1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
|
#ifndef LIBOMP_TEST_TOPOLOGY_H
#define LIBOMP_TEST_TOPOLOGY_H
#include "libomp_test_affinity.h"
#include <stdio.h>
#include <stdlib.h>
#include <dirent.h>
#include <errno.h>
#include <ctype.h>
#include <omp.h>
#include <stdarg.h>
typedef enum topology_obj_type_t {
TOPOLOGY_OBJ_THREAD,
TOPOLOGY_OBJ_CORE,
TOPOLOGY_OBJ_SOCKET,
TOPOLOGY_OBJ_MAX
} topology_obj_type_t;
typedef struct place_list_t {
int num_places;
int current_place;
int *place_nums;
affinity_mask_t **masks;
} place_list_t;
// Return the first character in file 'f' that is not a whitespace character
// including newlines and carriage returns
static int get_first_nonspace_from_file(FILE *f) {
int c;
do {
c = fgetc(f);
} while (c != EOF && (isspace(c) || c == '\n' || c == '\r'));
return c;
}
// Read an integer from file 'f' into 'number'
// Return 1 on successful read of integer,
// 0 on unsuccessful read of integer,
// EOF on end of file.
static int get_integer_from_file(FILE *f, int *number) {
int n;
n = fscanf(f, "%d", number);
if (feof(f))
return EOF;
if (n != 1)
return 0;
return 1;
}
// Read a siblings list file from Linux /sys/devices/system/cpu/cpu?/topology/*
static affinity_mask_t *topology_get_mask_from_file(const char *filename) {
int status = EXIT_SUCCESS;
FILE *f = fopen(filename, "r");
if (!f) {
perror(filename);
exit(EXIT_FAILURE);
}
affinity_mask_t *mask = affinity_mask_alloc();
while (1) {
int c, i, n, lower, upper;
// Read the first integer
n = get_integer_from_file(f, &lower);
if (n == EOF) {
break;
} else if (n == 0) {
fprintf(stderr, "syntax error: expected integer\n");
status = EXIT_FAILURE;
break;
}
// Now either a , or -
c = get_first_nonspace_from_file(f);
if (c == EOF || c == ',') {
affinity_mask_set(mask, lower);
if (c == EOF)
break;
} else if (c == '-') {
n = get_integer_from_file(f, &upper);
if (n == EOF || n == 0) {
fprintf(stderr, "syntax error: expected integer\n");
status = EXIT_FAILURE;
break;
}
for (i = lower; i <= upper; ++i)
affinity_mask_set(mask, i);
c = get_first_nonspace_from_file(f);
if (c == EOF) {
break;
} else if (c == ',') {
continue;
} else {
fprintf(stderr, "syntax error: unexpected character: '%c (%d)'\n", c,
c);
status = EXIT_FAILURE;
break;
}
} else {
fprintf(stderr, "syntax error: unexpected character: '%c (%d)'\n", c, c);
status = EXIT_FAILURE;
break;
}
}
fclose(f);
if (status == EXIT_FAILURE) {
affinity_mask_free(mask);
mask = NULL;
}
return mask;
}
static int topology_get_num_cpus() {
char buf[1024];
// Count the number of cpus
int cpu = 0;
while (1) {
snprintf(buf, sizeof(buf), "/sys/devices/system/cpu/cpu%d", cpu);
DIR *dir = opendir(buf);
if (dir) {
closedir(dir);
cpu++;
} else {
break;
}
}
if (cpu == 0)
cpu = 1;
return cpu;
}
// Return whether the current thread has access to all logical processors
static int topology_using_full_mask() {
int cpu;
int has_all = 1;
int num_cpus = topology_get_num_cpus();
affinity_mask_t *mask = affinity_mask_alloc();
get_thread_affinity(mask);
for (cpu = 0; cpu < num_cpus; ++cpu) {
if (!affinity_mask_isset(mask, cpu)) {
has_all = 0;
break;
}
}
affinity_mask_free(mask);
return has_all;
}
// Return array of masks representing OMP_PLACES keyword (e.g., sockets, cores,
// threads)
static place_list_t *topology_alloc_type_places(topology_obj_type_t type) {
char buf[1024];
int i, cpu, num_places, num_unique;
int *place_nums;
int num_cpus = topology_get_num_cpus();
place_list_t *places = (place_list_t *)malloc(sizeof(place_list_t));
affinity_mask_t **masks =
(affinity_mask_t **)malloc(sizeof(affinity_mask_t *) * num_cpus);
num_unique = 0;
for (cpu = 0; cpu < num_cpus; ++cpu) {
affinity_mask_t *mask;
if (type == TOPOLOGY_OBJ_CORE) {
snprintf(buf, sizeof(buf),
"/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list",
cpu);
mask = topology_get_mask_from_file(buf);
} else if (type == TOPOLOGY_OBJ_SOCKET) {
snprintf(buf, sizeof(buf),
"/sys/devices/system/cpu/cpu%d/topology/core_siblings_list",
cpu);
mask = topology_get_mask_from_file(buf);
} else if (type == TOPOLOGY_OBJ_THREAD) {
