diff options
Diffstat (limited to 'rust/common')
-rw-r--r-- | rust/common/Cargo.toml | 20 | ||||
-rw-r--r-- | rust/common/meson.build | 36 | ||||
-rw-r--r-- | rust/common/src/assertions.rs | 148 | ||||
-rw-r--r-- | rust/common/src/bitops.rs | 118 | ||||
-rw-r--r-- | rust/common/src/callbacks.rs | 216 | ||||
-rw-r--r-- | rust/common/src/errno.rs | 354 | ||||
-rw-r--r-- | rust/common/src/lib.rs | 22 | ||||
-rw-r--r-- | rust/common/src/opaque.rs | 236 | ||||
-rw-r--r-- | rust/common/src/uninit.rs | 85 | ||||
-rw-r--r-- | rust/common/src/zeroable.rs | 18 |
10 files changed, 1253 insertions, 0 deletions
diff --git a/rust/common/Cargo.toml b/rust/common/Cargo.toml new file mode 100644 index 0000000..0e1b4fc --- /dev/null +++ b/rust/common/Cargo.toml @@ -0,0 +1,20 @@ +[package] +name = "common" +version = "0.1.0" +description = "Rust common code for QEMU" +resolver = "2" +publish = false + +authors.workspace = true +edition.workspace = true +homepage.workspace = true +license.workspace = true +repository.workspace = true +rust-version.workspace = true + +[dependencies] +libc.workspace = true +qemu_macros = { path = "../qemu-macros" } + +[lints] +workspace = true diff --git a/rust/common/meson.build b/rust/common/meson.build new file mode 100644 index 0000000..aff601d --- /dev/null +++ b/rust/common/meson.build @@ -0,0 +1,36 @@ +_common_cfg = run_command(rustc_args, + '--config-headers', config_host_h, '--features', files('Cargo.toml'), + capture: true, check: true).stdout().strip().splitlines() + +_common_rs = static_library( + 'common', + structured_sources( + [ + 'src/lib.rs', + 'src/assertions.rs', + 'src/bitops.rs', + 'src/callbacks.rs', + 'src/errno.rs', + 'src/opaque.rs', + 'src/uninit.rs', + 'src/zeroable.rs', + ], + ), + override_options: ['rust_std=2021', 'build.rust_std=2021'], + rust_abi: 'rust', + rust_args: _common_cfg, + dependencies: [libc_rs, qemu_macros], +) + +common_rs = declare_dependency(link_with: [_common_rs]) + +rust.test('rust-common-tests', _common_rs, + suite: ['unit', 'rust']) + +# Doctests are essentially integration tests, so they need the same dependencies. +# Note that running them requires the object files for C code, so place them +# in a separate suite that is run by the "build" CI jobs rather than "check". +rust.doctest('rust-common-doctests', + _common_rs, + dependencies: common_rs, + suite: ['doc', 'rust']) diff --git a/rust/common/src/assertions.rs b/rust/common/src/assertions.rs new file mode 100644 index 0000000..91f83a5 --- /dev/null +++ b/rust/common/src/assertions.rs @@ -0,0 +1,148 @@ +// Copyright 2024, Red Hat Inc. +// Author(s): Paolo Bonzini <pbonzini@redhat.com> +// SPDX-License-Identifier: GPL-2.0-or-later + +#![doc(hidden)] +//! This module provides macros to check the equality of types and +//! the type of `struct` fields. This can be useful to ensure that +//! types match the expectations of C code. +//! +//! Documentation is hidden because it only exposes macros, which +//! are exported directly from `common`. + +// Based on https://stackoverflow.com/questions/64251852/x/70978292#70978292 +// (stackoverflow answers are released under MIT license). + +#[doc(hidden)] +pub trait EqType { + type Itself; +} + +impl<T> EqType for T { + type Itself = T; +} + +/// Assert that two types are the same. +/// +/// # Examples +/// +/// ``` +/// # use common::assert_same_type; +/// # use std::ops::Deref; +/// assert_same_type!(u32, u32); +/// assert_same_type!(<Box<u32> as Deref>::Target, u32); +/// ``` +/// +/// Different types will cause a compile failure +/// +/// ```compile_fail +/// # use common::assert_same_type; +/// assert_same_type!(&Box<u32>, &u32); +/// ``` +#[macro_export] +macro_rules! assert_same_type { + ($t1:ty, $t2:ty) => { + const _: () = { + #[allow(unused)] + fn assert_same_type(v: $t1) { + fn types_must_be_equal<T, U>(_: T) + where + T: $crate::assertions::EqType<Itself = U>, + { + } + types_must_be_equal::<_, $t2>(v); + } + }; + }; +} + +/// Assert that a field of a struct has the given type. +/// +/// # Examples +/// +/// ``` +/// # use common::assert_field_type; +/// pub struct A { +/// field1: u32, +/// } +/// +/// assert_field_type!(A, field1, u32); +/// ``` +/// +/// Different types will cause a compile failure +/// +/// ```compile_fail +/// # use common::assert_field_type; +/// # pub struct A { field1: u32 } +/// assert_field_type!(A, field1, i32); +/// ``` +#[macro_export] +macro_rules! assert_field_type { + (@internal $param_name:ident, $ti:ty, $t:ty, $($field:tt)*) => { + const _: () = { + #[allow(unused)] + const fn assert_field_type($param_name: &$t) { + const fn types_must_be_equal<T, U>(_: &T) + where + T: $crate::assertions::EqType<Itself = U>, + { + } + types_must_be_equal::<_, $ti>(&$($field)*); + } + }; + }; + + ($t:ty, $i:tt, $ti:ty) => { + $crate::assert_field_type!(@internal v, $ti, $t, v.