aboutsummaryrefslogtreecommitdiff
path: root/mlir/test/python/integration/dialects/linalg/opsrun.py
blob: 8f202318146ee421011ca726a4383f656169c4d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# RUN: %PYTHON %s 2>&1 | FileCheck %s

import ctypes
import sys
from mlir.ir import *
from mlir.dialects import builtin
from mlir.dialects import func
from mlir.dialects import linalg
from mlir.passmanager import *
from mlir.execution_engine import *

from mlir.dialects.linalg.opdsl.lang import *


# Log everything to stderr and flush so that we have a unified stream to match
# errors/info emitted by MLIR to stderr.
def log(*args):
    print(*args, file=sys.stderr)
    sys.stderr.flush()


fill_boiler = """
func.func @main() -> i32 attributes {llvm.emit_c_interface} {
  %O0 = memref.alloc() : memref<i32>
  %O1 = memref.alloc() : memref<16xi32>
  %O2 = memref.alloc() : memref<4x16xi32>

  %val0 = arith.constant 1.0 : f32
  %val1 = arith.constant 2.0 : f32
  %val2 = arith.constant 3.0 : f32

  call @fill_0d_on_buffers(%val0, %O0) : (f32, memref<i32>) -> ()
  call @fill_1d_on_buffers(%val1, %O1) : (f32, memref<16xi32>) -> ()
  call @fill_2d_on_buffers(%val2, %O2) : (f32, memref<4x16xi32>) -> ()

  %c0 = arith.constant 0 : index
  %res0 = memref.load %O0[] : memref<i32>
  %c8 = arith.constant 8 : index
  %res1 = memref.load %O1[%c8] : memref<16xi32>
  %c2 = arith.constant 2 : index
  %res2 = memref.load %O2[%c2, %c8] : memref<4x16xi32>

  %0 = arith.addi %res0, %res1 : i32
  %1 = arith.addi %0, %res2 : i32

  // TODO: FFI-based solution to allow testing and printing with python code.
  return %1 : i32
}
"""

fill_rng_boiler = """
func.func @main() -> i32 attributes {llvm.emit_c_interface} {
  %O = memref.alloc() : memref<4x16xi32>
  %min = arith.constant -1000.0 : f64
  %max = arith.constant 1000.0 : f64
  %seed = arith.constant 42 : i32

  call @fill_rng_on_buffers(%min, %max, %seed, %O) :
    (f64, f64, i32, memref<4x16xi32>) -> ()

  %c0 = arith.constant 0 : index
  %0 = memref.load %O[%c0, %c0] : memref<4x16xi32>

  // TODO: FFI-based solution to allow testing and printing with python code.
  return %0 : i32
}
"""

conv_boiler = """
func.func @main() -> i32 attributes {llvm.emit_c_interface} {
  %v0 = arith.constant 0 : i32
  %v1 = arith.constant 1.0 : f64
  %v2 = arith.constant 2.0 : f64

  %input = memref.alloc() : memref<1x4x16x1xf64>
  %filter = memref.alloc() : memref<2x2x1xf64>
  %output = memref.alloc() : memref<1x2x4x1xi32>
  linalg.fill ins(%v1 : f64) outs(%input : memref<1x4x16x1xf64>)
  linalg.fill ins(%v2 : f64) outs(%filter : memref<2x2x1xf64>)
  linalg.fill ins(%v0 : i32) outs(%output : memref<1x2x4x1xi32>)

  call @conv_on_buffers(%input, %filter, %output) :
    (memref<1x4x16x1xf64>, memref<2x2x1xf64>, memref<1x2x4x1xi32>) -> ()

  %c0 = arith.constant 0 : index
  %0 = memref.load %output[%c0, %c0, %c0, %c0] : memref<1x2x4x1xi32>

  // TODO: FFI-based solution to allow testing and printing with python code.
  return %0 : i32
}
"""

pooling_boiler = """
func.func @main() -> i32 attributes {llvm.emit_c_interface} {
  %v0 = arith.constant 0 : i32
  %v42 = arith.constant 42.0 : f64
  %v77 = arith.constant 77.0 : f64
  %v-13 = arith.constant -13.0 : f64
  %v1 = arith.constant 1.0 : f64

  %input = memref.alloc() : memref<1x4x16x1xf64>
  %shape = memref.alloc() : memref<2x2xf64>
  %output = memref.alloc() : memref<1x2x4x1xi32>
  linalg.fill ins(%v1 : f64) outs(%input : memref<1x4x16x1xf64>)
  linalg.fill ins(%v1 : f64) outs(%shape : memref<2x2xf64>)
  linalg.fill ins(%v0 : i32) outs(%output : memref<1x2x4x1xi32>)

  %c0 = arith.constant 0 : index
  %c1 = arith.constant 1 : index
  %c2 = arith.constant 2 : index
  memref.store %v42, %input[%c0, %c0, %c0, %c0] : memref<1x4x16x1xf64>
  memref.store %v77, %input[%c0, %c0, %c1, %c0] : memref<1x4x16x1xf64>
  memref.store %v-13, %input[%c0, %c1, %c0, %c0] : memref<1x4x16x1xf64>

  call @pooling_on_buffers(%input, %shape, %output) :
    (memref<1x4x16x1xf64>, memref<2x2xf64>, memref<1x2x4x1xi32>) -> ()