mask = affinity_mask_alloc();
affinity_mask_set(mask, cpu);
} else {
fprintf(stderr, "Unknown topology type (%d)\n", (int)type);
exit(EXIT_FAILURE);
}
// Check for unique topology objects above the thread level
if (type != TOPOLOGY_OBJ_THREAD) {
for (i = 0; i < num_unique; ++i) {
if (affinity_mask_equal(masks[i], mask)) {
affinity_mask_free(mask);
mask = NULL;
break;
}
}
}
if (mask)
masks[num_unique++] = mask;
}
place_nums = (int *)malloc(sizeof(int) * num_unique);
for (i = 0; i < num_unique; ++i)
place_nums[i] = i;
places->num_places = num_unique;
places->masks = masks;
places->place_nums = place_nums;
places->current_place = -1;
return places;
}
static place_list_t *topology_alloc_openmp_places() {
int place, i;
int num_places = omp_get_num_places();
place_list_t *places = (place_list_t *)malloc(sizeof(place_list_t));
affinity_mask_t **masks =
(affinity_mask_t **)malloc(sizeof(affinity_mask_t *) * num_places);
int *place_nums = (int *)malloc(sizeof(int) * num_places);
for (place = 0; place < num_places; ++place) {
int num_procs = omp_get_place_num_procs(place);
int *ids = (int *)malloc(sizeof(int) * num_procs);
omp_get_place_proc_ids(place, ids);
affinity_mask_t *mask = affinity_mask_alloc();
for (i = 0; i < num_procs; ++i)
affinity_mask_set(mask, ids[i]);
masks[place] = mask;
place_nums[place] = place;
}
places->num_places = num_places;
places->place_nums = place_nums;
places->masks = masks;
places->current_place = omp_get_place_num();
return places;
}
static place_list_t *topology_alloc_openmp_partition() {
int p, i;
int num_places = omp_get_partition_num_places();
place_list_t *places = (place_list_t *)malloc(sizeof(place_list_t));
int *place_nums = (int *)malloc(sizeof(int) * num_places);
affinity_mask_t **masks =
(affinity_mask_t **)malloc(sizeof(affinity_mask_t *) * num_places);
omp_get_partition_place_nums(place_nums);
for (p = 0; p < num_places; ++p) {
int place = place_nums[p];
int num_procs = omp_get_place_num_procs(place);
int *ids = (int *)malloc(sizeof(int) * num_procs);
if (num_procs == 0) {
fprintf(stderr, "place %d has 0 procs?\n", place);
exit(EXIT_FAILURE);
}
omp_get_place_proc_ids(place, ids);
affinity_mask_t *mask = affinity_mask_alloc();
for (i = 0; i < num_procs; ++i)
affinity_mask_set(mask, ids[i]);
if (affinity_mask_count(mask) == 0) {
fprintf(stderr, "place %d has 0 procs set?\n", place);
exit(EXIT_FAILURE);
}
masks[p] = mask;
}
places->num_places = num_places;
places->place_nums = place_nums;
places->masks = masks;
places->current_place = omp_get_place_num();
return places;
}
// Free the array of masks from one of: topology_alloc_type_masks()
// or topology_alloc_openmp_masks()
static void topology_free_places(place_list_t *places) {
int i;
for (i = 0; i < places->num_places; ++i)
affinity_mask_free(places->masks[i]);
free(places->masks);
free(places->place_nums);
free(places);
}
static void topology_print_places(const place_list_t *p) {
int i;
char buf[1024];
for (i = 0; i < p->num_places; ++i) {
affinity_mask_snprintf(buf, sizeof(buf), p->masks[i]);
printf("Place %d: %s\n", p->place_nums[i], buf);
}
}
// Print out an error message, possibly with two problem place lists,
// and then exit with failure
static void proc_bind_die(omp_proc_bind_t proc_bind, int T, int P,
const char *format, ...) {
va_list args;
va_start(args, format);
const char *pb;
switch (proc_bind) {
case omp_proc_bind_false:
pb = "False";
break;
case omp_proc_bind_true:
pb = "True";
break;
case omp_proc_bind_master:
pb = "Master (Primary)";
break;
case omp_proc_bind_close:
pb = "Close";
break;
case omp_proc_bind_spread:
pb = "Spread";
break;
default:
pb = "(Unknown Proc Bind Type)";
break;
}
if (proc_bind == omp_proc_bind_spread || proc_bind == omp_proc_bind_close) {
if (T <= P) {
fprintf(stderr, "%s : (T(%d) <= P(%d)) : ", pb, T, P);
} else {
fprintf(stderr, "%s : (T(%d) > P(%d)) : ", pb, T, P);
}
} else {
fprintf(stderr, "%s : T = %d, P = %d : ", pb, T, P);
}
vfprintf(stderr, format, args);
va_end(args);
exit(EXIT_FAILURE);
}
// Return 1 on failure, 0 on success.
