diff options
Diffstat (limited to 'target/arm/tcg/sme_helper.c')
-rw-r--r-- | target/arm/tcg/sme_helper.c | 1706 |
1 files changed, 1561 insertions, 145 deletions
diff --git a/target/arm/tcg/sme_helper.c b/target/arm/tcg/sme_helper.c index dcc48e4..075360d 100644 --- a/target/arm/tcg/sme_helper.c +++ b/target/arm/tcg/sme_helper.c @@ -22,13 +22,20 @@ #include "internals.h" #include "tcg/tcg-gvec-desc.h" #include "exec/helper-proto.h" -#include "exec/cpu_ldst.h" -#include "exec/exec-all.h" +#include "accel/tcg/cpu-ldst.h" +#include "accel/tcg/helper-retaddr.h" #include "qemu/int128.h" #include "fpu/softfloat.h" #include "vec_internal.h" #include "sve_ldst_internal.h" + +static bool vectors_overlap(ARMVectorReg *x, unsigned nx, + ARMVectorReg *y, unsigned ny) +{ + return !(x + nx <= y || y + ny <= x); +} + void helper_set_svcr(CPUARMState *env, uint32_t val, uint32_t mask) { aarch64_set_svcr(env, val, mask); @@ -39,12 +46,12 @@ void helper_sme_zero(CPUARMState *env, uint32_t imm, uint32_t svl) uint32_t i; /* - * Special case clearing the entire ZA space. + * Special case clearing the entire ZArray. * This falls into the CONSTRAINED UNPREDICTABLE zeroing of any * parts of the ZA storage outside of SVL. */ if (imm == 0xff) { - memset(env->zarray, 0, sizeof(env->zarray)); + memset(env->za_state.za, 0, sizeof(env->za_state.za)); return; } @@ -54,7 +61,7 @@ void helper_sme_zero(CPUARMState *env, uint32_t imm, uint32_t svl) */ for (i = 0; i < svl; i++) { if (imm & (1 << (i % 8))) { - memset(&env->zarray[i], 0, svl); + memset(&env->za_state.za[i], 0, svl); } } } @@ -206,6 +213,110 @@ void HELPER(sme_mova_zc_q)(void *vd, void *za, void *vg, uint32_t desc) #undef DO_MOVA_Z +void HELPER(sme2_mova_zc_b)(void *vdst, void *vsrc, uint32_t desc) +{ + const uint8_t *src = vsrc; + uint8_t *dst = vdst; + size_t i, n = simd_oprsz(desc); + + for (i = 0; i < n; ++i) { + dst[i] = src[tile_vslice_index(i)]; + } +} + +void HELPER(sme2_mova_zc_h)(void *vdst, void *vsrc, uint32_t desc) +{ + const uint16_t *src = vsrc; + uint16_t *dst = vdst; + size_t i, n = simd_oprsz(desc) / 2; + + for (i = 0; i < n; ++i) { + dst[i] = src[tile_vslice_index(i)]; + } +} + +void HELPER(sme2_mova_zc_s)(void *vdst, void *vsrc, uint32_t desc) +{ + const uint32_t *src = vsrc; + uint32_t *dst = vdst; + size_t i, n = simd_oprsz(desc) / 4; + + for (i = 0; i < n; ++i) { + dst[i] = src[tile_vslice_index(i)]; + } +} + +void HELPER(sme2_mova_zc_d)(void *vdst, void *vsrc, uint32_t desc) +{ + const uint64_t *src = vsrc; + uint64_t *dst = vdst; + size_t i, n = simd_oprsz(desc) / 8; + + for (i = 0; i < n; ++i) { + dst[i] = src[tile_vslice_index(i)]; + } +} + +void HELPER(sme2p1_movaz_zc_b)(void *vdst, void *vsrc, uint32_t desc) +{ + uint8_t *src = vsrc; + uint8_t *dst = vdst; + size_t i, n = simd_oprsz(desc); + + for (i = 0; i < n; ++i) { + dst[i] = src[tile_vslice_index(i)]; + src[tile_vslice_index(i)] = 0; + } +} + +void HELPER(sme2p1_movaz_zc_h)(void *vdst, void *vsrc, uint32_t desc) +{ + uint16_t *src = vsrc; + uint16_t *dst = vdst; + size_t i, n = simd_oprsz(desc) / 2; + + for (i = 0; i < n; ++i) { + dst[i] = src[tile_vslice_index(i)]; + src[tile_vslice_index(i)] = 0; + } +} + +void HELPER(sme2p1_movaz_zc_s)(void *vdst, void *vsrc, uint32_t desc) +{ + uint32_t *src = vsrc; + uint32_t *dst = vdst; + size_t i, n = simd_oprsz(desc) / 4; + + for (i = 0; i < n; ++i) { + dst[i] = src[tile_vslice_index(i)]; + src[tile_vslice_index(i)] = 0; + } +} + +void HELPER(sme2p1_movaz_zc_d)(void *vdst, void *vsrc, uint32_t desc) +{ + uint64_t *src = vsrc; + uint64_t *dst = vdst; + size_t i, n = simd_oprsz(desc) / 8; + + for (i = 0; i < n; ++i) { + dst[i] = src[tile_vslice_index(i)]; + src[tile_vslice_index(i)] = 0; + } +} + +void HELPER(sme2p1_movaz_zc_q)(void *vdst, void *vsrc, uint32_t desc) +{ + Int128 *src = vsrc; + Int128 *dst = vdst; + size_t i, n = simd_oprsz(desc) / 16; + + for (i = 0; i < n; ++i) { + dst[i] = src[tile_vslice_index(i)]; + memset(&src[tile_vslice_index(i)], 0, 16); + } +} + /* * Clear elements in a tile slice comprising len bytes. */ @@ -314,6 +425,26 @@ static void copy_vertical_q(void *vdst, const void *vsrc, size_t len) } } +void HELPER(sme2_mova_cz_b)(void *vdst, void *vsrc, uint32_t desc) +{ + copy_vertical_b(vdst, vsrc, simd_oprsz(desc)); +} + +void HELPER(sme2_mova_cz_h)(void *vdst, void *vsrc, uint32_t desc) +{ + copy_vertical_h(vdst, vsrc, simd_oprsz(desc)); +} + +void HELPER(sme2_mova_cz_s)(void *vdst, void *vsrc, uint32_t desc) +{ + copy_vertical_s(vdst, vsrc, simd_oprsz(desc)); +} + +void HELPER(sme2_mova_cz_d)(void *vdst, void *vsrc, uint32_t desc) +{ + copy_vertical_d(vdst, vsrc, simd_oprsz(desc)); +} + /* * Host and TLB primitives for vertical tile slice addressing. */ @@ -344,54 +475,22 @@ static inline void sme_##NAME##_v_tlb(CPUARMState *env, void *za, \ TLB(env, useronly_clean_ptr(addr), val, ra); \ } -/* - * The ARMVectorReg elements are stored in host-endian 64-bit units. - * For 128-bit quantities, the sequence defined by the Elem[] pseudocode - * corresponds to storing the two 64-bit pieces in little-endian order. - */ -#define DO_LDQ(HNAME, VNAME, BE, HOST, TLB) \ -static inline void HNAME##_host(void *za, intptr_t off, void *host) \ -{ \ - uint64_t val0 = HOST(host), val1 = HOST(host + 8); \ - uint64_t *ptr = za + off; \ - ptr[0] = BE ? val1 : val0, ptr[1] = BE ? val0 : val1; \ -} \ +#define DO_LDQ(HNAME, VNAME) \ static inline void VNAME##_v_host(void *za, intptr_t off, void *host) \ { \ HNAME##_host(za, tile_vslice_offset(off), host); \ } \ -static inline void HNAME##_tlb(CPUARMState *env, void *za, intptr_t off, \ - target_ulong addr, uintptr_t ra) \ -{ \ - uint64_t val0 = TLB(env, useronly_clean_ptr(addr), ra); \ - uint64_t val1 = TLB(env, useronly_clean_ptr(addr + 8), ra); \ - uint64_t *ptr = za + off; \ - ptr[0] = BE ? val1 : val0, ptr[1] = BE ? val0 : val1; \ -} \ static inline void VNAME##_v_tlb(CPUARMState *env, void *za, intptr_t off, \ target_ulong addr, uintptr_t ra) \ { \ HNAME##_tlb(env, za, tile_vslice_offset(off), addr, ra); \ } -#define DO_STQ(HNAME, VNAME, BE, HOST, TLB) \ -static inline void HNAME##_host(void *za, intptr_t off, void *host) \ -{ \ - uint64_t *ptr = za + off; \ - HOST(host, ptr[BE]); \ - HOST(host + 8, ptr[!BE]); \ -} \ +#define DO_STQ(HNAME, VNAME) \ static inline void VNAME##_v_host(void *za, intptr_t off, void *host) \ { \ HNAME##_host(za, tile_vslice_offset(off), host); \ } \ -static inline void HNAME##_tlb(CPUARMState *env, void *za, intptr_t off, \ - target_ulong addr, uintptr_t ra) \ -{ \ - uint64_t *ptr = za + off; \ - TLB(env, useronly_clean_ptr(addr), ptr[BE], ra); \ - TLB(env, useronly_clean_ptr(addr + 8), ptr[!BE], ra); \ -} \ static inline void VNAME##_v_tlb(CPUARMState *env, void *za, intptr_t off, \ target_ulong addr, uintptr_t ra) \ { \ @@ -406,8 +505,8 @@ DO_LD(ld1s_le, uint32_t, ldl_le_p, cpu_ldl_le_data_ra) DO_LD(ld1d_be, uint64_t, ldq_be_p, cpu_ldq_be_data_ra) DO_LD(ld1d_le, uint64_t, ldq_le_p, cpu_ldq_le_data_ra) -DO_LDQ(sve_ld1qq_be, sme_ld1q_be, 1, ldq_be_p, cpu_ldq_be_data_ra) -DO_LDQ(sve_ld1qq_le, sme_ld1q_le, 0, ldq_le_p, cpu_ldq_le_data_ra) +DO_LDQ(sve_ld1qq_be, sme_ld1q_be) +DO_LDQ(sve_ld1qq_le, sme_ld1q_le) DO_ST(st1b, uint8_t, stb_p, cpu_stb_data_ra) DO_ST(st1h_be, uint16_t, stw_be_p, cpu_stw_be_data_ra) @@ -417,8 +516,8 @@ DO_ST(st1s_le, uint32_t, stl_le_p, cpu_stl_le_data_ra) DO_ST(st1d_be, uint64_t, stq_be_p, cpu_stq_be_data_ra) DO_ST(st1d_le, uint64_t, stq_le_p, cpu_stq_le_data_ra) -DO_STQ(sve_st1qq_be, sme_st1q_be, 