$i); + }; +} + +/// Assert that an expression matches a pattern. This can also be +/// useful to compare enums that do not implement `Eq`. +/// +/// # Examples +/// +/// ``` +/// # use common::assert_match; +/// // JoinHandle does not implement `Eq`, therefore the result +/// // does not either. +/// let result: Result<std::thread::JoinHandle<()>, u32> = Err(42); +/// assert_match!(result, Err(42)); +/// ``` +#[macro_export] +macro_rules! assert_match { + ($a:expr, $b:pat) => { + assert!( + match $a { + $b => true, + _ => false, + }, + "{} = {:?} does not match {}", + stringify!($a), + $a, + stringify!($b) + ); + }; +} + +/// Assert at compile time that an expression is true. This is similar +/// to `const { assert!(...); }` but it works outside functions, as well as +/// on versions of Rust before 1.79. +/// +/// # Examples +/// +/// ``` +/// # use common::static_assert; +/// static_assert!("abc".len() == 3); +/// ``` +/// +/// ```compile_fail +/// # use common::static_assert; +/// static_assert!("abc".len() == 2); // does not compile +/// ``` +#[macro_export] +macro_rules! static_assert { + ($x:expr) => { + const _: () = assert!($x); + }; +} diff --git a/rust/common/src/bitops.rs b/rust/common/src/bitops.rs new file mode 100644 index 0000000..06c78c3 --- /dev/null +++ b/rust/common/src/bitops.rs @@ -0,0 +1,118 @@ +// Copyright (C) 2024 Intel Corporation. +// Author(s): Zhao Liu <zhao1.liu@intel.com> +// SPDX-License-Identifier: GPL-2.0-or-later + +//! This module provides bit operation extensions to integer types. + +use std::ops::{ + Add, AddAssign, BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Div, DivAssign, + Mul, MulAssign, Not, Rem, RemAssign, Shl, ShlAssign, Shr, ShrAssign, +}; + +/// Trait for extensions to integer types +pub trait IntegerExt: + Add<Self, Output = Self> + AddAssign<Self> + + BitAnd<Self, Output = Self> + BitAndAssign<Self> + + BitOr<Self, Output = Self> + BitOrAssign<Self> + + BitXor<Self, Output = Self> + BitXorAssign<Self> + + Copy + + Div<Self, Output = Self> + DivAssign<Self> + + Eq + + Mul<Self, Output = Self> + MulAssign<Self> + + Not<Output = Self> + Ord + PartialOrd + + Rem<Self, Output = Self> + RemAssign<Self> + + Shl<Self, Output = Self> + ShlAssign<Self> + + Shl<u32, Output = Self> + ShlAssign<u32> + // add more as needed + Shr<Self, Output = Self> + ShrAssign<Self> + + Shr<u32, Output = Self> + ShrAssign<u32> // add more as needed +{ + const BITS: u32; + const MAX: Self; + const MIN: Self; + const ONE: Self; + const ZERO: Self; + + #[inline] + #[must_use] + fn bit(start: u32) -> Self + { + debug_assert!(start < Self::BITS); + + Self::ONE << start + } + + #[inline] + #[must_use] + fn mask(start: u32, length: u32) -> Self + { + /* FIXME: Implement a more elegant check with error handling support? */ + debug_assert!(start < Self::BITS && length > 0 && length <= Self::BITS - start); + + (Self::MAX >> (Self::BITS - length)) << start + } + + #[inline] + #[must_use] + fn deposit<U: IntegerExt>(self, start: u32, length: u32, + fieldval: U) -> Self + where Self: From<U> + { + debug_assert!(length <= U::BITS); + + let mask = Self::mask(start, length); + (self & !mask) | ((Self::from(fieldval) << start) & mask) + } + + #[inline] + #[must_use] + fn extract(self, start: u32, length: u32) -> Self + { + let mask = Self::mask(start, length); + (self & mask) >> start + } +} + +macro_rules! impl_num_ext { + ($type:ty) => { + impl IntegerExt for $type { + const BITS: u32 = <$type>::BITS; + const MAX: Self = <$type>::MAX; + const MIN: Self = <$type>::MIN; + const ONE: Self = 1; + const ZERO: Self = 0; + } + }; +} + +impl_num_ext!(u8); +impl_num_ext!(u16); +impl_num_ext!(u32); +impl_num_ext!(u64); + +#[cfg(test)] +mod tests { + use super::*; + + #[test] + fn test_deposit() { + assert_eq!(15u32.deposit(8, 8, 1u32), 256 + 15); + assert_eq!(15u32.deposit(8, 1, 255u8), 256 + 15); + } + + #[test] + fn test_extract() { + assert_eq!(15u32.extract(2, 4), 3); + } + + #[test] + fn test_bit() { + assert_eq!(u8::bit(7), 128); + assert_eq!(u32::bit(16), 0x10000); + } + + #[test] + fn test_mask() { + assert_eq!(u8::mask(7, 1), 128); + assert_eq!(u32::mask(8, 8), 0xff00); + } +} diff --git a/rust/common/src/callbacks.rs b/rust/common/src/callbacks.rs new file mode 100644 index 0000000..b8898fe --- /dev/null +++ b/rust/common/src/callbacks.rs @@ -0,0 +1,216 @@ +// SPDX-License-Identifier: MIT + +//! Utility functions to deal with callbacks from C to Rust. + +use std::{mem, ptr::NonNull}; + +/// Trait for functions (types implementing [`Fn`]) that can be used as +/// callbacks. These include both zero-capture closures and function pointers. +/// +/// In Rust, calling a function through the `Fn` trait normally requires a +/// `self` parameter, even though for zero-sized functions (including function +/// pointers) the type itself contains all necessary information to call the +/// function. This trait provides a `call` function that