static void proc_bind_check(omp_proc_bind_t proc_bind,
const place_list_t *parent, place_list_t **children,
int nchildren) {
place_list_t *partition;
int T, i, j, place, low, high, first, last, count, current_place, num_places;
const int *place_nums;
int P = parent->num_places;
// Find the correct T (there could be null entries in children)
place_list_t **partitions =
(place_list_t **)malloc(sizeof(place_list_t *) * nchildren);
T = 0;
for (i = 0; i < nchildren; ++i)
if (children[i])
partitions[T++] = children[i];
// Only able to check spread, close, master (primary)
if (proc_bind != omp_proc_bind_spread && proc_bind != omp_proc_bind_close &&
proc_bind != omp_proc_bind_master)
proc_bind_die(proc_bind, T, P, NULL, NULL,
"Cannot check this proc bind type\n");
if (proc_bind == omp_proc_bind_spread) {
if (T <= P) {
// Run through each subpartition
for (i = 0; i < T; ++i) {
partition = partitions[i];
place_nums = partition->place_nums;
num_places = partition->num_places;
current_place = partition->current_place;
// Correct count?
low = P / T;
high = P / T + (P % T ? 1 : 0);
if (num_places != low && num_places != high) {
proc_bind_die(proc_bind, T, P,
"Incorrect number of places for thread %d: %d. "
"Expecting between %d and %d\n",
i, num_places, low, high);
}
// Consecutive places?
for (j = 1; j < num_places; ++j) {
if (place_nums[j] != (place_nums[j - 1] + 1) % P) {
proc_bind_die(proc_bind, T, P,
"Not consecutive places: %d, %d in partition\n",
place_nums[j - 1], place_nums[j]);
}
}
first = place_nums[0];
last = place_nums[num_places - 1];
// Primary thread executes on place of the parent thread?
if (i == 0) {
if (current_place != parent->current_place) {
proc_bind_die(
proc_bind, T, P,
"Primary thread not on same place (%d) as parent thread (%d)\n",
current_place, parent->current_place);
}
} else {
// Thread's current place is first place within it's partition?
if (current_place != first) {
proc_bind_die(proc_bind, T, P,
"Thread's current place (%d) is not the first place "
"in its partition [%d, %d]\n",
current_place, first, last);
}
}
// Partitions don't have intersections?
int f1 = first;
int l1 = last;
for (j = 0; j < i; ++j) {
int f2 = partitions[j]->place_nums[0];
int l2 = partitions[j]->place_nums[partitions[j]->num_places - 1];
if (f1 > l1 && f2 > l2) {
proc_bind_die(proc_bind, T, P,
"partitions intersect. [%d, %d] and [%d, %d]\n", f1,
l1, f2, l2);
}
if (f1 > l1 && f2 <= l2)
if (f1 < l2 || l1 > f2) {
proc_bind_die(proc_bind, T, P,
"partitions intersect. [%d, %d] and [%d, %d]\n", f1,
l1, f2, l2);
}
if (f1 <= l1 && f2 > l2)
if (f2 < l1 || l2 > f1) {
proc_bind_die(proc_bind, T, P,
"partitions intersect. [%d, %d] and [%d, %d]\n", f1,
l1, f2, l2);
}
if (f1 <= l1 && f2 <= l2)
if (!(f2 > l1 || l2 < f1)) {
proc_bind_die(proc_bind, T, P,
"partitions intersect. [%d, %d] and [%d, %d]\n", f1,
l1, f2, l2);
}
}
}
} else {
// T > P
// Each partition has only one place?
for (i = 0; i < T; ++i) {
if (partitions[i]->num_places != 1) {
proc_bind_die(
proc_bind, T, P,
"Incorrect number of places for thread %d: %d. Expecting 1\n", i,
partitions[i]->num_places);
}
}
// Correct number of consecutive threads per partition?