1, stq_be_p, cpu_stq_be_data_ra) -DO_STQ(sve_st1qq_le, sme_st1q_le, 0, stq_le_p, cpu_stq_le_data_ra) +DO_STQ(sve_st1qq_be, sme_st1q_be) +DO_STQ(sve_st1qq_le, sme_st1q_le) #undef DO_LD #undef DO_ST @@ -567,19 +666,16 @@ void sme_ld1(CPUARMState *env, void *za, uint64_t *vg, static inline QEMU_ALWAYS_INLINE void sme_ld1_mte(CPUARMState *env, void *za, uint64_t *vg, - target_ulong addr, uint32_t desc, uintptr_t ra, + target_ulong addr, uint64_t desc, uintptr_t ra, const int esz, bool vertical, sve_ldst1_host_fn *host_fn, sve_ldst1_tlb_fn *tlb_fn, ClearFn *clr_fn, CopyFn *cpy_fn) { - uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); + uint32_t mtedesc = desc >> 32; int bit55 = extract64(addr, 55, 1); - /* Remove mtedesc from the normal sve descriptor. */ - desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); - /* Perform gross MTE suppression early. */ if (!tbi_check(mtedesc, bit55) || tcma_check(mtedesc, bit55, allocation_tag_from_addr(addr))) { @@ -592,28 +688,28 @@ void sme_ld1_mte(CPUARMState *env, void *za, uint64_t *vg, #define DO_LD(L, END, ESZ) \ void HELPER(sme_ld1##L##END##_h)(CPUARMState *env, void *za, void *vg, \ - target_ulong addr, uint32_t desc) \ + target_ulong addr, uint64_t desc) \ { \ sme_ld1(env, za, vg, addr, desc, GETPC(), ESZ, 0, false, \ sve_ld1##L##L##END##_host, sve_ld1##L##L##END##_tlb, \ clear_horizontal, copy_horizontal); \ } \ void HELPER(sme_ld1##L##END##_v)(CPUARMState *env, void *za, void *vg, \ - target_ulong addr, uint32_t desc) \ + target_ulong addr, uint64_t desc) \ { \ sme_ld1(env, za, vg, addr, desc, GETPC(), ESZ, 0, true, \ sme_ld1##L##END##_v_host, sme_ld1##L##END##_v_tlb, \ clear_vertical_##L, copy_vertical_##L); \ } \ void HELPER(sme_ld1##L##END##_h_mte)(CPUARMState *env, void *za, void *vg, \ - target_ulong addr, uint32_t desc) \ + target_ulong addr, uint64_t desc) \ { \ sme_ld1_mte(env, za, vg, addr, desc, GETPC(), ESZ, false, \ sve_ld1##L##L##END##_host, sve_ld1##L##L##END##_tlb, \ clear_horizontal, copy_horizontal); \ } \ void HELPER(sme_ld1##L##END##_v_mte)(CPUARMState *env, void *za, void *vg, \ - target_ulong addr, uint32_t desc) \ + target_ulong addr, uint64_t desc) \ { \ sme_ld1_mte(env, za, vg, addr, desc, GETPC(), ESZ, true, \ sme_ld1##L##END##_v_host, sme_ld1##L##END##_v_tlb, \ @@ -755,16 +851,13 @@ void sme_st1(CPUARMState *env, void *za, uint64_t *vg, static inline QEMU_ALWAYS_INLINE void sme_st1_mte(CPUARMState *env, void *za, uint64_t *vg, target_ulong addr, - uint32_t desc, uintptr_t ra, int esz, bool vertical, + uint64_t desc, uintptr_t ra, int esz, bool vertical, sve_ldst1_host_fn *host_fn, sve_ldst1_tlb_fn *tlb_fn) { - uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); + uint32_t mtedesc = desc >> 32; int bit55 = extract64(addr, 55, 1); - /* Remove mtedesc from the normal sve descriptor. */ - desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); - /* Perform gross MTE suppression early. */ if (!tbi_check(mtedesc, bit55) || tcma_check(mtedesc, bit55, allocation_tag_from_addr(addr))) { @@ -777,25 +870,25 @@ void sme_st1_mte(CPUARMState *env, void *za, uint64_t *vg, target_ulong addr, #define DO_ST(L, END, ESZ) \ void HELPER(sme_st1##L##END##_h)(CPUARMState *env, void *za, void *vg, \ - target_ulong addr, uint32_t desc) \ + target_ulong addr, uint64_t desc) \ { \ sme_st1(env, za, vg, addr, desc, GETPC(), ESZ, 0, false, \ sve_st1##L##L##END##_host, sve_st1##L##L##END##_tlb); \ } \ void HELPER(sme_st1##L##END##_v)(CPUARMState *env, void *za, void *vg, \ - target_ulong addr, uint32_t desc) \ + target_ulong addr, uint64_t desc) \ { \ sme_st1(env, za, vg, addr, desc, GETPC(), ESZ, 0, true, \ sme_st1##L##END##_v_host, sme_st1##L##END##_v_tlb); \ } \ void HELPER(sme_st1##L##END##_h_mte)(CPUARMState *env, void *za, void *vg, \ - target_ulong addr, uint32_t desc) \ + target_ulong addr, uint64_t desc) \ { \ sme_st1_mte(env, za, vg, addr, desc, GETPC(), ESZ, false, \ sve_st1##L##L##END##_host, sve_st1##L##L##END##_tlb); \ } \ void HELPER(sme_st1##L##END##_v_mte)(CPUARMState *env, void *za, void *vg, \ - target_ulong addr, uint32_t desc) \ + target_ulong addr, uint64_t desc) \ { \ sme_st1_mte(env, za, vg, addr, desc, GETPC(), ESZ, true, \ sme_st1##L##END##_v_host, sme_st1##L##END##_v_tlb); \ @@ -903,28 +996,69 @@ void HELPER(sme_addva_d)(void *vzda, void *vzn, void *vpn, } } -void HELPER(sme_fmopa_s)(void *vza, void *vzn, void *vzm, void *vpn, - void *vpm, float_status *fpst_in, uint32_t desc) +static void do_fmopa_h(void *vza, void *vzn, void *vzm, uint16_t *pn, + uint16_t *pm, float_status *fpst, uint32_t desc, + uint16_t negx, int negf) { intptr_t row, col, oprsz = simd_maxsz(desc); - uint32_t neg = simd_data(desc) << 31; - uint16_t *pn = vpn, *pm = vpm; - float_status fpst; - /* - * Make a copy of float_status because this operation does not - * update the cumulative fp exception status. It also produces - * default nans. - */ - fpst = *fpst_in; - set_default_nan_mode(true, &fpst); + for (row = 0; row < oprsz; ) { + uint16_t pa = pn[H2(row >> 4)]; + do { + if (pa & 1) { + void *vza_row = vza + tile_vslice_offset(row); + uint16_t n = *(uint32_t *)(vzn + H1_2(row)) ^ negx; + + for (col = 0; col < oprsz; ) { + uint16_t pb = pm[H2(col >> 4)]; + do { + if (pb & 1) { + uint16_t *a = vza_row + H1_2(col); + uint16_t *m = vzm + H1_2(col); + *a = float16_muladd(n, *m, *a, negf, fpst); + } + col += 2; + pb >>= 2; + } while (col & 15); + } + } + row += 2; + pa >>= 2; + } while (row & 15); + } +} + +void HELPER(sme_fmopa_h)(void *vza, void *vzn, void *vzm, void *vpn, + void *vpm, float_status *fpst, uint32_t desc) +{ + do_fmopa_h(vza, vzn, vzm, vpn, vpm, fpst, desc, 0, 0); +} + +void HELPER(sme_fmops_h)(void *vza, void *vzn, void *vzm, void *vpn, + void *vpm, float_status *fpst, uint32_t desc) +{ + do_fmopa_h(vza, vzn, vzm, vpn, vpm, fpst, desc, 1u << 15, 0); +} + +void HELPER(sme_ah_fmops_h)(void *vza, void *vzn, void *vzm, void *vpn, + void *vpm, float_status *fpst, uint32_t desc) +{ + do_fmopa_h(vza, vzn, vzm, vpn, vpm, fpst, desc, 0, + float_muladd_negate_product); +} + +static void do_fmopa_s(void *vza, void *vzn, void *vzm, uint16_t *pn, + uint16_t *pm, float_status *fpst, uint32_t desc, + uint32_t negx, int negf) +{ + intptr_t row, col, oprsz = simd_maxsz(desc); for (row = 0; row < oprsz; ) { uint16_t pa = pn[H2(row >> 4)]; do { if (pa & 1) { void *vza_row = vza + tile_vslice_offset(row); - uint32_t n = *(uint32_t *)(vzn + H1_4(row)) ^ neg; + uint32_t n = *(uint32_t *)(vzn + H1_4(row)) ^ negx; for (col = 0; col < oprsz; ) { uint16_t pb = pm[H2(col >> 4)]; @@ -932,7 +1066,7 @@ void HELPER(sme_fmopa_s)(void *vza, void *vzn, void *vzm, void *vpn, if (pb & 1) { uint32_t *a = vza_row + H1_4(col); uint32_t *m = vzm + H1_4(col); - *a = float32_muladd(n, *m, *a, 0, &fpst); + *a = float32_muladd(n, *m, *a, negf, fpst); } col += 4; pb >>= 4; @@ -945,32 +1079,116 @@ void HELPER(sme_fmopa_s)(void *vza, void *vzn, void *vzm, void *vpn, } } -void HELPER(sme_fmopa_d)(void *vza, void *vzn, void *vzm, void *vpn, - void *vpm, float_status *fpst_in, uint32_t desc) +void HELPER(sme_fmopa_s)(void *vza, void *vzn, void *vzm, void *vpn, + void *vpm, float_status *fpst, uint32_t desc) { - intptr_t row, col, oprsz = simd_oprsz(desc) / 8; - uint64_t neg = (uint64_t)simd_data(desc) << 63; - uint64_t *za = vza, *zn = vzn, *zm = vzm; - uint8_t *pn = vpn, *pm = vpm; - float_status fpst = *fpst_in; + do_fmopa_s(vza, vzn, vzm, vpn, vpm, fpst, desc, 0, 0); +} - set_default_nan_mode(true, &fpst); +void HELPER(sme_fmops_s)(void *vza, void *vzn, void *vzm, void *vpn, + void *vpm, float_status *fpst, uint32_t desc) +{ + do_fmopa_s(vza, vzn, vzm, vpn, vpm, fpst, desc, 1u << 31, 0); +} + +void HELPER(sme_ah_fmops_s)(void *vza, void *vzn, void *vzm, void *vpn, + void *vpm, float_status *fpst, uint32_t desc) +{ + do_fmopa_s(vza, vzn, vzm, vpn, vpm, fpst, desc, 0, + float_muladd_negate_product); +} + +static void do_fmopa_d(uint64_t *za, uint64_t *zn, uint64_t *zm, uint8_t *pn, + uint8_t *pm, float_status *fpst, uint32_t desc, + uint64_t negx, int negf) +{ + intptr_t row, col, oprsz = simd_oprsz(desc) / 8; for (row = 0; row < oprsz; ++row) { if (pn[H1(row)] & 1) { uint64_t *za_row = &za[tile_vslice_index(row)]; - uint64_t n = zn[row] ^ neg; + uint64_t n = zn[row] ^ negx; for (col = 0; col < oprsz; ++col) { if (pm[H1(col)] & 1) { uint64_t *a = &za_row[col]; - *a = float64_muladd(n, zm[col], *a, 0, &fpst); + *a = float64_muladd(n, zm[col], *a, negf, fpst); } } } } } +void HELPER(sme_fmopa_d)(void *vza, void *vzn, void *vzm, void *vpn, + void *vpm, float_status *fpst, uint32_t desc) +{ + do_fmopa_d(vza, vzn, vzm, vpn, vpm, fpst, desc, 0, 0); +} + +void HELPER(sme_fmops_d)(void *vza, void *vzn, void *vzm, void *vpn, + void *vpm, float_status *fpst, uint32_t desc) +{ + do_fmopa_d(vza, vzn, vzm, vpn, vpm, fpst, desc, 1ull << 63, 0); +} + +void HELPER(sme_ah_fmops_d)(void *vza, void *vzn, void *vzm, void *vpn, + void *vpm, float_status *fpst, uint32_t desc) +{ + do_fmopa_d(vza, vzn, vzm, vpn, vpm, fpst, desc, 0, + float_muladd_negate_product); +} + +static void do_bfmopa(void *vza, void *vzn, void *vzm, uint16_t *pn, + uint16_t *pm, float_status *fpst, uint32_t desc, + uint16_t negx, int negf) +{ + intptr_t row, col, oprsz = simd_maxsz(desc); + + for (row = 0; row < oprsz; ) { + uint16_t pa = pn[H2(row >> 4)]; + do { + if (pa & 1) { + void *vza_row = vza + tile_vslice_offset(row); + uint16_t n = *(uint32_t *)(vzn + H1_2(row)) ^ negx; + + for (col = 0; col < oprsz; ) { + uint16_t pb = pm[H2(col >> 4)]; + do { + if (pb & 1) { + uint16_t *a = vza_row + H1_2(col); + uint16_t *m = vzm + H1_2(col); + *a = bfloat16_muladd(n, *m, *a, negf, fpst); + } + col += 2; + pb >>= 2; + } while (col & 15); + } + } + row += 2; + pa >>= 2; + } while (row & 15); + } +} + +void HELPER(sme_bfmopa)(void *vza, void *vzn, void *vzm, void *vpn, + void *vpm, float_status *fpst, uint32_t desc) +{ + do_bfmopa(vza, vzn, vzm, vpn, vpm, fpst, desc, 0, 0); +} + +void HELPER(sme_bfmops)(void *vza, void *vzn, void *vzm, void *vpn, + void *vpm, float_status *fpst, uint32_t desc) +{ + do_bfmopa(vza, vzn, vzm, vpn, vpm, fpst, desc, 1u << 15, 0); +} + +void HELPER(sme_ah_bfmops)(void *vza, void *vzn, void *vzm, void *vpn, + void *vpm, float_status *fpst, uint32_t desc) +{ + do_bfmopa(vza, vzn, vzm, vpn, vpm, fpst, desc, 0, + float_muladd_negate_product); +} + /* * Alter PAIR as needed for controlling predicates being false, * and for NEG on an enabled row element. @@ -991,6 +1209,20 @@ static inline uint32_t f16mop_adj_pair(uint32_t pair, uint32_t pg, uint32_t neg) return pair; } +static inline uint32_t f16mop_ah_neg_adj_pair(uint32_t pair, uint32_t pg) +{ + uint32_t l = pg & 1 ? float16_ah_chs(pair) : 0; + uint32_t h = pg & 4 ? float16_ah_chs(pair >> 16) : 0; + return l | (h << 16); +} + +static inline uint32_t bf16mop_ah_neg_adj_pair(uint32_t pair, uint32_t pg) +{ + uint32_t l = pg & 1 ? bfloat16_ah_chs(pair) : 0; + uint32_t h = pg & 4 ? bfloat16_ah_chs(pair >> 16) : 0; + return l | (h << 16); +} + static float32 f16_dotadd(float32 sum, uint32_t e1, uint32_t e2, float_status *s_f16, float_status *s_std, float_status *s_odd) @@ -1005,49 +1237,67 @@ static float32 f16_dotadd(float32 sum, uint32_t e1, uint32_t e2, * - we have pre-set-up copy of s_std which is set to round-to-odd, * for the multiply (see below) */ - float64 e1r = float16_to_float64(e1 & 0xffff, true, s_f16); - float64 e1c = float16_to_float64(e1 >> 16, true, s_f16); - float64 e2r = float16_to_float64(e2 & 0xffff, true, s_f16); - float64 e2c = float16_to_float64(e2 >> 16, true, s_f16); - float64 t64; + float16 h1r = e1 & 0xffff; + float16 h1c = e1 >> 16; + float16 h2r = e2 & 0xffff; + float16 h2c = e2 >> 16; float32 t32; - /* - * The ARM pseudocode function FPDot performs both multiplies - * and the add with a single rounding operation. Emulate this - * by performing the first multiply in round-to-odd, then doing - * the second multiply as fused multiply-add, and rounding to - * float32 all in one step. - */ - t64 = float64_mul(e1r, e2r, s_odd); - t64 = float64r32_muladd(e1c, e2c, t64, 0, s_std); + /* C.f. FPProcessNaNs4 */ + if (float16_is_any_nan(h1r) || float16_is_any_nan(h1c) || + float16_is_any_nan(h2r) || float16_is_any_nan(h2c)) { + float16 t16; + + if (float16_is_signaling_nan(h1r, s_f16)) { + t16 = h1r; + } else if (float16_is_signaling_nan(h1c, s_f16)) { + t16 = h1c; + } else if (float16_is_signaling_nan(h2r, s_f16)) { + t16 = h2r; + } else if (float16_is_signaling_nan(h2c, s_f16)) { + t16 = h2c; + } else if (float16_is_any_nan(h1r)) { + t16 = h1r; + } else if (float16_is_any_nan(h1c)) { + t16 = h1c; + } else if (float16_is_any_nan(h2r)) { + t16 = h2r; + } else { + t16 = h2c; + } + t32 = float16_to_float32(t16, true, s_f16); + } else { + float64 e1r = float16_to_float64(h1r, true, s_f16); + float64 e1c = float16_to_float64(h1c, true, s_f16); + float64 e2r = float16_to_float64(h2r, true, s_f16); + float64 e2c = float16_to_float64(h2c, true, s_f16); + float64 t64; + + /* + * The ARM pseudocode function FPDot performs both multiplies + * and the add with a single rounding operation. Emulate this + * by performing the first multiply in round-to-odd, then doing + * the second multiply as fused multiply-add, and rounding to + * float32 all in one step. + */ + t64 = float64_mul(e1r, e2r, s_odd); + t64 = float64r32_muladd(e1c, e2c, t64, 0, s_std); - /* This conversion is exact, because we've already rounded. */ - t32 = float64_to_float32(t64, s_std); + /* This conversion is exact, because we've already rounded. */ + t32 = float64_to_float32(t64, s_std); + } /* The final accumulation step is not fused. */ return float32_add(sum, t32, s_std); } -void HELPER(sme_fmopa_h)(void *vza, void *vzn, void *vzm, void *vpn, - void *vpm, CPUARMState *env, uint32_t desc) +static void do_fmopa_w_h(void *vza, void *vzn, void *vzm, uint16_t *pn, + uint16_t *pm, CPUARMState *env, uint32_t desc, + uint32_t negx, bool ah_neg) { intptr_t row, col, oprsz = simd_maxsz(desc); - uint32_t neg = simd_data(desc) * 0x80008000u; - uint16_t *pn = vpn, *pm = vpm; - float_status fpst_odd, fpst_std, fpst_f16; + float_status fpst_odd = env->vfp.fp_status[FPST_ZA]; - /* - * Make copies of the fp status fields we use, because this operation - * does not update the cumulative fp exception status. It also - * produces default NaNs. We also need a second copy of fp_status with - * round-to-odd -- see above. - */ - fpst_f16 = env->vfp.fp_status[FPST_A64_F16]; - fpst_std = env->vfp.fp_status[FPST_A64]; - set_default_nan_mode(true, &fpst_std); - set_default_nan_mode(true, &fpst_f16); - fpst_odd = fpst_std; set_float_rounding_mode(float_round_to_odd, &fpst_odd); for (row = 0; row < oprsz; ) { @@ -1056,7 +1306,11 @@ void HELPER(sme_fmopa_h)(void *vza, void *vzn, void *vzm, void *vpn, void *vza_row = vza + tile_vslice_offset(row); uint32_t n = *(uint32_t *)(vzn + H1_4(row)); - n = f16mop_adj_pair(n, prow, neg); + if (ah_neg) { + n = f16mop_ah_neg_adj_pair(n, prow); + } else { + n = f16mop_adj_pair(n, prow, negx); + } for (col = 0; col < oprsz; ) { uint16_t pcol = pm[H2(col >> 