doesn't require `self`, +/// allowing zero-sized functions to be called using only their type. +/// +/// This enables zero-sized functions to be passed entirely through generic +/// parameters and resolved at compile-time. A typical use is a function +/// receiving an unused parameter of generic type `F` and calling it via +/// `F::call` or passing it to another function via `func::<F>`. +/// +/// QEMU uses this trick to create wrappers to C callbacks. The wrappers +/// are needed to convert an opaque `*mut c_void` into a Rust reference, +/// but they only have a single opaque that they can use. The `FnCall` +/// trait makes it possible to use that opaque for `self` or any other +/// reference: +/// +/// ```ignore +/// // The compiler creates a new `rust_bh_cb` wrapper for each function +/// // passed to `qemu_bh_schedule_oneshot` below. +/// unsafe extern "C" fn rust_bh_cb<T, F: for<'a> FnCall<(&'a T,)>>( +/// opaque: *mut c_void, +/// ) { +/// // SAFETY: the opaque was passed as a reference to `T`. +/// F::call((unsafe { &*(opaque.cast::<T>()) }, )) +/// } +/// +/// // The `_f` parameter is unused but it helps the compiler build the appropriate `F`. +/// // Using a reference allows usage in const context. +/// fn qemu_bh_schedule_oneshot<T, F: for<'a> FnCall<(&'a T,)>>(_f: &F, opaque: &T) { +/// let cb: unsafe extern "C" fn(*mut c_void) = rust_bh_cb::<T, F>; +/// unsafe { +/// bindings::qemu_bh_schedule_oneshot(cb, opaque as *const T as *const c_void as *mut c_void) +/// } +/// } +/// ``` +/// +/// Each wrapper is a separate instance of `rust_bh_cb` and is therefore +/// compiled to a separate function ("monomorphization"). If you wanted +/// to pass `self` as the opaque value, the generic parameters would be +/// `rust_bh_cb::<Self, F>`. +/// +/// `Args` is a tuple type whose types are the arguments of the function, +/// while `R` is the returned type. +/// +/// # Examples +/// +/// ``` +/// # use common::callbacks::FnCall; +/// fn call_it<F: for<'a> FnCall<(&'a str,), String>>(_f: &F, s: &str) -> String { +/// F::call((s,)) +/// } +/// +/// let s: String = call_it(&str::to_owned, "hello world"); +/// assert_eq!(s, "hello world"); +/// ``` +/// +/// Note that the compiler will produce a different version of `call_it` for +/// each function that is passed to it. Therefore the argument is not really +/// used, except to decide what is `F` and what `F::call` does. +/// +/// Attempting to pass a non-zero-sized closure causes a compile-time failure: +/// +/// ```compile_fail +/// # use common::callbacks::FnCall; +/// # fn call_it<'a, F: FnCall<(&'a str,), String>>(_f: &F, s: &'a str) -> String { +/// # F::call((s,)) +/// # } +/// let x: &'static str = "goodbye world"; +/// call_it(&move |_| String::from(x), "hello workd"); +/// ``` +/// +/// `()` can be used to indicate "no function": +/// +/// ``` +/// # use common::callbacks::FnCall; +/// fn optional<F: for<'a> FnCall<(&'a str,), String>>(_f: &F, s: &str) -> Option<String> { +/// if F::IS_SOME { +/// Some(F::call((s,))) +/// } else { +/// None +/// } +/// } +/// +/// assert!(optional(&(), "hello world").is_none()); +/// ``` +/// +/// Invoking `F::call` will then be a run-time error. +/// +/// ```should_panic +/// # use common::callbacks::FnCall; +/// # fn call_it<F: for<'a> FnCall<(&'a str,), String>>(_f: &F, s: &str) -> String { +/// # F::call((s,)) +/// # } +/// let s: String = call_it(&(), "hello world"); // panics +/// ``` +/// +/// # Safety +/// +/// Because `Self` is a zero-sized type, all instances of the type are +/// equivalent. However, in addition to this, `Self` must have no invariants +/// that could be violated by creating a reference to it. +/// +/// This is always true for zero-capture closures and function pointers, as long +/// as the code is able to name the function in the first place. +pub unsafe trait FnCall<Args, R = ()>: 'static + Sync + Sized { + /// `true` if `Self` is an actual function type and not `()`. + /// + /// # Examples + /// + /// You can use `IS_SOME` to catch this at compile time: + /// + /// ```compile_fail + /// # use common::callbacks::FnCall; + /// fn call_it<F: for<'a> FnCall<(&'a str,), String>>(_f: &F, s: &str) -> String { + /// const { assert!(F::IS_SOME) } + /// F::call((s,)) + /// } + /// + /// let s: String = call_it((), "hello world"); // does not compile + /// ``` + const IS_SOME: bool; + + /// `false` if `Self` is an actual function type, `true` if it is `()`. + fn is_none() -> bool { + !Self::IS_SOME + } + + /// `true` if `Self` is an actual function type, `false` if it is `()`. + fn is_some() -> bool { + Self::IS_SOME + } + + /// Call the function with the arguments in args. + fn call(a: Args) -> R; +} + +/// `()` acts as a "null" callback. Using `()` and `function` is nicer +/// than `None` and `Some(function)`, because the compiler is unable to +/// infer the type of just `None`. Therefore, the trait itself acts as the +/// option type, with functions [`FnCall::is_some`] and [`FnCall::is_none`]. +unsafe impl<Args, R> FnCall<Args, R> for () { + const IS_SOME: bool = false; + + /// Call the function with the arguments in args. + fn call(_a: Args) -> R { + panic!