low = T / P;
high = T / P + (T % P ? 1 : 0);
for (i = 1, count = 1; i < T; ++i) {
if (partitions[i]->place_nums[0] == partitions[i - 1]->place_nums[0]) {
count++;
if (count > high) {
proc_bind_die(
proc_bind, T, P,
"Too many threads have place %d for their partition\n",
partitions[i]->place_nums[0]);
}
} else {
if (count < low) {
proc_bind_die(
proc_bind, T, P,
"Not enough threads have place %d for their partition\n",
partitions[i]->place_nums[0]);
}
count = 1;
}
}
// Primary thread executes on place of the parent thread?
current_place = partitions[0]->place_nums[0];
if (parent->current_place != -1 &&
current_place != parent->current_place) {
proc_bind_die(
proc_bind, T, P,
"Primary thread not on same place (%d) as parent thread (%d)\n",
current_place, parent->current_place);
}
}
} else if (proc_bind == omp_proc_bind_close ||
proc_bind == omp_proc_bind_master) {
// Check that each subpartition is the same as the parent
for (i = 0; i < T; ++i) {
partition = partitions[i];
place_nums = partition->place_nums;
num_places = partition->num_places;
current_place = partition->current_place;
if (parent->num_places != num_places) {
proc_bind_die(proc_bind, T, P,
"Number of places in subpartition (%d) does not match "
"parent (%d)\n",
num_places, parent->num_places);
}
for (j = 0; j < num_places; ++j) {
if (parent->place_nums[j] != place_nums[j]) {
proc_bind_die(proc_bind, T, P,
"Subpartition place (%d) does not match "
"parent partition place (%d)\n",
place_nums[j], parent->place_nums[j]);
}
}
}
// Find index into place_nums of current place for parent
for (j = 0; j < parent->num_places; ++j)
if (parent->place_nums[j] == parent->current_place)
break;
if (proc_bind == omp_proc_bind_close) {
if (T <= P) {
// close T <= P
// check place assignment for each thread
for (i = 0; i < T; ++i) {
partition = partitions[i];
current_place = partition->current_place;
if (current_place != parent->place_nums[j]) {
proc_bind_die(
proc_bind, T, P,
"Thread %d's current place (%d) is incorrect. expected %d\n", i,
current_place, parent->place_nums[j]);
}
j = (j + 1) % parent->num_places;
}
} else {
// close T > P
// check place assignment for each thread
low = T / P;
high = T / P + (T % P ? 1 : 0);
count = 1;
if (partitions[0]->current_place != parent->current_place) {
proc_bind_die(
proc_bind, T, P,
"Primary thread's place (%d) is not parent thread's place (%d)\n",
partitions[0]->current_place, parent->current_place);
}
for (i = 1; i < T; ++i) {
current_place = partitions[i]->current_place;
if (current_place == parent->place_nums[j]) {
count++;
if (count > high) {
proc_bind_die(
proc_bind, T, P,
"Too many threads have place %d for their current place\n",
current_place);
}
} else {
if (count < low) {
proc_bind_die(
proc_bind, T, P,
"Not enough threads have place %d for their current place\n",
parent->place_nums[j]);
}
j = (j + 1) % parent->num_places;
if (current_place != parent->place_nums[j]) {
proc_bind_die(
proc_bind, T, P,
"Thread %d's place (%d) is not corret. Expected %d\n", i,
partitions[i]->current_place, parent->place_nums[j]);
}
count = 1;
}
}
}
} else {
// proc_bind_primary
// Every thread should be assigned to the primary thread's place
for (i = 0; i < T; ++i) {
if (partitions[i]->current_place != parent->current_place) {
proc_bind_die(
proc_bind, T, P,
"Thread %d's place (%d) is not the primary thread's place (%d)\n",
i, partitions[i]->current_place, parent->current_place);
}
}
}
}
// Check that each partition's current place is within the partition
for (i = 0; i < T; ++i) {
current_place = partitions[i]->current_place;
num_places = partitions[i]->num_places;
first = partitions[i]->place_nums[0];
last = partitions[i]->place_nums[num_places - 1];
for (j = 0; j < num_places; ++j)
if (partitions[i]->place_nums[j] == current_place)
break;
if (j == num_places) {
proc_bind_die(proc_bind, T, P,
"Thread %d's current place (%d) is not within its "
"partition [%d, %d]\n",
i, current_place, first, last);
}
}
free(partitions);
}
#endif
|