  %0 = memref.load %output[%c0, %c0, %c0, %c0] : memref<1x2x4x1xi32>

  // TODO: FFI-based solution to allow testing and printing with python code.
  return %0 : i32
}
"""


def transform(module, boilerplate):
    # TODO: Allow cloning functions from one module to another.
    # Atm we have to resort to string concatenation.
    ops = module.operation.regions[0].blocks[0].operations
    mod = Module.parse("\n".join([str(op) for op in ops]) + boilerplate)

    pm = PassManager("builtin.module")
    pm.add("func.func(convert-linalg-to-loops)")
    pm.add("func.func(lower-affine)")
    pm.add("func.func(convert-math-to-llvm)")
    pm.add("func.func(convert-scf-to-cf)")
    pm.add("func.func(arith-expand)")
    pm.add("func.func(memref-expand)")
    pm.add("convert-vector-to-llvm")
    pm.add("finalize-memref-to-llvm")
    pm.add("convert-func-to-llvm")
    pm.add("convert-arith-to-llvm")
    pm.add("convert-cf-to-llvm")
    pm.add("reconcile-unrealized-casts")
    pm.run(mod.operation)
    return mod


def test_fill_builtin():
    with Context() as ctx, Location.unknown():
        module = Module.create()
        f32 = F32Type.get()
        i32 = IntegerType.get_signless(32)
        with InsertionPoint(module.body):

            @func.FuncOp.from_py_func(f32, MemRefType.get([], i32))
            def fill_0d_on_buffers(value, out):
                linalg.fill(value, outs=[out])

            @func.FuncOp.from_py_func(f32, MemRefType.get([16], i32))
            def fill_1d_on_buffers(value, out):
                linalg.fill(value, outs=[out])

            @func.FuncOp.from_py_func(f32, MemRefType.get([4, 16], i32))
            def fill_2d_on_buffers(value, out):
                linalg.fill(value, outs=[out])

        execution_engine = ExecutionEngine(transform(module, fill_boiler))

        # TODO: FFI-based solution to allow testing and printing with python code.
        # Prepare arguments: one result i32.
        # Arguments must be passed as pointers.
        c_int_p = ctypes.c_int * 1
        res = c_int_p(-1)
        execution_engine.invoke("main", res)

        log("RESULT: ", res[0])
        # CHECK: RESULT: 6


test_fill_builtin()


def test_fill_generic():
    with Context() as ctx, Location.unknown():
        module = Module.create()
        f32 = F32Type.get()
        i32 = IntegerType.get_signless(32)
        with InsertionPoint(module.body):

            @func.FuncOp.from_py_func(f32, MemRefType.get([], i32))
            def fill_0d_on_buffers(value, out):
                linalg.fill(value, outs=[out], emit_generic=True)

            @func.FuncOp.from_py_func(f32, MemRefType.get([16], i32))
            def fill_1d_on_buffers(value, out):
                linalg.fill(value, outs=[out], emit_generic=True)

            @func.FuncOp.from_py_func(f32, MemRefType.get([4, 16], i32))
            def fill_2d_on_buffers(value, out):
                linalg.fill(value, outs=[out], emit_generic=True)

        execution_engine = ExecutionEngine(transform(module, fill_boiler))

        # TODO: FFI-based solution to allow testing and printing with python code.
        # Prepare arguments: one result i32.
        # Arguments must be passed as pointers.
        c_int_p = ctypes.c_int * 1
        res = c_int_p(-1)
        execution_engine.invoke("main", res)

        log("RESULT: ", res[0])
        # CHECK: RESULT: 6


test_fill_generic()


def test_fill_rng_builtin():
    with Context() as ctx, Location.unknown():
        module = Module.create()
        f64 = F64Type.get()
        i32 = IntegerType.get_signless(32)
        with InsertionPoint(module.body):

            @func.FuncOp.from_py_func(f64, f64, i32, MemRefType.get((4, 16), i32))
            def fill_rng_on_buffers(min, max, seed, out):
                linalg.fill_rng_2d(min, max, seed, outs=[out])

        execution_engine = ExecutionEngine(transform(module, fill_rng_boiler))

        # TODO: FFI-based solution to allow testing and printing with python code.
        # Prepare arguments: one result i32.
        # Arguments must be passed as pointers.
        c_int_p = ctypes.c_int * 1
        res = c_int_p(-1)
        execution_engine.invoke("main", res)

        log("RESULT: ", res[0])
        # CHECK: RESULT: -480


test_fill_rng_builtin()


def test_fill_rng_generic():
    with Context() as ctx, Location.unknown():
        module = Module.create()
        f64 = F64Type.get()
        i32 = IntegerType.get_signless(32)
        with InsertionPoint(module.body):