("callback not specified") + } +} + +macro_rules! impl_call { + ($($args:ident,)* ) => ( + // SAFETY: because each function is treated as a separate type, + // accessing `FnCall` is only possible in code that would be + // allowed to call the function. + unsafe impl<F, $($args,)* R> FnCall<($($args,)*), R> for F + where + F: 'static + Sync + Sized + Fn($($args, )*) -> R, + { + const IS_SOME: bool = true; + + #[inline(always)] + fn call(a: ($($args,)*)) -> R { + const { assert!(mem::size_of::<Self>() == 0) }; + + // SAFETY: the safety of this method is the condition for implementing + // `FnCall`. As to the `NonNull` idiom to create a zero-sized type, + // see https://github.com/rust-lang/libs-team/issues/292. + let f: &'static F = unsafe { &*NonNull::<Self>::dangling().as_ptr() }; + let ($($args,)*) = a; + f($($args,)*) + } + } + ) +} + +impl_call!(_1, _2, _3, _4, _5,); +impl_call!(_1, _2, _3, _4,); +impl_call!(_1, _2, _3,); +impl_call!(_1, _2,); +impl_call!(_1,); +impl_call!(); + +#[cfg(test)] +mod tests { + use super::*; + + // The `_f` parameter is unused but it helps the compiler infer `F`. + fn do_test_call<'a, F: FnCall<(&'a str,), String>>(_f: &F) -> String { + F::call(("hello world",)) + } + + #[test] + fn test_call() { + assert_eq!(do_test_call(&str::to_owned), "hello world") + } + + // The `_f` parameter is unused but it helps the compiler infer `F`. + fn do_test_is_some<'a, F: FnCall<(&'a str,), String>>(_f: &F) { + assert!(F::is_some()); + } + + #[test] + fn test_is_some() { + do_test_is_some(&str::to_owned); + } +} diff --git a/rust/common/src/errno.rs b/rust/common/src/errno.rs new file mode 100644 index 0000000..64b2933 --- /dev/null +++ b/rust/common/src/errno.rs @@ -0,0 +1,354 @@ +// SPDX-License-Identifier: GPL-2.0-or-later + +//! Utility functions to convert `errno` to and from +//! [`io::Error`]/[`io::Result`] +//! +//! QEMU C functions often have a "positive success/negative `errno`" calling +//! convention. This module provides functions to portably convert an integer +//! into an [`io::Result`] and back. + +use std::{ + convert::{self, TryFrom}, + io::{self, ErrorKind}, +}; + +/// An `errno` value that can be converted into an [`io::Error`] +pub struct Errno(pub u16); + +// On Unix, from_raw_os_error takes an errno value and OS errors +// are printed using strerror. On Windows however it takes a +// GetLastError() value; therefore we need to convert errno values +// into io::Error by hand. This is the same mapping that the +// standard library uses to retrieve the kind of OS errors +// (`std::sys::pal::unix::decode_error_kind`). +impl From<Errno> for ErrorKind { + fn from(value: Errno) -> ErrorKind { + use ErrorKind::*; + let Errno(errno) = value; + match i32::from(errno) { + libc::EPERM | libc::EACCES => PermissionDenied, + libc::ENOENT => NotFound, + libc::EINTR => Interrupted, + x if x == libc::EAGAIN || x == libc::EWOULDBLOCK => WouldBlock, + libc::ENOMEM => OutOfMemory, + libc::EEXIST => AlreadyExists, + libc::EINVAL => InvalidInput, + libc::EPIPE => BrokenPipe, + libc::EADDRINUSE => AddrInUse, + libc::EADDRNOTAVAIL => AddrNotAvailable, + libc::ECONNABORTED => ConnectionAborted, + libc::ECONNREFUSED => ConnectionRefused, + libc::ECONNRESET => ConnectionReset, + libc::ENOTCONN => NotConnected, + libc::ENOTSUP => Unsupported, + libc::ETIMEDOUT => TimedOut, + _ => Other, + } + } +} + +// This is used on Windows for all io::Errors, but also on Unix if the +// io::Error does not have a raw OS error. This is the reversed +// mapping of the above; EIO is returned for unknown ErrorKinds. +impl From<io::ErrorKind> for Errno { + fn from(value: io::ErrorKind) -> Errno { + use ErrorKind::*; + let errno = match value { + // can be both EPERM or EACCES :( pick one + PermissionDenied => libc::EPERM, + NotFound => libc::ENOENT, + Interrupted => libc::EINTR, + WouldBlock => libc::EAGAIN, + OutOfMemory => libc::ENOMEM, + AlreadyExists => libc::EEXIST, + InvalidInput => libc::EINVAL, + BrokenPipe => libc::EPIPE, + AddrInUse => libc::EADDRINUSE, + AddrNotAvailable => libc::EADDRNOTAVAIL, + ConnectionAborted => libc::ECONNABORTED, + ConnectionRefused => libc::ECONNREFUSED, + ConnectionReset => libc::ECONNRESET, + NotConnected => libc::ENOTCONN, + Unsupported => libc::ENOTSUP, + TimedOut => libc::ETIMEDOUT, + _ => libc::EIO, + }; + Errno(errno as u16) + } +} + +impl From<Errno> for io::Error { + #[cfg(unix)] + fn from(value: Errno) -> io::Error { + let Errno(errno) = value; + io::Error::from_raw_os_error(errno.into()) + } + + #[cfg(windows)] + fn from(value: Errno) -> io::Error { + let error_kind: ErrorKind = value.into(); + error_kind.into() + } +} + +impl From<io::Error> for Errno { + fn from(value: io::Error) -> Errno { + if cfg!