4)]; @@ -1067,7 +1321,9 @@ void HELPER(sme_fmopa_h)(void *vza, void *vzn, void *vzm, void *vpn, m = f16mop_adj_pair(m, pcol, 0); *a = f16_dotadd(*a, n, m, - &fpst_f16, &fpst_std, &fpst_odd); + &env->vfp.fp_status[FPST_ZA_F16], + &env->vfp.fp_status[FPST_ZA], + &fpst_odd); } col += 4; pcol >>= 4; @@ -1079,12 +1335,103 @@ void HELPER(sme_fmopa_h)(void *vza, void *vzn, void *vzm, void *vpn, } } -void HELPER(sme_bfmopa)(void *vza, void *vzn, void *vzm, - void *vpn, void *vpm, CPUARMState *env, uint32_t desc) +void HELPER(sme_fmopa_w_h)(void *vza, void *vzn, void *vzm, void *vpn, + void *vpm, CPUARMState *env, uint32_t desc) +{ + do_fmopa_w_h(vza, vzn, vzm, vpn, vpm, env, desc, 0, false); +} + +void HELPER(sme_fmops_w_h)(void *vza, void *vzn, void *vzm, void *vpn, + void *vpm, CPUARMState *env, uint32_t desc) +{ + do_fmopa_w_h(vza, vzn, vzm, vpn, vpm, env, desc, 0x80008000u, false); +} + +void HELPER(sme_ah_fmops_w_h)(void *vza, void *vzn, void *vzm, void *vpn, + void *vpm, CPUARMState *env, uint32_t desc) +{ + do_fmopa_w_h(vza, vzn, vzm, vpn, vpm, env, desc, 0, true); +} + +void HELPER(sme2_fdot_h)(void *vd, void *vn, void *vm, void *va, + CPUARMState *env, uint32_t desc) +{ + intptr_t i, oprsz = simd_maxsz(desc); + bool za = extract32(desc, SIMD_DATA_SHIFT, 1); + float_status *fpst_std = &env->vfp.fp_status[za ? FPST_ZA : FPST_A64]; + float_status *fpst_f16 = &env->vfp.fp_status[za ? FPST_ZA_F16 : FPST_A64_F16]; + float_status fpst_odd = *fpst_std; + float32 *d = vd, *a = va; + uint32_t *n = vn, *m = vm; + + set_float_rounding_mode(float_round_to_odd, &fpst_odd); + + for (i = 0; i < oprsz / sizeof(float32); ++i) { + d[H4(i)] = f16_dotadd(a[H4(i)], n[H4(i)], m[H4(i)], + fpst_f16, fpst_std, &fpst_odd); + } +} + +void HELPER(sme2_fdot_idx_h)(void *vd, void *vn, void *vm, void *va, + CPUARMState *env, uint32_t desc) +{ + intptr_t i, j, oprsz = simd_maxsz(desc); + intptr_t elements = oprsz / sizeof(float32); + intptr_t eltspersegment = MIN(4, elements); + int idx = extract32(desc, SIMD_DATA_SHIFT, 2); + bool za = extract32(desc, SIMD_DATA_SHIFT + 2, 1); + float_status *fpst_std = &env->vfp.fp_status[za ? FPST_ZA : FPST_A64]; + float_status *fpst_f16 = &env->vfp.fp_status[za ? FPST_ZA_F16 : FPST_A64_F16]; + float_status fpst_odd = *fpst_std; + float32 *d = vd, *a = va; + uint32_t *n = vn, *m = (uint32_t *)vm + H4(idx); + + set_float_rounding_mode(float_round_to_odd, &fpst_odd); + + for (i = 0; i < elements; i += eltspersegment) { + uint32_t mm = m[i]; + for (j = 0; j < eltspersegment; ++j) { + d[H4(i + j)] = f16_dotadd(a[H4(i + j)], n[H4(i + j)], mm, + fpst_f16, fpst_std, &fpst_odd); + } + } +} + +void HELPER(sme2_fvdot_idx_h)(void *vd, void *vn, void *vm, void *va, + CPUARMState *env, uint32_t desc) +{ + intptr_t i, j, oprsz = simd_maxsz(desc); + intptr_t elements = oprsz / sizeof(float32); + intptr_t eltspersegment = MIN(4, elements); + int idx = extract32(desc, SIMD_DATA_SHIFT, 2); + int sel = extract32(desc, SIMD_DATA_SHIFT + 2, 1); + float_status fpst_odd, *fpst_std, *fpst_f16; + float32 *d = vd, *a = va; + uint16_t *n0 = vn; + uint16_t *n1 = vn + sizeof(ARMVectorReg); + uint32_t *m = (uint32_t *)vm + H4(idx); + + fpst_std = &env->vfp.fp_status[FPST_ZA]; + fpst_f16 = &env->vfp.fp_status[FPST_ZA_F16]; + fpst_odd = *fpst_std; + set_float_rounding_mode(float_round_to_odd, &fpst_odd); + + for (i = 0; i < elements; i += eltspersegment) { + uint32_t mm = m[i]; + for (j = 0; j < eltspersegment; ++j) { + uint32_t nn = (n0[H2(2 * (i + j) + sel)]) + | (n1[H2(2 * (i + j) + sel)] << 16); + d[i + H4(j)] = f16_dotadd(a[i + H4(j)], nn, mm, + fpst_f16, fpst_std, &fpst_odd); + } + } +} + +static void do_bfmopa_w(void *vza, void *vzn, void *vzm, + uint16_t *pn, uint16_t *pm, CPUARMState *env, + uint32_t desc, uint32_t negx, bool ah_neg) { intptr_t row, col, oprsz = simd_maxsz(desc); - uint32_t neg = simd_data(desc) * 0x80008000u; - uint16_t *pn = vpn, *pm = vpm; float_status fpst, fpst_odd; if (is_ebf(env, &fpst, &fpst_odd)) { @@ -1094,7 +1441,11 @@ void HELPER(sme_bfmopa)(void *vza, void *vzn, void *vzm, void *vza_row = vza + tile_vslice_offset(row); uint32_t n = *(uint32_t *)(vzn + H1_4(row)); - n = f16mop_adj_pair(n, prow, neg); + if (ah_neg) { + n = bf16mop_ah_neg_adj_pair(n, prow); + } else { + n = f16mop_adj_pair(n, prow, negx); + } for (col = 0; col < oprsz; ) { uint16_t pcol = pm[H2(col >> 4)]; @@ -1121,7 +1472,11 @@ void HELPER(sme_bfmopa)(void *vza, void *vzn, void *vzm, void *vza_row = vza + tile_vslice_offset(row); uint32_t n = *(uint32_t *)(vzn + H1_4(row)); - n = f16mop_adj_pair(n, prow, neg); + if (ah_neg) { + n = bf16mop_ah_neg_adj_pair(n, prow); + } else { + n = f16mop_adj_pair(n, prow, negx); + } for (col = 0; col < oprsz; ) { uint16_t pcol = pm[H2(col >> 4)]; @@ -1144,6 +1499,24 @@ void HELPER(sme_bfmopa)(void *vza, void *vzn, void *vzm, } } +void HELPER(sme_bfmopa_w)(void *vza, void *vzn, void *vzm, void *vpn, + void *vpm, CPUARMState *env, uint32_t desc) +{ + do_bfmopa_w(vza, vzn, vzm, vpn, vpm, env, desc, 0, false); +} + +void HELPER(sme_bfmops_w)(void *vza, void *vzn, void *vzm, void *vpn, + void *vpm, CPUARMState *env, uint32_t desc) +{ + do_bfmopa_w(vza, vzn, vzm, vpn, vpm, env, desc, 0x80008000u, false); +} + +void HELPER(sme_ah_bfmops_w)(void *vza, void *vzn, void *vzm, void *vpn, + void *vpm, CPUARMState *env, uint32_t desc) +{ + do_bfmopa_w(vza, vzn, vzm, vpn, vpm, env, desc, 0, true); +} + typedef uint32_t IMOPFn32(uint32_t, uint32_t, uint32_t, uint8_t, bool); static inline void do_imopa_s(uint32_t *za, uint32_t *zn, uint32_t *zm, uint8_t *pn, uint8_t *pm, @@ -1188,7 +1561,7 @@ static inline void do_imopa_d(uint64_t *za, uint64_t *zn, uint64_t *zm, } } -#define DEF_IMOP_32(NAME, NTYPE, MTYPE) \ +#define DEF_IMOP_8x4_32(NAME, NTYPE, MTYPE) \ static uint32_t NAME(uint32_t n, uint32_t m, uint32_t a, uint8_t p, bool neg) \ { \ uint32_t sum = 0; \ @@ -1201,7 +1574,7 @@ static uint32_t NAME(uint32_t n, uint32_t m, uint32_t a, uint8_t p, bool neg) \ return neg ? a - sum : a + sum; \ } -#define DEF_IMOP_64(NAME, NTYPE, MTYPE) \ +#define DEF_IMOP_16x4_64(NAME, NTYPE, MTYPE) \ static uint64_t NAME(uint64_t n, uint64_t m, uint64_t a, uint8_t p, bool neg) \ { \ uint64_t sum = 0; \ @@ -1214,27 +1587,1070 @@ static uint64_t NAME(uint64_t n, uint64_t m, uint64_t a, uint8_t p, bool neg) \ return neg ? a - sum : a + sum; \ } -DEF_IMOP_32(smopa_s, int8_t, int8_t) -DEF_IMOP_32(umopa_s, uint8_t, uint8_t) -DEF_IMOP_32(sumopa_s, int8_t, uint8_t) -DEF_IMOP_32(usmopa_s, uint8_t, int8_t) +DEF_IMOP_8x4_32(smopa_s, int8_t, int8_t) +DEF_IMOP_8x4_32(umopa_s, uint8_t, uint8_t) +DEF_IMOP_8x4_32(sumopa_s, int8_t, uint8_t) +DEF_IMOP_8x4_32(usmopa_s, uint8_t, int8_t) -DEF_IMOP_64(smopa_d, int16_t, int16_t) -DEF_IMOP_64(umopa_d, uint16_t, uint16_t) -DEF_IMOP_64(sumopa_d, int16_t, uint16_t) -DEF_IMOP_64(usmopa_d, uint16_t, int16_t) +DEF_IMOP_16x4_64(smopa_d, int16_t, int16_t) +DEF_IMOP_16x4_64(umopa_d, uint16_t, uint16_t) +DEF_IMOP_16x4_64(sumopa_d, int16_t, uint16_t) +DEF_IMOP_16x4_64(usmopa_d, uint16_t, int16_t) -#define DEF_IMOPH(NAME, S) \ - void HELPER(sme_##NAME##_##S)(void *vza, void *vzn, void *vzm, \ +#define DEF_IMOPH(P, NAME, S) \ + void HELPER(P##_##NAME##_##S)(void *vza, void *vzn, void *vzm, \ void *vpn, void *vpm, uint32_t desc) \ { do_imopa_##S(vza, vzn, vzm, vpn, vpm, desc, NAME##_##S); } -DEF_IMOPH(smopa, s) -DEF_IMOPH(umopa, s) -DEF_IMOPH(sumopa, s) -DEF_IMOPH(usmopa, s) +DEF_IMOPH(sme, smopa, s) +DEF_IMOPH(sme, umopa, s) +DEF_IMOPH(sme, sumopa, s) +DEF_IMOPH(sme, usmopa, s) + +DEF_IMOPH(sme, smopa, d) +DEF_IMOPH(sme, umopa, d) +DEF_IMOPH(sme, sumopa, d) +DEF_IMOPH(sme, usmopa, d) + +static uint32_t bmopa_s(uint32_t n, uint32_t m, uint32_t a, uint8_t p, bool neg) +{ + uint32_t sum = ctpop32(~(n ^ m)); + if (neg) { + sum = -sum; + } + if (!