aboutsummaryrefslogtreecommitdiff
path: root/mlir/test/python/dialects/tensor.py
blob: ca9066b239111ba1575d487d257601bd8df0dd63 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# RUN: %PYTHON %s | FileCheck %s

from mlir.ir import *
import mlir.dialects.arith as arith
import mlir.dialects.func as func
import mlir.dialects.tensor as tensor
from mlir.extras import types as T


def run(f):
    print("\nTEST:", f.__name__)
    f()
    return f


# CHECK-LABEL: TEST: testDimOp
@run
def testDimOp():
    with Context() as ctx, Location.unknown():
        module = Module.create()
        f32Type = F32Type.get()
        indexType = IndexType.get()
        with InsertionPoint(module.body):

            @func.FuncOp.from_py_func(
                RankedTensorType.get(
                    (ShapedType.get_dynamic_size(), ShapedType.get_dynamic_size()),
                    f32Type,
                )
            )
            #      CHECK: func @tensor_static_dim
            # CHECK-SAME:     %[[ARG0:.+]]: tensor<?x?xf32>
            #  CHECK-DAG:   %[[C0:.+]] = arith.constant 0 : index
            #  CHECK-DAG:   %[[C1:.+]] = arith.constant 1 : index
            #      CHECK:   %[[D0:.+]] = tensor.dim %[[ARG0]], %[[C0]]
            #      CHECK:   %[[D1:.+]] = tensor.dim %[[ARG0]], %[[C1]]
            #      CHECK:   return %[[D0]], %[[D1]]
            def tensor_static_dim(t):
                c0 = arith.ConstantOp(indexType, 0)
                c1 = arith.ConstantOp(indexType, 1)
                d0 = tensor.DimOp(t, c0)
                d1 = tensor.DimOp(t, c1)
                return [d0.result, d1.result]

        print(module)


# CHECK-LABEL: TEST: testEmptyOp
@run
def testEmptyOp():
    with Context() as ctx, Location.unknown():
        module = Module.create()
        f32 = F32Type.get()
        with InsertionPoint(module.body):
            # CHECK-LABEL: func @static_sizes
            # CHECK: %0 = tensor.empty() : tensor<3x4xf32>
            @func.FuncOp.from_py_func()
            def static_sizes():
                return tensor.EmptyOp([3, 4], f32)

            # CHECK-LABEL: func @dynamic_sizes
            # CHECK: %0 = tensor.empty(%arg0, %arg1) : tensor<?x?xf32>
            @func.FuncOp.from_py_func(IndexType.get(), IndexType.get())
            def dynamic_sizes(d0, d1):
                return tensor.EmptyOp([d0, d1], f32)

            # CHECK-LABEL: func @mixed_static_dynamic_sizes
            # CHECK: %0 = tensor.empty(%arg0) : tensor<?x4xf32>
            @func.FuncOp.from_py_func(IndexType.get())
            def mixed_static_dynamic_sizes(d0):
                return tensor.EmptyOp([d0, 4], f32)

            # CHECK-LABEL: func @zero_d
            # CHECK: %0 = tensor.empty() : tensor<f32>
            @func.FuncOp.from_py_func()
            def zero_d():
                return tensor.EmptyOp([], f32)

    print(module)


# CHECK-LABEL: TEST: testInferTypesInsertSlice
@run
def testInferTypesInsertSlice():
    with Context() as ctx, Location.unknown():
        module = Module.create()
        f32Type = F32Type.get()
        with InsertionPoint(module.body):

            @func.FuncOp.from_py_func(
                RankedTensorType.get((1, 1), f32Type),
                RankedTensorType.get((1, 1), f32Type),
            )
            # CHECK: func @f
            # CHECK:      tensor.insert_slice %arg0 into %arg1[0, 0] [1, 1] [0, 0] :
            # CHECK-SAME:   tensor<1x1xf32> into tensor<1x1xf32>
            def f(source, dest):
                d0 = tensor.InsertSliceOp(
                    source,
                    dest,
                    [],
                    [],
                    [],
                    DenseI64ArrayAttr.get([0, 0]),
                    DenseI64ArrayAttr.get([1, 1]),
                    DenseI64ArrayAttr.get([0, 0]),
                )
                return [d0.result]

    print(module)


# CHECK-LABEL: TEST: testFromElementsOp
@run
def testFromElementsOp():
    with Context() as ctx, Location.unknown():
        module = Module.create()
        f32 = F32Type.get()
        with InsertionPoint(module.body):

            @func.FuncOp.from_py_func()
            def default_builder():
                c0 = arith.ConstantOp(f32, 0.0)
                # CHECK: %[[C0:.*]] = "arith.constant
                # CHECK-SAME: value = 0.000000e+00 : f32
                print(c0)
                c1 = arith.ConstantOp(f32, 1.0)
                # CHECK: %[[C1:.*]] = "arith.constant
                # CHECK-SAME: value = 1.000000e+00 : f32
                print(c1)

                t = tensor.FromElementsOp(RankedTensorType.get((2,), f32), [c0, c1])
                # CHECK: %{{.*}} = "tensor.from_elements"(%[[C0]], %[[C1]]) : (f32, f32) -> tensor<2xf32>
                print(t)

                t = tensor.FromElementsOp(RankedTensorType.get((2, 1), f32), [c0, c1])
                # CHECK: %{{.*}} = "tensor.from_elements"(%[[C0]], %[[C1]]) : (f32, f32) -> tensor<2x1xf32>
                print(t)

                t = tensor.FromElementsOp(RankedTensorType.get((1, 2), f32), [c0, c1])
                # CHECK: %{{.*}} = "tensor.from_elements"(%[[C0]], %[[C1]]) : (f32, f32) -> tensor<1x2xf32>
                print(t)


# CHECK-LABEL: TEST: testGenerateRegionOp
@run
def testGenerateRegionOp():
    S = ShapedType.get_dynamic_size()
    with Context(), Location.unknown():
        module = Module.create()
        with InsertionPoint(module.body):
            # CHECK: %[[VAL_0:.*]] = arith.constant 1 : index
            # CHECK: %[[VAL_1:.*]] = arith.constant 2 : index
            one = arith.constant(T.index(), 1)
            two = arith.constant(T.index(), 2)

            @tensor.generate(T.tensor(S, 3, S, T.index()), dynamic_extents=[one, two])
            def generate_one(i: T.index(), j: T.index(), k: T.index()):
                ij = arith.addi(i, j)
                ijk = arith.addi(ij, k)
                return ijk

            assert (
                isinstance(generate_one, Value)
                and generate_one.owner.name == "tensor.generate"
            )

        # CHECK:         %[[GENERATED:.*]] = tensor.generate
        # CHECK-SAME:    %[[VAL_0]],
        # CHECK-SAME:    %[[VAL_1]] {
        # CHECK:         ^bb0(%[[VAL_1:.*]]: index, %[[VAL_2:.*]]: index, %[[VAL_3:.*]]: index):
        # CHECK:           %[[VAL_4:.*]] = arith.addi %[[VAL_1]], %[[VAL_2]] : index
        # CHECK:           %[[VAL_5:.*]] = arith.addi %[[VAL_4]], %[[VAL_3]] : index
        # CHECK:           tensor.yield %[[VAL_5]] : index
        # CHECK:         } : tensor<?x3x?xindex>
        print(module)