            @func.FuncOp.from_py_func(f64, f64, i32, MemRefType.get((4, 16), i32))
            def fill_rng_on_buffers(min, max, seed, out):
                linalg.fill_rng_2d(min, max, seed, outs=[out], emit_generic=True)

        execution_engine = ExecutionEngine(transform(module, fill_rng_boiler))

        # TODO: FFI-based solution to allow testing and printing with python code.
        # Prepare arguments: one result i32.
        # Arguments must be passed as pointers.
        c_int_p = ctypes.c_int * 1
        res = c_int_p(-1)
        execution_engine.invoke("main", res)

        log("RESULT: ", res[0])
        # CHECK: RESULT: -480


test_fill_rng_generic()


def test_max_pooling_builtin():
    with Context() as ctx, Location.unknown():
        module = Module.create()
        f64 = F64Type.get()
        i32 = IntegerType.get_signless(32)
        with InsertionPoint(module.body):

            @func.FuncOp.from_py_func(
                MemRefType.get((1, 4, 16, 1), f64),
                MemRefType.get((2, 2), f64),
                MemRefType.get((1, 2, 4, 1), i32),
            )
            def pooling_on_buffers(input, shape, output):
                linalg.pooling_nhwc_max(
                    input, shape, outs=[output], strides=[2, 4], dilations=[1, 2]
                )

        execution_engine = ExecutionEngine(transform(module, pooling_boiler))

        # TODO: FFI-based solution to allow testing and printing with python code.
        # Prepare arguments: one result i32.
        # Arguments must be passed as pointers.
        c_int_p = ctypes.c_int * 1
        res = c_int_p(-1)
        execution_engine.invoke("main", res)

        log("RESULT: ", res[0])
        # 77 is not selected due to the dilation 2 in the second dimension.
        # CHECK: RESULT: 42


test_max_pooling_builtin()


def test_max_pooling_generic():
    with Context() as ctx, Location.unknown():
        module = Module.create()
        f64 = F64Type.get()
        i32 = IntegerType.get_signless(32)
        with InsertionPoint(module.body):

            @func.FuncOp.from_py_func(
                MemRefType.get((1, 4, 16, 1), f64),
                MemRefType.get((2, 2), f64),
                MemRefType.get((1, 2, 4, 1), i32),
            )
            def pooling_on_buffers(input, shape, output):
                linalg.pooling_nhwc_max(
                    input,
                    shape,
                    outs=[output],
                    strides=[2, 4],
                    dilations=[1, 2],
                    emit_generic=True,
                )

        execution_engine = ExecutionEngine(transform(module, pooling_boiler))

        # TODO: FFI-based solution to allow testing and printing with python code.
        # Prepare arguments: one result i32.
        # Arguments must be passed as pointers.
        c_int_p = ctypes.c_int * 1
        res = c_int_p(-1)
        execution_engine.invoke("main", res)

        log("RESULT: ", res[0])
        # 77 is not selected due to the dilation 2 in the second dimension.
        # CHECK: RESULT: 42


test_max_pooling_generic()


def test_min_pooling_builtin():
    with Context() as ctx, Location.unknown():
        module = Module.create()
        f64 = F64Type.get()
        i32 = IntegerType.get_signless(32)
        with InsertionPoint(module.body):

            @func.FuncOp.from_py_func(
                MemRefType.get((1, 4, 16, 1), f64),
                MemRefType.get((2, 2), f64),
                MemRefType.get((1, 2, 4, 1), i32),
            )
            # Set the strides and use the default dilations.
            def pooling_on_buffers(input, shape, output):
                linalg.pooling_nhwc_min(input, shape, outs=[output], strides=[2, 4])

        execution_engine = ExecutionEngine(transform(module, pooling_boiler))

        # TODO: FFI-based solution to allow testing and printing with python code.
        # Prepare arguments: one result i32.
        # Arguments must be passed as pointers.
        c_int_p = ctypes.c_int * 1
        res = c_int_p(-1)
        execution_engine.invoke("main", res)

        log("RESULT: ", res[0])
        # CHECK: RESULT: -13


test_min_pooling_builtin()


def test_min_pooling_generic():
    with Context() as ctx, Location.unknown():
        module = Module.create()
        f64 = F64Type.get()
        i32 = IntegerType.get_signless(32)
        with InsertionPoint(module.body):

            @func.FuncOp.from_py_func(
                MemRefType.get((1, 4, 16, 1), f64),
                MemRefType.get((2, 2), f64),
                MemRefType.get((1, 2, 4, 1), i32),
            )
            # Set the strides and use the default dilations.
            def pooling_on_buffers(input, shape, output):
                linalg.pooling_nhwc_min(
                    input, shape, outs=[output], strides=[2, 4], emit_generic=True
                )

        execution_engine = ExecutionEngine(transform(module, pooling_boiler))

        # TODO: FFI-based solution to allow testing and printing with python code.
        # Prepare arguments: one result i32.
        # Arguments must be passed as pointers.
        c_int_p = ctypes.c_int * 1
        res = c_int_p(-1)
        execution_engine.invoke("main", res)

        log("RESULT: ", res[0])
        # CHECK: RESULT: -13


test_min_pooling_generic()