateDescription vmstate_vmclock = {
.name = "vmclock",
.version_id = 1,
.minimum_version_id = 1,
.post_load = vmclock_post_load,
.fields = (const VMStateField[]) {
VMSTATE_UINT64(physaddr, VmclockState),
VMSTATE_END_OF_LIST()
},
};
static void vmclock_handle_reset(void *opaque)
{
VmclockState *vms = VMCLOCK(opaque);
if (!memory_region_is_mapped(&vms->clk_page)) {
memory_region_add_subregion_overlap(get_system_memory(),
vms->physaddr,
&vms->clk_page, 0);
}
}
static void vmclock_realize(DeviceState *dev, Error **errp)
{
VmclockState *vms = VMCLOCK(dev);
/*
* Given that this function is executing, there is at least one VMCLOCK
* device. Check if there are several.
*/
if (!find_vmclock_dev()) {
error_setg(errp, "at most one %s device is permitted", TYPE_VMCLOCK);
return;
}
vms->physaddr = VMCLOCK_ADDR;
e820_add_entry(vms->physaddr, VMCLOCK_SIZE, E820_RESERVED);
memory_region_init_ram(&vms->clk_page, OBJECT(dev), "vmclock_page",
VMCLOCK_SIZE, &error_abort);
memory_region_set_enabled(&vms->clk_page, true);
vms->clk = memory_region_get_ram_ptr(&vms->clk_page);
memset(vms->clk, 0, VMCLOCK_SIZE);
vms->clk->magic = cpu_to_le32(VMCLOCK_MAGIC);
vms->clk->size = cpu_to_le16(VMCLOCK_SIZE);
vms->clk->version = cpu_to_le16(1);
/* These are all zero and thus default, but be explicit */
vms->clk->clock_status = VMCLOCK_STATUS_UNKNOWN;
vms->clk->counter_id = VMCLOCK_COUNTER_INVALID;
qemu_register_reset(vmclock_handle_reset, vms);
vmclock_update_guest(vms);
}
static void vmclock_device_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->vmsd = &vmstate_vmclock;
dc->realize = vmclock_realize;
dc->hotpluggable = false;
set_bit(DEVICE_CATEGORY_MISC, dc->categories);
}
static const TypeInfo vmclock_device_info = {
.name = TYPE_VMCLOCK,
.parent = TYPE_DEVICE,
.instance_size = sizeof(VmclockState),
.class_init = vmclock_device_class_init,
};
static void vmclock_register_types(void)
{
type_register_static(&vmclock_device_info);
}
type_init(vmclock_register_types)
|