(unix) { + if let Some(errno) = value.raw_os_error() { + return Errno(u16::try_from(errno).unwrap()); + } + } + value.kind().into() + } +} + +impl From<convert::Infallible> for Errno { + fn from(_value: convert::Infallible) -> Errno { + panic!("unreachable") + } +} + +/// Internal traits; used to enable [`into_io_result`] and [`into_neg_errno`] +/// for the "right" set of types. +mod traits { + use super::Errno; + + /// A signed type that can be converted into an + /// [`io::Result`](std::io::Result) + pub trait GetErrno { + /// Unsigned variant of `Self`, used as the type for the `Ok` case. + type Out; + + /// Return `Ok(self)` if positive, `Err(Errno(-self))` if negative + fn into_errno_result(self) -> Result<Self::Out, Errno>; + } + + /// A type that can be taken out of an [`io::Result`](std::io::Result) and + /// converted into "positive success/negative `errno`" convention. + pub trait MergeErrno { + /// Signed variant of `Self`, used as the return type of + /// [`into_neg_errno`](super::into_neg_errno). + type Out: From<u16> + std::ops::Neg<Output = Self::Out>; + + /// Return `self`, asserting that it is in range + fn map_ok(self) -> Self::Out; + } + + macro_rules! get_errno { + ($t:ty, $out:ty) => { + impl GetErrno for $t { + type Out = $out; + fn into_errno_result(self) -> Result<Self::Out, Errno> { + match self { + 0.. => Ok(self as $out), + -65535..=-1 => Err(Errno(-self as u16)), + _ => panic!("{self} is not a negative errno"), + } + } + } + }; + } + + get_errno!(i32, u32); + get_errno!(i64, u64); + get_errno!(isize, usize); + + macro_rules! merge_errno { + ($t:ty, $out:ty) => { + impl MergeErrno for $t { + type Out = $out; + fn map_ok(self) -> Self::Out { + self.try_into().unwrap() + } + } + }; + } + + merge_errno!(u8, i32); + merge_errno!(u16, i32); + merge_errno!(u32, i32); + merge_errno!(u64, i64); + + impl MergeErrno for () { + type Out = i32; + fn map_ok(self) -> i32 { + 0 + } + } +} + +use traits::{GetErrno, MergeErrno}; + +/// Convert an integer value into a [`io::Result`]. +/// +/// Positive values are turned into an `Ok` result; negative values +/// are interpreted as negated `errno` and turned into an `Err`. +/// +/// ``` +/// # use common::errno::into_io_result; +/// # use std::io::ErrorKind; +/// let ok = into_io_result(1i32).unwrap(); +/// assert_eq!(ok, 1u32); +/// +/// let err = into_io_result(-1i32).unwrap_err(); // -EPERM +/// assert_eq!(err.kind(), ErrorKind::PermissionDenied); +/// ``` +/// +/// # Panics +/// +/// Since the result is an unsigned integer, negative values must +/// be close to 0; values that are too far away are considered +/// likely overflows and will panic: +/// +/// ```should_panic +/// # use common::errno::into_io_result; +/// # #[allow(dead_code)] +/// let err = into_io_result(-0x1234_5678i32); // panic +/// ``` +pub fn into_io_result<T: GetErrno>(value: T) -> io::Result<T::Out> { + value.into_errno_result().map_err(Into::into) +} + +/// Convert a [`Result`] into an integer value, using negative `errno` +/// values to report errors. +/// +/// ``` +/// # use common::errno::into_neg_errno; +/// # use std::io::{self, ErrorKind}; +/// let ok: io::Result<()> = Ok(()); +/// assert_eq!(into_neg_errno(ok), 0); +/// +/// let err: io::Result<()> = Err(ErrorKind::InvalidInput.into()); +/// assert_eq!(into_neg_errno(err), -22); // -EINVAL +/// ``` +/// +/// Since this module also provides the ability to convert [`io::Error`] +/// to an `errno` value, [`io::Result`] is the most commonly used type +/// for the argument of this function: +/// +/// # Panics +/// +/// Since the result is a signed integer, integer `Ok` values must remain +/// positive: +/// +/// ```should_panic +/// # use common::errno::into_neg_errno; +/// # use std::io; +/// let err: io::Result<u32> = Ok(0x8899_AABB); +/// into_neg_errno(err) // panic +/// # ; +/// ``` +pub fn into_neg_errno<T: MergeErrno, E: Into<Errno>>(value: Result<T, E>) -> T::Out { + match value { + Ok(x) => x.map_ok(), + Err(err) => -T::Out::from(err.into().0), + } +} + +#[cfg(test)] +mod tests { + use std::io::ErrorKind; + + use super::*; + use crate::assert_match; + + #[test] + pub fn test_from_u8() { + let ok: io::Result<_> = Ok(42u8); + assert_eq!(into_neg_errno(ok), 42); + + let err: io::Result<u8> = Err(io::ErrorKind::PermissionDenied.into()); + assert_eq!(into_neg_errno(err), -1); + + if cfg!(unix) { + let os_err: io::Result<u8> = Err(io::Error::from_raw_os_error(10)); + assert_eq!(into_neg_errno(os_err), -10); + } + } + + #[test] + pub fn test_from_u16() { + let ok: io::Result<_> = Ok(1234u16); + assert_eq!(into_neg_errno(ok), 1234); + + let err: io::Result<u16> = Err(io::ErrorKind::PermissionDenied.into()); + assert_eq!(into_neg_errno(err), -1); + + if cfg!(unix) { + let os_err: io::Result<u16> = Err(io::Error::from_raw_os_error(10)); + assert_eq!