(p & 1)) { + sum = 0; + } + return a + sum; +} + +DEF_IMOPH(sme2, bmopa, s) + +#define DEF_IMOP_16x2_32(NAME, NTYPE, MTYPE) \ +static uint32_t NAME(uint32_t n, uint32_t m, uint32_t a, uint8_t p, bool neg) \ +{ \ + uint32_t sum = 0; \ + /* Apply P to N as a mask, making the inactive elements 0. */ \ + n &= expand_pred_h(p); \ + sum += (NTYPE)(n >> 0) * (MTYPE)(m >> 0); \ + sum += (NTYPE)(n >> 16) * (MTYPE)(m >> 16); \ + return neg ? a - sum : a + sum; \ +} + +DEF_IMOP_16x2_32(smopa2_s, int16_t, int16_t) +DEF_IMOP_16x2_32(umopa2_s, uint16_t, uint16_t) + +DEF_IMOPH(sme2, smopa2, s) +DEF_IMOPH(sme2, umopa2, s) + +#define DO_VDOT_IDX(NAME, TYPED, TYPEN, TYPEM, HD, HN) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + intptr_t svl = simd_oprsz(desc); \ + intptr_t elements = svl / sizeof(TYPED); \ + intptr_t eltperseg = 16 / sizeof(TYPED); \ + intptr_t nreg = sizeof(TYPED) / sizeof(TYPEN); \ + intptr_t vstride = (svl / nreg) * sizeof(ARMVectorReg); \ + intptr_t zstride = sizeof(ARMVectorReg) / sizeof(TYPEN); \ + intptr_t idx = extract32(desc, SIMD_DATA_SHIFT, 2); \ + TYPEN *n = vn; \ + TYPEM *m = vm; \ + for (intptr_t r = 0; r < nreg; r++) { \ + TYPED *d = vd + r * vstride; \ + for (intptr_t seg = 0; seg < elements; seg += eltperseg) { \ + intptr_t s = seg + idx; \ + for (intptr_t e = seg; e < seg + eltperseg; e++) { \ + TYPED sum = d[HD(e)]; \ + for (intptr_t i = 0; i < nreg; i++) { \ + TYPED nn = n[i * zstride + HN(nreg * e + r)]; \ + TYPED mm = m[HN(nreg * s + i)]; \ + sum += nn * mm; \ + } \ + d[HD(e)] = sum; \ + } \ + } \ + } \ +} + +DO_VDOT_IDX(sme2_svdot_idx_4b, int32_t, int8_t, int8_t, H4, H1) +DO_VDOT_IDX(sme2_uvdot_idx_4b, uint32_t, uint8_t, uint8_t, H4, H1) +DO_VDOT_IDX(sme2_suvdot_idx_4b, int32_t, int8_t, uint8_t, H4, H1) +DO_VDOT_IDX(sme2_usvdot_idx_4b, int32_t, uint8_t, int8_t, H4, H1) + +DO_VDOT_IDX(sme2_svdot_idx_4h, int64_t, int16_t, int16_t, H8, H2) +DO_VDOT_IDX(sme2_uvdot_idx_4h, uint64_t, uint16_t, uint16_t, H8, H2) + +DO_VDOT_IDX(sme2_svdot_idx_2h, int32_t, int16_t, int16_t, H4, H2) +DO_VDOT_IDX(sme2_uvdot_idx_2h, uint32_t, uint16_t, uint16_t, H4, H2) + +#undef DO_VDOT_IDX + +#define DO_MLALL(NAME, TYPEW, TYPEN, TYPEM, HW, HN, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ +{ \ + intptr_t elements = simd_oprsz(desc) / sizeof(TYPEW); \ + intptr_t sel = extract32(desc, SIMD_DATA_SHIFT, 2); \ + TYPEW *d = vd, *a = va; TYPEN *n = vn; TYPEM *m = vm; \ + for (intptr_t i = 0; i < elements; ++i) { \ + TYPEW nn = n[HN(i * 4 + sel)]; \ + TYPEM mm = m[HN(i * 4 + sel)]; \ + d[HW(i)] = a[HW(i)] OP (nn * mm); \ + } \ +} + +DO_MLALL(sme2_smlall_s, int32_t, int8_t, int8_t, H4, H1, +) +DO_MLALL(sme2_smlall_d, int64_t, int16_t, int16_t, H8, H2, +) +DO_MLALL(sme2_smlsll_s, int32_t, int8_t, int8_t, H4, H1, -) +DO_MLALL(sme2_smlsll_d, int64_t, int16_t, int16_t, H8, H2, -) + +DO_MLALL(sme2_umlall_s, uint32_t, uint8_t, uint8_t, H4, H1, +) +DO_MLALL(sme2_umlall_d, uint64_t, uint16_t, uint16_t, H8, H2, +) +DO_MLALL(sme2_umlsll_s, uint32_t, uint8_t, uint8_t, H4, H1, -) +DO_MLALL(sme2_umlsll_d, uint64_t, uint16_t, uint16_t, H8, H2, -) + +DO_MLALL(sme2_usmlall_s, uint32_t, uint8_t, int8_t, H4, H1, +) + +#undef DO_MLALL + +#define DO_MLALL_IDX(NAME, TYPEW, TYPEN, TYPEM, HW, HN, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ +{ \ + intptr_t elements = simd_oprsz(desc) / sizeof(TYPEW); \ + intptr_t eltspersegment = 16 / sizeof(TYPEW); \ + intptr_t sel = extract32(desc, SIMD_DATA_SHIFT, 2); \ + intptr_t idx = extract32(desc, SIMD_DATA_SHIFT + 2, 4); \ + TYPEW *d = vd, *a = va; TYPEN *n = vn; TYPEM *m = vm; \ + for (intptr_t i = 0; i < elements; i += eltspersegment) { \ + TYPEW mm = m[HN(i * 4 + idx)]; \ + for (intptr_t j = 0; j < eltspersegment; ++j) { \ + TYPEN nn = n[HN((i + j) * 4 + sel)]; \ + d[HW(i + j)] = a[HW(i + j)] OP (nn * mm); \ + } \ + } \ +} + +DO_MLALL_IDX(sme2_smlall_idx_s, int32_t, int8_t, int8_t, H4, H1, +) +DO_MLALL_IDX(sme2_smlall_idx_d, int64_t, int16_t, int16_t, H8, H2, +) +DO_MLALL_IDX(sme2_smlsll_idx_s, int32_t, int8_t, int8_t, H4, H1, -) +DO_MLALL_IDX(sme2_smlsll_idx_d, int64_t, int16_t, int16_t, H8, H2, -) + +DO_MLALL_IDX(sme2_umlall_idx_s, uint32_t, uint8_t, uint8_t, H4, H1, +) +DO_MLALL_IDX(sme2_umlall_idx_d, uint64_t, uint16_t, uint16_t, H8, H2, +) +DO_MLALL_IDX(sme2_umlsll_idx_s, uint32_t, uint8_t, uint8_t, H4, H1, -) +DO_MLALL_IDX(sme2_umlsll_idx_d, uint64_t, uint16_t, uint16_t, H8, H2, -) + +DO_MLALL_IDX(sme2_usmlall_idx_s, uint32_t, uint8_t, int8_t, H4, H1, +) +DO_MLALL_IDX(sme2_sumlall_idx_s, uint32_t, int8_t, uint8_t, H4, H1, +) + +#undef DO_MLALL_IDX + +/* Convert and compress */ +void HELPER(sme2_bfcvt)(void *vd, void *vs, float_status *fpst, uint32_t desc) +{ + ARMVectorReg scratch; + size_t oprsz = simd_oprsz(desc); + size_t i, n = oprsz / 4; + float32 *s0 = vs; + float32 *s1 = vs + sizeof(ARMVectorReg); + bfloat16 *d = vd; + + if (vd == s1) { + s1 = memcpy(&scratch, s1, oprsz); + } + + for (i = 0; i < n; ++i) { + d[H2(i)] = float32_to_bfloat16(s0[H4(i)], fpst); + } + for (i = 0; i < n; ++i) { + d[H2(i) + n] = float32_to_bfloat16(s1[H4(i)], fpst); + } +} -DEF_IMOPH(smopa, d) -DEF_IMOPH(umopa, d) -DEF_IMOPH(sumopa, d) -DEF_IMOPH(usmopa, d) +void HELPER(sme2_fcvt_n)(void *vd, void *vs, float_status *fpst, uint32_t desc) +{ + ARMVectorReg scratch; + size_t oprsz = simd_oprsz(desc); + size_t i, n = oprsz / 4; + float32 *s0 = vs; + float32 *s1 = vs + sizeof(ARMVectorReg); + float16 *d = vd; + + if (vd == s1) { + s1 = memcpy(&scratch, s1, oprsz); + } + + for (i = 0; i < n; ++i) { + d[H2(i)] = sve_f32_to_f16(s0[H4(i)], fpst); + } + for (i = 0; i < n; ++i) { + d[H2(i) + n] = sve_f32_to_f16(s1[H4(i)], fpst); + } +} + +#define SQCVT2(NAME, TW, TN, HW, HN, SAT) \ +void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \ +{ \ + ARMVectorReg scratch; \ + size_t oprsz = simd_oprsz(desc), n = oprsz / sizeof(TW); \ + TW *s0 = vs, *s1 = vs + sizeof(ARMVectorReg); \ + TN *d = vd; \ + if (vectors_overlap(vd, 1, vs, 2)) { \ + d = (TN *)&scratch; \ + } \ + for (size_t i = 0; i < n; ++i) { \ + d[HN(i)] = SAT(s0[HW(i)]); \ + d[HN(i + n)] = SAT(s1[HW(i)]); \ + } \ + if (d != vd) { \ + memcpy(vd, d, oprsz); \ + } \ +} + +SQCVT2(sme2_sqcvt_sh, int32_t, int16_t, H4, H2, do_ssat_h) +SQCVT2(sme2_uqcvt_sh, uint32_t, uint16_t, H4, H2, do_usat_h) +SQCVT2(sme2_sqcvtu_sh, int32_t, uint16_t, H4, H2, do_usat_h) + +#undef SQCVT2 + +#define SQCVT4(NAME, TW, TN, HW, HN, SAT) \ +void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \ +{ \ + ARMVectorReg scratch; \ + size_t oprsz = simd_oprsz(desc), n = oprsz / sizeof(TW); \ + TW *s0 = vs, *s1 = vs + sizeof(ARMVectorReg); \ + TW *s2 = vs + 2 * sizeof(ARMVectorReg); \ + TW *s3 = vs + 3 * sizeof(ARMVectorReg); \ + TN *d = vd; \ + if (vectors_overlap(vd, 1, vs, 4)) { \ + d = (TN *)&scratch; \ + } \ + for (size_t i = 0; i < n; ++i) { \ + d[HN(i)] = SAT(s0[HW(i)]); \ + d[HN(i + n)] = SAT(s1[HW(i)]); \ + d[HN(i + 2 * n)] = SAT(s2[HW(i)]); \ + d[HN(i + 3 * n)] = SAT(s3[HW(i)]); \ + } \ + if (d != vd) { \ + memcpy(vd, d, oprsz); \ + } \ +} + +SQCVT4(sme2_sqcvt_sb, int32_t, int8_t, H4, H2, do_ssat_b) +SQCVT4(sme2_uqcvt_sb, uint32_t, uint8_t, H4, H2, do_usat_b) +SQCVT4(sme2_sqcvtu_sb, int32_t, uint8_t, H4, H2, do_usat_b) + +SQCVT4(sme2_sqcvt_dh, int64_t, int16_t, H8, H2, do_ssat_h) +SQCVT4(sme2_uqcvt_dh, uint64_t, uint16_t, H8, H2, do_usat_h) +SQCVT4(sme2_sqcvtu_dh, int64_t, uint16_t, H8, H2, do_usat_h) + +#undef SQCVT4 + +#define SQRSHR2(NAME, TW, TN, HW, HN, RSHR, SAT) \ +void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \ +{ \ + ARMVectorReg scratch; \ + size_t oprsz = simd_oprsz(desc), n = oprsz / sizeof(TW); \ + int shift = simd_data(desc); \ + TW *s0 = vs, *s1 = vs + sizeof(ARMVectorReg); \ + TN *d = vd; \ + if (vectors_overlap(vd, 1, vs, 2)) { \ + d = (TN *)&scratch; \ + } \ + for (size_t i = 0; i < n; ++i) { \ + d[HN(i)] = SAT(RSHR(s0[HW(i)], shift)); \ + d[HN(i + n)] = SAT(RSHR(s1[HW(i)], shift)); \ + } \ + if (d != vd) { \ + memcpy(vd, d, oprsz); \ + } \ +} + +SQRSHR2(sme2_sqrshr_sh, int32_t, int16_t, H4, H2, do_srshr, do_ssat_h) +SQRSHR2(sme2_uqrshr_sh, uint32_t, uint16_t, H4, H2, do_urshr, do_usat_h) +SQRSHR2(sme2_sqrshru_sh, int32_t, uint16_t, H4, H2, do_srshr, do_usat_h) + +#undef SQRSHR2 + +#define SQRSHR4(NAME, TW, TN, HW, HN, RSHR, SAT) \ +void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \ +{ \ + ARMVectorReg scratch; \ + size_t oprsz = simd_oprsz(desc), n = oprsz / sizeof(TW); \ + int shift = simd_data(desc); \ + TW *s0 = vs, *s1 = vs + sizeof(ARMVectorReg); \ + TW *s2 = vs + 2 * sizeof(ARMVectorReg); \ + TW *s3 = vs + 3 * sizeof(ARMVectorReg); \ + TN *d = vd; \ + if (vectors_overlap(vd, 1, vs, 4)) { \ + d = (TN *)&scratch; \ + } \ + for (size_t i = 0; i < n; ++i) { \ + d[HN(i)] = SAT(RSHR(s0[HW(i)], shift)); \ + d[HN(i + n)] = SAT(RSHR(s1[HW(i)], shift)); \ + d[HN(i + 2 * n)] = SAT(RSHR(s2[HW(i)], shift)); \ + d[HN(i + 3 * n)] = SAT(RSHR(s3[HW(i)], shift)); \ + } \ + if (d != vd) { \ + memcpy(vd, d, oprsz); \ + } \ +} + +SQRSHR4(sme2_sqrshr_sb, int32_t, int8_t, H4, H2, do_srshr, do_ssat_b) +SQRSHR4(sme2_uqrshr_sb, uint32_t, uint8_t, H4, H2, do_urshr, do_usat_b) +SQRSHR4(sme2_sqrshru_sb, int32_t, uint8_t, H4, H2, do_srshr, do_usat_b) + +SQRSHR4(sme2_sqrshr_dh, int64_t, int16_t, H8, H2, do_srshr, do_ssat_h) +SQRSHR4(sme2_uqrshr_dh, uint64_t, uint16_t, H8, H2, do_urshr, do_usat_h) +SQRSHR4(sme2_sqrshru_dh, int64_t, uint16_t, H8, H2, do_srshr, do_usat_h) + +#undef SQRSHR4 + +/* Convert and interleave */ +void HELPER(sme2_bfcvtn)(void *vd, void *vs, float_status *fpst, uint32_t desc) +{ + size_t i, n = simd_oprsz(desc) / 4; + float32 *s0 = vs; + float32 *s1 = vs + sizeof(ARMVectorReg); + bfloat16 *d = vd; + + for (i = 0; i < n; ++i) { + bfloat16 d0 = float32_to_bfloat16(s0[H4(i)], fpst); + bfloat16 d1 = float32_to_bfloat16(s1[H4(i)], fpst); + d[H2(i * 2 + 0)] = d0; + d[H2(i * 2 + 1)] = d1; + } +} + +void HELPER(sme2_fcvtn)(void *vd, void *vs, float_status *fpst, uint32_t desc) +{ + size_t i, n = simd_oprsz(desc) / 4; + float32 *s0 = vs; + float32 *s1 = vs + sizeof(ARMVectorReg); + bfloat16 *d = vd; + + for (i = 0; i < n; ++i) { + bfloat16 d0 = sve_f32_to_f16(s0[H4(i)], fpst); + bfloat16 d1 = sve_f32_to_f16(s1[H4(i)], fpst); + d[H2(i * 2 + 0)] = d0; + d[H2(i * 2 + 1)] = d1; + } +} + +#define SQCVTN2(NAME, TW, TN, HW, HN, SAT) \ +void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \ +{ \ + ARMVectorReg scratch; \ + size_t oprsz = simd_oprsz(desc), n = oprsz / sizeof(TW); \ + TW *s0 = vs, *s1 = vs + sizeof(ARMVectorReg); \ + TN *d = vd; \ + if (vectors_overlap(vd, 1, vs, 2)) { \ + d = (TN *)&scratch; \ + } \ + for (size_t i = 0; i < n; ++i) { \ + d[HN(2 * i + 0)] = SAT(s0[HW(i)]); \ + d[HN(2 * i + 1)] = SAT(s1[HW(i)]); \ + } \ + if (d != vd) { \ + memcpy(vd, d, oprsz); \ + } \ +} + +SQCVTN2(sme2_sqcvtn_sh, int32_t, int16_t, H4, H2, do_ssat_h) +SQCVTN2(sme2_uqcvtn_sh, uint32_t, uint16_t, H4, H2, do_usat_h) +SQCVTN2(sme2_sqcvtun_sh, int32_t, uint16_t, H4, H2, do_usat_h) + +#undef SQCVTN2 + +#define SQCVTN4(NAME, TW, TN, HW, HN, SAT) \ +void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \ +{ \ + ARMVectorReg scratch; \ + size_t oprsz = simd_oprsz(desc), n = oprsz / sizeof(TW); \ + TW *s0 = vs, *s1 = vs + sizeof(ARMVectorReg); \ + TW *s2 = vs + 2 * sizeof(ARMVectorReg); \ + TW *s3 = vs + 3 * sizeof(ARMVectorReg); \ + TN *d = vd; \ + if (vectors_overlap(vd, 1, vs, 4)) { \ + d = (TN *)&scratch; \ + } \ + for (size_t i = 0; i < n; ++i) { \ + d[HN(4 * i + 0)] = SAT(s0[HW(i)]); \ + d[HN(4 * i + 1)] = SAT(s1[HW(i)]); \ + d[HN(4 * i + 2)] = SAT(s2[HW(i)]); \ + d[HN(4 * i + 3)] = SAT(s3[HW(i)]); \ + } \ + if (d != vd) { \ + memcpy(vd, d, oprsz); \ + } \ +} + +SQCVTN4(sme2_sqcvtn_sb, int32_t, int8_t, H4, H1, do_ssat_b) +SQCVTN4(sme2_uqcvtn_sb, uint32_t, uint8_t, H4, H1, do_usat_b) +SQCVTN4(sme2_sqcvtun_sb, int32_t, uint8_t, H4, H1, do_usat_b) + +SQCVTN4(sme2_sqcvtn_dh, int64_t, int16_t, H8, H2, do_ssat_h) +SQCVTN4(sme2_uqcvtn_dh, uint64_t, uint16_t, H8, H2, do_usat_h) +SQCVTN4(sme2_sqcvtun_dh, int64_t, uint16_t, H8, H2, do_usat_h) + +#undef SQCVTN4 + +#define SQRSHRN2(NAME, TW, TN, HW, HN, RSHR, SAT) \ +void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \ +{ \ + ARMVectorReg scratch; \ + size_t oprsz = simd_oprsz(desc), n = oprsz / sizeof(TW); \ + int shift = simd_data(desc); \ + TW *s0 = vs, *s1 = vs + sizeof(ARMVectorReg); \ + TN *d = vd; \ + if (vectors_overlap(vd, 1, vs, 2)) { \ + d = (TN *)&scratch; \ + } \ + for (size_t i = 0; i < n; ++i) { \ + d[HN(2 * i + 0)] = SAT(RSHR(s0[HW(i)], shift)); \ + d[HN(2 * i + 1)] = SAT(RSHR(s1[HW(i)], shift)); \ + } \ + if (d != vd) { \ + memcpy(vd, d, oprsz); \ + } \ +} + +SQRSHRN2(sme2_sqrshrn_sh, int32_t, int16_t, H4, H2, do_srshr, do_ssat_h) +SQRSHRN2(sme2_uqrshrn_sh, uint32_t, uint16_t, H4, H2, do_urshr, do_usat_h) +SQRSHRN2(sme2_sqrshrun_sh, int32_t, uint16_t, H4, H2, do_srshr, do_usat_h) + +#undef SQRSHRN2 + +#define SQRSHRN4(NAME, TW, TN, HW, HN, RSHR, SAT) \ +void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \ +{ \ + ARMVectorReg scratch; \ + size_t oprsz = simd_oprsz(desc), n = oprsz / sizeof(TW); \ + int shift = simd_data(desc); \ + TW *s0 = vs, *s1 = vs + sizeof(ARMVectorReg); \ + TW *s2 = vs + 2 * sizeof(ARMVectorReg); \ + TW *s3 = vs + 3 * sizeof(ARMVectorReg); \ + TN *d = vd; \ + if (vectors_overlap(vd, 1, vs, 4)) { \ + d = (TN *)&scratch; \ + } \ + for (size_t i = 0; i < n; ++i) { \ + d[HN(4 * i + 0)] = SAT(RSHR(s0[HW(i)], shift)); \ + d[HN(4 * i + 1)] = SAT(RSHR(s1[HW(i)], shift)); \ + d[HN(4 * i + 2)] = SAT(RSHR(s2[HW(i)], shift)); \ + d[HN(4 * i + 3)] = SAT(RSHR(s3[HW(i)], shift)); \ + } \ + if (d != vd) { \ + memcpy(vd, d, oprsz); \ + } \ +} + +SQRSHRN4(sme2_sqrshrn_sb, int32_t, int8_t, H4, H1, do_srshr, do_ssat_b) +SQRSHRN4(sme2_uqrshrn_sb, uint32_t, uint8_t, H4, H1, do_urshr, do_usat_b) +SQRSHRN4(sme2_sqrshrun_sb, int32_t, uint8_t, H4, H1, do_srshr, do_usat_b) + +SQRSHRN4(sme2_sqrshrn_dh, int64_t, int16_t, H8, H2, do_srshr, do_ssat_h) +SQRSHRN4(sme2_uqrshrn_dh, uint64_t, uint16_t, H8, H2, do_urshr, do_usat_h) +SQRSHRN4(sme2_sqrshrun_dh, int64_t, uint16_t, H8, H2, do_srshr, do_usat_h) + +#undef SQRSHRN4 + +/* Expand and convert */ +void HELPER(sme2_fcvt_w)(void *vd, void *vs, float_status *fpst, uint32_t desc) +{ + ARMVectorReg scratch; + size_t oprsz = simd_oprsz(desc); + size_t i, n = oprsz / 4; + float16 *s = vs; + float32 *d0 = vd; + float32 *d1 = vd + sizeof(ARMVectorReg); + + if (vectors_overlap(vd, 1, vs, 2)) { + s = memcpy(&scratch, s, oprsz); + } + + for (i = 0; i < n; ++i) { + d0[H4(i)] = sve_f16_to_f32(s[H2(i)], fpst); + } + for (i = 0; i < n; ++i) { + d1[H4(i)] = sve_f16_to_f32(s[H2(n + i)], fpst); + } +} + +#define UNPK(NAME, SREG, TW, TN, HW, HN) \ +void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \ +{ \ + ARMVectorReg scratch[SREG]; \ + size_t