(into_neg_errno(os_err), -10); + } + } + + #[test] + pub fn test_i32() { + assert_match!(into_io_result(1234i32), Ok(1234)); + + let err = into_io_result(-1i32).unwrap_err(); + #[cfg(unix)] + assert_match!(err.raw_os_error(), Some(1)); + assert_match!(err.kind(), ErrorKind::PermissionDenied); + } + + #[test] + pub fn test_from_u32() { + let ok: io::Result<_> = Ok(1234u32); + assert_eq!(into_neg_errno(ok), 1234); + + let err: io::Result<u32> = Err(io::ErrorKind::PermissionDenied.into()); + assert_eq!(into_neg_errno(err), -1); + + if cfg!(unix) { + let os_err: io::Result<u32> = Err(io::Error::from_raw_os_error(10)); + assert_eq!(into_neg_errno(os_err), -10); + } + } + + #[test] + pub fn test_i64() { + assert_match!(into_io_result(1234i64), Ok(1234)); + + let err = into_io_result(-22i64).unwrap_err(); + #[cfg(unix)] + assert_match!(err.raw_os_error(), Some(22)); + assert_match!(err.kind(), ErrorKind::InvalidInput); + } + + #[test] + pub fn test_from_u64() { + let ok: io::Result<_> = Ok(1234u64); + assert_eq!(into_neg_errno(ok), 1234); + + let err: io::Result<u64> = Err(io::ErrorKind::InvalidInput.into()); + assert_eq!(into_neg_errno(err), -22); + + if cfg!(unix) { + let os_err: io::Result<u64> = Err(io::Error::from_raw_os_error(6)); + assert_eq!(into_neg_errno(os_err), -6); + } + } + + #[test] + pub fn test_isize() { + assert_match!(into_io_result(1234isize), Ok(1234)); + + let err = into_io_result(-4isize).unwrap_err(); + #[cfg(unix)] + assert_match!(err.raw_os_error(), Some(4)); + assert_match!(err.kind(), ErrorKind::Interrupted); + } + + #[test] + pub fn test_from_unit() { + let ok: io::Result<_> = Ok(()); + assert_eq!(into_neg_errno(ok), 0); + + let err: io::Result<()> = Err(io::ErrorKind::OutOfMemory.into()); + assert_eq!(into_neg_errno(err), -12); + + if cfg!(unix) { + let os_err: io::Result<()> = Err(io::Error::from_raw_os_error(2)); + assert_eq!(into_neg_errno(os_err), -2); + } + } +} diff --git a/rust/common/src/lib.rs b/rust/common/src/lib.rs new file mode 100644 index 0000000..8311bf9 --- /dev/null +++ b/rust/common/src/lib.rs @@ -0,0 +1,22 @@ +// SPDX-License-Identifier: GPL-2.0-or-later + +pub use qemu_macros::{TryInto, Wrapper}; + +pub mod assertions; + +pub mod bitops; + +pub mod callbacks; +pub use callbacks::FnCall; + +pub mod errno; +pub use errno::Errno; + +pub mod opaque; +pub use opaque::{Opaque, Wrapper}; + +pub mod uninit; +pub use uninit::MaybeUninitField; + +pub mod zeroable; +pub use zeroable::Zeroable; diff --git a/rust/common/src/opaque.rs b/rust/common/src/opaque.rs new file mode 100644 index 0000000..c941fb4 --- /dev/null +++ b/rust/common/src/opaque.rs @@ -0,0 +1,236 @@ +// SPDX-License-Identifier: MIT + +//! ## Opaque wrappers +//! +//! The cell types from the previous section are useful at the boundaries +//! of code that requires interior mutability. When writing glue code that +//! interacts directly with C structs, however, it is useful to operate +//! at a lower level. +//! +//! C functions often violate Rust's fundamental assumptions about memory +//! safety by modifying memory even if it is shared. Furthermore, C structs +//! often start their life uninitialized and may be populated lazily. +//! +//! For this reason, this module provides the [`Opaque<T>`] type to opt out +//! of Rust's usual guarantees about the wrapped type. Access to the wrapped +//! value is always through raw pointers, obtained via methods like +//! [`as_mut_ptr()`](Opaque::as_mut_ptr) and [`as_ptr()`](Opaque::as_ptr). These +//! pointers can then be passed to C functions or dereferenced; both actions +//! require `unsafe` blocks, making it clear where safety guarantees must be +//! manually verified. For example +//! +//! ```ignore +//! unsafe { +//! let state = Opaque::<MyStruct>::uninit(); +//! qemu_struct_init(state.as_mut_ptr()); +//! } +//! ``` +//! +//! [`Opaque<T>`] will usually be wrapped one level further, so that +//! bridge methods can be added to the wrapper: +//! +//! ```ignore +//! pub struct MyStruct(Opaque<bindings::MyStruct>); +//! +//! impl MyStruct { +//! fn new() -> Pin<Box<MyStruct>> { +//! let result = Box::pin(unsafe { Opaque::uninit() }); +//! unsafe { qemu_struct_init(result.as_mut_ptr()) }; +//! result +//! } +//! } +//! ``` +//! +//! This pattern of wrapping bindgen-generated types in [`Opaque<T>`] provides +//! several advantages: +//! +//! * The choice of traits to be implemented is not limited by the +//! bindgen-generated code. For example, [`Drop`] can be added without +//! disabling [`Copy`] on the underlying bindgen type +//! +//! * [`Send`] and [`Sync`] implementations can be controlled by the wrapper +//! type rather than being automatically derived from the C struct's layout +//! +//! * Methods can be implemented in a separate crate from the bindgen-generated +//! bindings +//! +//! * [`Debug`](std::fmt::Debug) and [`Display`](std::fmt::Display) +//! implementations can be customized to be more readable than the raw C +//! struct representation +//! +//! The [`Opaque<T>`] type does not include BQL validation; it is possible to +//! assert in the code that the right lock is taken, to use it together +//! with a custom lock guard type, or to let C code take the lock, as +//! appropriate. It is also possible to use it with non-thread-safe +//! types, since by default (unlike [`BqlCell`] and [`BqlRefCell`] +//! it is neither `Sync` nor `Send`. +//! +//! While [`Opaque<T>`] is necessary for C interop, it should be used sparingly +//! and only at FFI boundaries. For QEMU-specific types that need interior +//! mutability, prefer [`BqlCell`] or [`BqlRefCell`]. +//! +//! [`BqlCell`]: ../../bql/cell/struct.BqlCell.html +//! [`BqlRefCell`]: ../../bql/cell/struct.BqlRefCell.html +use std::{cell::UnsafeCell, fmt, marker::PhantomPinned, mem::MaybeUninit, ptr::NonNull}; + +/// Stores an opaque value that is shared with C code. +/// +/// Often, C structs can changed when calling a C function even if they are +/// behind a shared Rust reference, or they can be initialized lazily and have +/// invalid bit patterns (e.g. `3` for a [`bool`]). This goes against Rust's +/// strict aliasing rules, which normally prevent mutation through shared +/// references. +/// +/// Wrapping the struct with `Opaque<T>` ensures that the Rust compiler does not +/// assume the usual constraints that Rust structs require, and allows using +/// shared references on the Rust side. +/// +/// `Opaque<T>` is `#[repr(transparent)]`, so that it matches the memory layout +/// of `T`. +#[repr(transparent)] +pub struct Opaque<T> { + value: UnsafeCell<MaybeUninit<T>>, + // PhantomPinned also allows multiple references to the `Opaque<T>`, i.e. + // one `&mut Opaque<T>` can coexist with a `&mut T` or any number of `&T`; + // see https://docs.rs/pinned-aliasable/latest/pinned_aliasable/. + _pin: PhantomPinned, +} + +impl<T> Opaque<T> { + /// Creates a new shared reference from a C pointer + /// + /// # Safety + /// + /// The pointer must be valid, though it need not point to a valid value. + pub unsafe fn from_raw<'a>(ptr: *mut T) -> &'a Self { + let ptr = NonNull::new(ptr).unwrap().cast::<Self>(); + // SAFETY: Self is a transparent wrapper over T + unsafe { ptr.as_ref() } + } + + /// Creates a new opaque object with uninitialized contents. + /// + /// # Safety + /// + /// Ultimately the pointer to the returned value will be dereferenced + /// in another `unsafe` block, for example when passing it to a C function, + /// but the functions containing the dereference are usually safe. The + /// value returned from `uninit()` must be initialized and pinned before + /// calling them. + pub const unsafe fn uninit() -> Self { + Self { + value: UnsafeCell::new(MaybeUninit::uninit()), + _pin: PhantomPinned, + } + } + + /// Creates a new opaque object with zeroed contents. + /// + /// # Safety + /// + /// Ultimately the pointer to the returned value will be dereferenced + /// in another `unsafe` block, for example when passing it to a C function, + /// but the functions containing the dereference are usually safe. The + /// value returned from `uninit()` must be pinned (and possibly initialized) + /// before calling them. + pub const unsafe fn zeroed() -> Self { + Self { + value: UnsafeCell::new(MaybeUninit::zeroed()), + _pin: PhantomPinned, + } + } + + /// Returns a raw mutable pointer to the opaque data. + pub const fn as_mut_ptr(&self) -> *mut T { + UnsafeCell::get(&self.value).cast() + } + + /// Returns a raw pointer to the opaque data. + pub const fn as_ptr(&self) -> *const T { + self.as_mut_ptr().cast_const() + } + + /// Returns a raw pointer to the opaque data that can be passed to a + /// C function as `void *`. + pub const fn as_void_ptr(&self) -> *mut std::ffi::c_void { + UnsafeCell::get(&self.value).cast() + } + + /// Converts a raw pointer to the wrapped type. + pub const fn raw_get(slot: *mut Self) -> *mut T { + // Compare with Linux's raw_get method, which goes through an UnsafeCell + // because it takes a *const Self instead. + slot.cast() + } +} + +impl<T> fmt::Debug for Opaque<T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + let mut name: String = "Opaque<".to_string(); + name += std::any::type_name::<T>(); + name += ">"; + f.debug_tuple(&name).field(&self.as_ptr()).finish() + } +} + +impl<T: Default> Opaque<T> { + /// Creates a new opaque object with default contents. + /// + /// # Safety + /// + /// Ultimately the pointer to the returned value will be dereferenced + /// in another `unsafe` block, for example when passing it to a C function, + /// but the functions containing the dereference are usually safe. The + /// value returned from `uninit()` must be pinned before calling them. + pub unsafe fn new() -> Self { + Self { + value: UnsafeCell::new(MaybeUninit::new(T::default())), + _pin: PhantomPinned, + } + } +} + +/// Annotates [`Self`] as a transparent wrapper for another type. +/// +/// Usually defined via the [`crate::Wrapper`] derive macro. +/// +/// # Examples +/// +/// ``` +/// # use std::mem::ManuallyDrop; +/// # use common::opaque::Wrapper; +/// #[repr(transparent)] +/// pub struct Example { +/// inner: ManuallyDrop<String>, +/// } +/// +/// unsafe impl Wrapper for Example { +/// type Wrapped = String; +/// } +/// ``` +/// +/// # Safety +/// +/// `Self` must be a `#[repr(transparent)]` wrapper for the `Wrapped` type, +/// whether directly or indirectly. +/// +/// # Methods +/// +/// By convention, types that implement Wrapper also implement the following +/// methods: +/// +/// ```ignore +/// pub const unsafe fn from_raw<'a>(value: *mut Self::Wrapped) -> &'a Self; +/// pub const unsafe fn as_mut_ptr(&self) -> *mut Self::Wrapped; +/// pub const unsafe fn as_ptr(&self) -> *const Self::Wrapped; +/// pub const unsafe fn raw_get(slot: *mut Self) -> *const Self::Wrapped; +/// ``` +/// +/// They are not defined here to allow them to be `const`. +pub unsafe trait Wrapper { + type Wrapped; +} + +unsafe impl<T> Wrapper for Opaque<T> { + type Wrapped = T; +} diff --git a/rust/common/src/uninit.rs b/rust/common/src/uninit.rs new file mode 100644 index 0000000..8d021b1 --- /dev/null +++ b/rust/common/src/uninit.rs @@ -0,0 +1,85 @@ +//! Access fields of a [`MaybeUninit`] + +use std::{ + mem::MaybeUninit, + ops::{Deref, DerefMut}, +}; + +pub struct MaybeUninitField<'a, T, U> { + parent: &'a mut MaybeUninit<T>, + child: *mut U, +} + +impl<'a, T, U> MaybeUninitField<'a, T, U> { + #[doc(hidden)] + pub const fn new(parent: &'a mut MaybeUninit<T>, child: *mut U) -> Self { + MaybeUninitField { parent, child } + } + + /// Return a constant pointer to the containing object of the field. + /// + /// Because the `MaybeUninitField` remembers the containing object, + /// it is possible to use it in foreign APIs that initialize the + /// child. + pub const fn parent(f: &Self) -> *const T { + f.parent.as_ptr() + } + + /// Return a mutable pointer to the containing object. + /// + /// Because the `MaybeUninitField` remembers the containing object, + /// it is possible to use it in foreign APIs that initialize the + /// child. + pub const fn parent_mut(f: &mut Self) -> *mut T { + f.parent.as_mut_ptr() + } +} + +impl<T, U> Deref for MaybeUninitField<'_, T, U> { + type Target = MaybeUninit<U>; + + fn deref(&self) -> &MaybeUninit<U> { + // SAFETY: self.child was obtained by dereferencing a valid mutable + // reference; the content of the memory may be invalid or uninitialized + // but MaybeUninit<_> makes no assumption on it + unsafe { &*(self.child.cast()) } + } +} + +impl<T, U> DerefMut for MaybeUninitField<'_, T, U> { + fn deref_mut(&mut self) -> &mut MaybeUninit<U> { + // SAFETY: self.child was obtained by dereferencing a valid mutable + // reference; the content of the memory may be invalid or uninitialized + // but MaybeUninit<_> makes no assumption on it + unsafe { &mut *(self.child.cast()) } + } +} + +/// ``` +/// #[derive(Debug)] +/// struct S { +/// x: u32, +/// y: u32, +/// } +/// +/// # use std::mem::MaybeUninit; +/// # use common::{assert_match, uninit_field_mut}; +/// +/// let mut s: MaybeUninit<S> = MaybeUninit::zeroed(); +/// uninit_field_mut!(s, x).write(5); +/// let s = unsafe { s.assume_init() }; +/// assert_match!(s, S { x: 5, y: 0 }); +/// ``` +#[macro_export] +macro_rules! uninit_field_mut { + ($container:expr, $($field:tt)+) => {{ + let container__: &mut ::std::mem::MaybeUninit<_> = &mut $container; + let container_ptr__ = container__.as_mut_ptr(); + + // SAFETY: the container is not used directly, only through a MaybeUninit<>, + // so the safety is delegated to the caller and to final invocation of + // assume_init() + let target__ = unsafe { std::ptr::addr_of_mut!((*container_ptr__).$($field)+) }; + $crate::uninit::MaybeUninitField::new(container__, target__) + }}; +} diff --git a/rust/common/src/zeroable.rs b/rust/common/src/zeroable.rs new file mode 100644 index 0000000..fd056de --- /dev/null +++ b/rust/common/src/zeroable.rs @@ -0,0 +1,18 @@ +// SPDX-License-Identifier: GPL-2.0-or-later + +//! Defines a trait for structs that can be safely initialized with zero bytes. + +/// Encapsulates the requirement that +/// `MaybeUninit::<Self>::zeroed().assume_init()` does not cause undefined +/// behavior. +/// +/// # Safety +/// +/// Do not add this trait to a type unless all-zeroes is a valid value for the +/// type. In particular, raw pointers can be zero, but references and +/// `NonNull<T>` cannot. +pub unsafe trait Zeroable: Default { + /// Return a value of Self whose memory representation consists of all + /// zeroes, with the possible exclusion of padding bytes. + const ZERO: Self = unsafe { ::core::mem::MaybeUninit::<Self>::zeroed().assume_init() }; +} |