oprsz = simd_oprsz(desc); \ + size_t n = oprsz / sizeof(TW); \ + if (vectors_overlap(vd, 2 * SREG, vs, SREG)) { \ + vs = memcpy(scratch, vs, sizeof(scratch)); \ + } \ + for (size_t r = 0; r < SREG; ++r) { \ + TN *s = vs + r * sizeof(ARMVectorReg); \ + for (size_t i = 0; i < 2; ++i) { \ + TW *d = vd + (2 * r + i) * sizeof(ARMVectorReg); \ + for (size_t e = 0; e < n; ++e) { \ + d[HW(e)] = s[HN(i * n + e)]; \ + } \ + } \ + } \ +} + +UNPK(sme2_sunpk2_bh, 1, int16_t, int8_t, H2, H1) +UNPK(sme2_sunpk2_hs, 1, int32_t, int16_t, H4, H2) +UNPK(sme2_sunpk2_sd, 1, int64_t, int32_t, H8, H4) + +UNPK(sme2_sunpk4_bh, 2, int16_t, int8_t, H2, H1) +UNPK(sme2_sunpk4_hs, 2, int32_t, int16_t, H4, H2) +UNPK(sme2_sunpk4_sd, 2, int64_t, int32_t, H8, H4) + +UNPK(sme2_uunpk2_bh, 1, uint16_t, uint8_t, H2, H1) +UNPK(sme2_uunpk2_hs, 1, uint32_t, uint16_t, H4, H2) +UNPK(sme2_uunpk2_sd, 1, uint64_t, uint32_t, H8, H4) + +UNPK(sme2_uunpk4_bh, 2, uint16_t, uint8_t, H2, H1) +UNPK(sme2_uunpk4_hs, 2, uint32_t, uint16_t, H4, H2) +UNPK(sme2_uunpk4_sd, 2, uint64_t, uint32_t, H8, H4) + +#undef UNPK + +/* Deinterleave and convert. */ +void HELPER(sme2_fcvtl)(void *vd, void *vs, float_status *fpst, uint32_t desc) +{ + size_t i, n = simd_oprsz(desc) / 4; + float16 *s = vs; + float32 *d0 = vd; + float32 *d1 = vd + sizeof(ARMVectorReg); + + for (i = 0; i < n; ++i) { + float32 v0 = sve_f16_to_f32(s[H2(i * 2 + 0)], fpst); + float32 v1 = sve_f16_to_f32(s[H2(i * 2 + 1)], fpst); + d0[H4(i)] = v0; + d1[H4(i)] = v1; + } +} + +void HELPER(sme2_scvtf)(void *vd, void *vs, float_status *fpst, uint32_t desc) +{ + size_t i, n = simd_oprsz(desc) / 4; + int32_t *d = vd; + float32 *s = vs; + + for (i = 0; i < n; ++i) { + d[i] = int32_to_float32(s[i], fpst); + } +} + +void HELPER(sme2_ucvtf)(void *vd, void *vs, float_status *fpst, uint32_t desc) +{ + size_t i, n = simd_oprsz(desc) / 4; + uint32_t *d = vd; + float32 *s = vs; + + for (i = 0; i < n; ++i) { + d[i] = uint32_to_float32(s[i], fpst); + } +} + +#define ZIP2(NAME, TYPE, H) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + ARMVectorReg scratch[2]; \ + size_t oprsz = simd_oprsz(desc); \ + size_t pairs = oprsz / (sizeof(TYPE) * 2); \ + TYPE *n = vn, *m = vm; \ + if (vectors_overlap(vd, 2, vn, 1)) { \ + n = memcpy(&scratch[0], vn, oprsz); \ + } \ + if (vectors_overlap(vd, 2, vm, 1)) { \ + m = memcpy(&scratch[1], vm, oprsz); \ + } \ + for (size_t r = 0; r < 2; ++r) { \ + TYPE *d = vd + r * sizeof(ARMVectorReg); \ + size_t base = r * pairs; \ + for (size_t p = 0; p < pairs; ++p) { \ + d[H(2 * p + 0)] = n[base + H(p)]; \ + d[H(2 * p + 1)] = m[base + H(p)]; \ + } \ + } \ +} + +ZIP2(sme2_zip2_b, uint8_t, H1) +ZIP2(sme2_zip2_h, uint16_t, H2) +ZIP2(sme2_zip2_s, uint32_t, H4) +ZIP2(sme2_zip2_d, uint64_t, ) +ZIP2(sme2_zip2_q, Int128, ) + +#undef ZIP2 + +#define ZIP4(NAME, TYPE, H) \ +void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \ +{ \ + ARMVectorReg scratch[4]; \ + size_t oprsz = simd_oprsz(desc); \ + size_t quads = oprsz / (sizeof(TYPE) * 4); \ + TYPE *s0, *s1, *s2, *s3; \ + if (vs == vd) { \ + vs = memcpy(scratch, vs, sizeof(scratch)); \ + } \ + s0 = vs; \ + s1 = vs + sizeof(ARMVectorReg); \ + s2 = vs + 2 * sizeof(ARMVectorReg); \ + s3 = vs + 3 * sizeof(ARMVectorReg); \ + for (size_t r = 0; r < 4; ++r) { \ + TYPE *d = vd + r * sizeof(ARMVectorReg); \ + size_t base = r * quads; \ + for (size_t q = 0; q < quads; ++q) { \ + d[H(4 * q + 0)] = s0[base + H(q)]; \ + d[H(4 * q + 1)] = s1[base + H(q)]; \ + d[H(4 * q + 2)] = s2[base + H(q)]; \ + d[H(4 * q + 3)] = s3[base + H(q)]; \ + } \ + } \ +} + +ZIP4(sme2_zip4_b, uint8_t, H1) +ZIP4(sme2_zip4_h, uint16_t, H2) +ZIP4(sme2_zip4_s, uint32_t, H4) +ZIP4(sme2_zip4_d, uint64_t, ) +ZIP4(sme2_zip4_q, Int128, ) + +#undef ZIP4 + +#define UZP2(NAME, TYPE, H) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + ARMVectorReg scratch[2]; \ + size_t oprsz = simd_oprsz(desc); \ + size_t pairs = oprsz / (sizeof(TYPE) * 2); \ + TYPE *d0 = vd, *d1 = vd + sizeof(ARMVectorReg); \ + if (vectors_overlap(vd, 2, vn, 1)) { \ + vn = memcpy(&scratch[0], vn, oprsz); \ + } \ + if (vectors_overlap(vd, 2, vm, 1)) { \ + vm = memcpy(&scratch[1], vm, oprsz); \ + } \ + for (size_t r = 0; r < 2; ++r) { \ + TYPE *s = r ? vm : vn; \ + size_t base = r * pairs; \ + for (size_t p = 0; p < pairs; ++p) { \ + d0[base + H(p)] = s[H(2 * p + 0)]; \ + d1[base + H(p)] = s[H(2 * p + 1)]; \ + } \ + } \ +} + +UZP2(sme2_uzp2_b, uint8_t, H1) +UZP2(sme2_uzp2_h, uint16_t, H2) +UZP2(sme2_uzp2_s, uint32_t, H4) +UZP2(sme2_uzp2_d, uint64_t, ) +UZP2(sme2_uzp2_q, Int128, ) + +#undef UZP2 + +#define UZP4(NAME, TYPE, H) \ +void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \ +{ \ + ARMVectorReg scratch[4]; \ + size_t oprsz = simd_oprsz(desc); \ + size_t quads = oprsz / (sizeof(TYPE) * 4); \ + TYPE *d0, *d1, *d2, *d3; \ + if (vs == vd) { \ + vs = memcpy(scratch, vs, sizeof(scratch)); \ + } \ + d0 = vd; \ + d1 = vd + sizeof(ARMVectorReg); \ + d2 = vd + 2 * sizeof(ARMVectorReg); \ + d3 = vd + 3 * sizeof(ARMVectorReg); \ + for (size_t r = 0; r < 4; ++r) { \ + TYPE *s = vs + r * sizeof(ARMVectorReg); \ + size_t base = r * quads; \ + for (size_t q = 0; q < quads; ++q) { \ + d0[base + H(q)] = s[H(4 * q + 0)]; \ + d1[base + H(q)] = s[H(4 * q + 1)]; \ + d2[base + H(q)] = s[H(4 * q + 2)]; \ + d3[base + H(q)] = s[H(4 * q + 3)]; \ + } \ + } \ +} + +UZP4(sme2_uzp4_b, uint8_t, H1) +UZP4(sme2_uzp4_h, uint16_t, H2) +UZP4(sme2_uzp4_s, uint32_t, H4) +UZP4(sme2_uzp4_d, uint64_t, ) +UZP4(sme2_uzp4_q, Int128, ) + +#undef UZP4 + +#define ICLAMP(NAME, TYPE, H) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + size_t stride = sizeof(ARMVectorReg) / sizeof(TYPE); \ + size_t elements = simd_oprsz(desc) / sizeof(TYPE); \ + size_t nreg = simd_data(desc); \ + TYPE *d = vd, *n = vn, *m = vm; \ + for (size_t e = 0; e < elements; e++) { \ + TYPE nn = n[H(e)], mm = m[H(e)]; \ + for (size_t r = 0; r < nreg; r++) { \ + TYPE *dd = &d[r * stride + H(e)]; \ + *dd = MIN(MAX(*dd, nn), mm); \ + } \ + } \ +} + +ICLAMP(sme2_sclamp_b, int8_t, H1) +ICLAMP(sme2_sclamp_h, int16_t, H2) +ICLAMP(sme2_sclamp_s, int32_t, H4) +ICLAMP(sme2_sclamp_d, int64_t, H8) + +ICLAMP(sme2_uclamp_b, uint8_t, H1) +ICLAMP(sme2_uclamp_h, uint16_t, H2) +ICLAMP(sme2_uclamp_s, uint32_t, H4) +ICLAMP(sme2_uclamp_d, uint64_t, H8) + +#undef ICLAMP + +/* + * Note the argument ordering to minnum and maxnum must match + * the ARM pseudocode so that NaNs are propagated properly. + */ +#define FCLAMP(NAME, TYPE, H) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, \ + float_status *fpst, uint32_t desc) \ +{ \ + size_t stride = sizeof(ARMVectorReg) / sizeof(TYPE); \ + size_t elements = simd_oprsz(desc) / sizeof(TYPE); \ + size_t nreg = simd_data(desc); \ + TYPE *d = vd, *n = vn, *m = vm; \ + for (size_t e = 0; e < elements; e++) { \ + TYPE nn = n[H(e)], mm = m[H(e)]; \ + for (size_t r = 0; r < nreg; r++) { \ + TYPE *dd = &d[r * stride + H(e)]; \ + *dd = TYPE##_minnum(TYPE##_maxnum(nn, *dd, fpst), mm, fpst); \ + } \ + } \ +} + +FCLAMP(sme2_fclamp_h, float16, H2) +FCLAMP(sme2_fclamp_s, float32, H4) +FCLAMP(sme2_fclamp_d, float64, H8) +FCLAMP(sme2_bfclamp, bfloat16, H2) + +#undef FCLAMP + +void HELPER(sme2_sel_b)(void *vd, void *vn, void *vm, + uint32_t png, uint32_t desc) +{ + int vl = simd_oprsz(desc); + int nreg = simd_data(desc); + int elements = vl / sizeof(uint8_t); + DecodeCounter p = decode_counter(png, vl, MO_8); + + if (p.lg2_stride == 0) { + if (p.invert) { + for (int r = 0; r < nreg; r++) { + uint8_t *d = vd + r * sizeof(ARMVectorReg); + uint8_t *n = vn + r * sizeof(ARMVectorReg); + uint8_t *m = vm + r * sizeof(ARMVectorReg); + int split = p.count - r * elements; + + if (split <= 0) { + memcpy(d, n, vl); /* all true */ + } else if (elements <= split) { + memcpy(d, m, vl); /* all false */ + } else { + for (int e = 0; e < split; e++) { + d[H1(e)] = m[H1(e)]; + } + for (int e = split; e < elements; e++) { + d[H1(e)] = n[H1(e)]; + } + } + } + } else { + for (int r = 0; r < nreg; r++) { + uint8_t *d = vd + r * sizeof(ARMVectorReg); + uint8_t *n = vn + r * sizeof(ARMVectorReg); + uint8_t *m = vm + r * sizeof(ARMVectorReg); + int split = p.count - r * elements; + + if (split <= 0) { + memcpy(d, m, vl); /* all false */ + } else if (elements <= split) { + memcpy(d, n, vl); /* all true */ + } else { + for (int e = 0; e < split; e++) { + d[H1(e)] = n[H1(e)]; + } + for (int e = split; e < elements; e++) { + d[H1(e)] = m[H1(e)]; + } + } + } + } + } else { + int estride = 1 << p.lg2_stride; + if (p.invert) { + for (int r = 0; r < nreg; r++) { + uint8_t *d = vd + r * sizeof(ARMVectorReg); + uint8_t *n = vn + r * sizeof(ARMVectorReg); + uint8_t *m = vm + r * sizeof(ARMVectorReg); + int split = p.count - r * elements; + int e = 0; + + for (; e < MIN(split, elements); e++) { + d[H1(e)] = m[H1(e)]; + } + for (; e < elements; e += estride) { + d[H1(e)] = n[H1(e)]; + for (int i = 1; i < estride; i++) { + d[H1(e + i)] = m[H1(e + i)]; + } + } + } + } else { + for (int r = 0; r < nreg; r++) { + uint8_t *d = vd + r * sizeof(ARMVectorReg); + uint8_t *n = vn + r * sizeof(ARMVectorReg); + uint8_t *m = vm + r * sizeof(ARMVectorReg); + int split = p.count - r * elements; + int e = 0; + + for (; e < MIN(split, elements); e += estride) { + d[H1(e)] = n[H1(e)]; + for (int i = 1; i < estride; i++) { + d[H1(e + i)] = m[H1(e + i)]; + } + } + for (; e < elements; e++) { + d[H1(e)] = m[H1(e)]; + } + } + } + } +} + +void HELPER(sme2_sel_h)(void *vd, void *vn, void *vm, + uint32_t png, uint32_t desc) +{ + int vl = simd_oprsz(desc); + int nreg = simd_data(desc); + int elements = vl / sizeof(uint16_t); + DecodeCounter p = decode_counter(png, vl, MO_16); + + if (p.lg2_stride == 0) { + if (p.invert) { + for (int r = 0; r < nreg; r++) { + uint16_t *d = vd + r * sizeof(ARMVectorReg); + uint16_t *n = vn + r * sizeof(ARMVectorReg); + uint16_t *m = vm + r * sizeof(ARMVectorReg); + int split = p.count - r * elements; + + if (split <= 0) { + memcpy(d, n, vl); /* all true */ + } else if (elements <= split) { + memcpy(d, m, vl); /* all false */ + } else { + for (int e = 0; e < split; e++) { + d[H2(e)] = m[H2(e)]; + } + for (int e = split; e < elements; e++) { + d[H2(e)] = n[H2(e)]; + } + } + } + } else { + for (int r = 0; r < nreg; r++) { + uint16_t *d = vd + r * sizeof(ARMVectorReg); + uint16_t *n = vn + r * sizeof(ARMVectorReg); + uint16_t *m = vm + r * sizeof(ARMVectorReg); + int split = p.count - r * elements; + + if (split <= 0) { + memcpy(d, m, vl); /* all false */ + } else if (elements <= split) { + memcpy(d, n, vl); /* all true */ + } else { + for (int e = 0; e < split; e++) { + d[H2(e)] = n[H2(e)]; + } + for (int e = split; e < elements; e++) { + d[H2(e)] = m[H2(e)]; + } + } + } + } + } else { + int estride = 1 << p.lg2_stride; + if (p.invert) { + for (int r = 0; r < nreg; r++) { + uint16_t *d = vd + r * sizeof(ARMVectorReg); + uint16_t *n = vn + r * sizeof(ARMVectorReg); + uint16_t *m = vm + r * sizeof(ARMVectorReg); + int split = p.count - r * elements; + int e = 0; + + for (; e < MIN(split, elements); e++) { + d[H2(e)] = m[H2(e)]; + } + for (; e < elements; e += estride) { + d[H2(e)] = n[H2(e)]; + for (int i = 1; i < estride; i++) { + d[H2(e + i)] = m[H2(e + i)]; + } + } + } + } else { + for (int r = 0; r < nreg; r++) { + uint16_t *d = vd + r * sizeof(ARMVectorReg); + uint16_t *n = vn + r * sizeof(ARMVectorReg); + uint16_t *m = vm + r * sizeof(ARMVectorReg); + int split = p.count - r * elements; + int e = 0; + + for (; e < MIN(split, elements); e += estride) { + d[H2(e)] = n[H2(e)]; + for (int i = 1; i < estride; i++) { + d[H2(e + i)] = m[H2(e + i)]; + } + } + for (; e < elements; e++) { + d[H2(e)] = m[H2(e)]; + } + } + } + } +} + +void HELPER(sme2_sel_s)(void *vd, void *vn, void *vm, + uint32_t png, uint32_t desc) +{ + int vl = simd_oprsz(desc); + int nreg = simd_data(desc); + int elements = vl / sizeof(uint32_t); + DecodeCounter p = decode_counter(png, vl, MO_32); + + if (p.lg2_stride == 0) { + if (p.invert) { + for (int r = 0; r < nreg; r++) { + uint32_t *d = vd + r * sizeof(ARMVectorReg); + uint32_t *n = vn + r * sizeof(ARMVectorReg); + uint32_t *m = vm + r * sizeof(ARMVectorReg); + int split = p.count - r * elements; + + if (split <= 0) { + memcpy(d, n, vl); /* all true */ + } else if (elements <= split) { + memcpy(d, m, vl); /* all false */ + } else { + for (int e = 0; e < split; e++) { + d[H4(e)] = m[H4(e)]; + } + for (int e = split; e < elements; e++) { + d[H4(e)] = n[H4(e)]; + } + } + } + } else { + for (int r = 0; r < nreg; r++) { + uint32_t *d = vd + r * sizeof(ARMVectorReg); + uint32_t *n = vn + r * sizeof(ARMVectorReg); + uint32_t *m = vm + r * sizeof(ARMVectorReg); + int split = p.count - r * elements; + + if (split <= 0) { + memcpy(d, m, vl); /* all false */ + } else if (elements <= split) { + memcpy(d, n, vl); /* all true */ + } else { + for (int e = 0; e < split; e++) { + d[H4(e)] = n[H4(e)]; + } + for (int e = split; e < elements; e++) { + d[H4(e)] = m[H4(e)]; + } + } + } + } + } else { + /* p.esz must be MO_64, so stride must be 2. */ + if (p.invert) { + for (int r = 0; r < nreg; r++) { + uint32_t *d = vd + r * sizeof(ARMVectorReg); + uint32_t *n = vn + r * sizeof(ARMVectorReg); + uint32_t *m = vm + r * sizeof(ARMVectorReg); + int split = p.count - r * elements; + int e = 0; + + for (; e < MIN(split, elements); e++) { + d[H4(e)] = m[H4(e)]; + } + for (; e < elements; e += 2) { + d[H4(e)] = n[H4(e)]; + d[H4(e + 1)] = m[H4(e + 1)]; + } + } + } else { + for (int r = 0; r < nreg; r++) { + uint32_t *d = vd + r * sizeof(ARMVectorReg); + uint32_t *n = vn + r * sizeof(ARMVectorReg); + uint32_t *m = vm + r * sizeof(ARMVectorReg); + int split = p.count - r * elements; + int e = 0; + + for (; e < MIN(split, elements); e += 2) { + d[H4(e)] = n[H4(e)]; + d[H4(e + 1)] = m[H4(e + 1)]; + } + for (; e < elements; e++) { + d[H4(e)] = m[H4(e)]; + } + } + } + } +} + +void HELPER(sme2_sel_d)(void *vd, void *vn, void *vm, + uint32_t png, uint32_t desc) +{ + int vl = simd_oprsz(desc); + int nreg = simd_data(desc); + int elements = vl / sizeof(uint64_t); + DecodeCounter p = decode_counter(png, vl, MO_64); + + if (p.invert) { + for (int r = 0; r < nreg; r++) { + uint64_t *d = vd + r * sizeof(ARMVectorReg); + uint64_t *n = vn + r * sizeof(ARMVectorReg); + uint64_t *m = vm + r * sizeof(ARMVectorReg); + int split = p.count - r * elements; + + if (split <= 0) { + memcpy(d, n, vl); /* all true */ + } else if (elements <= split) { + memcpy(d, m, vl); /* all false */ + } else { + memcpy(d, m, split * sizeof(uint64_t)); + memcpy(d + split, n + split, + (elements - split) * sizeof(uint64_t)); + } + } + } else { + for (int r = 0; r < nreg; r++) { + uint64_t *d = vd + r * sizeof(ARMVectorReg); + uint64_t *n = vn + r * sizeof(ARMVectorReg); + uint64_t *m = vm + r * sizeof(ARMVectorReg); + int split = p.count - r * elements; + + if (split <= 0) { + memcpy(d, m, vl); /* all false */ + } else if (elements <= split) { + memcpy(d, n, vl); /* all true */ + } else { + memcpy(d, n, split * sizeof(uint64_t)); + memcpy(d + split, m + split, + (elements - split) * sizeof(uint64_t)); + } + } + } +} |