1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
//===- TestSymbolUses.cpp - Pass to test symbol uselists ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "TestOps.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/Pass/Pass.h"
using namespace mlir;
namespace {
/// This is a symbol test pass that tests the symbol uselist functionality
/// provided by the symbol table along with erasing from the symbol table.
struct SymbolUsesPass
: public PassWrapper<SymbolUsesPass, OperationPass<ModuleOp>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(SymbolUsesPass)
StringRef getArgument() const final { return "test-symbol-uses"; }
StringRef getDescription() const final {
return "Test detection of symbol uses";
}
WalkResult operateOnSymbol(Operation *symbol, ModuleOp module,
SmallVectorImpl<func::FuncOp> &deadFunctions) {
// Test computing uses on a non symboltable op.
std::optional<SymbolTable::UseRange> symbolUses =
SymbolTable::getSymbolUses(symbol);
// Test the conservative failure case.
if (!symbolUses) {
symbol->emitRemark()
<< "symbol contains an unknown nested operation that "
"'may' define a new symbol table";
return WalkResult::interrupt();
}
if (unsigned numUses = llvm::size(*symbolUses))
symbol->emitRemark() << "symbol contains " << numUses
<< " nested references";
// Test the functionality of symbolKnownUseEmpty.
if (SymbolTable::symbolKnownUseEmpty(symbol, &module.getBodyRegion())) {
func::FuncOp funcSymbol = dyn_cast<func::FuncOp>(symbol);
if (funcSymbol && funcSymbol.isExternal())
deadFunctions.push_back(funcSymbol);
symbol->emitRemark() << "symbol has no uses";
return WalkResult::advance();
}
// Test the functionality of getSymbolUses.
symbolUses = SymbolTable::getSymbolUses(symbol, &module.getBodyRegion());
assert(symbolUses && "expected no unknown operations");
for (SymbolTable::SymbolUse symbolUse : *symbolUses) {
// Check that we can resolve back to our symbol.
if (SymbolTable::lookupNearestSymbolFrom(
symbolUse.getUser()->getParentOp(), symbolUse.getSymbolRef())) {
symbolUse.getUser()->emitRemark()
<< "found use of symbol : " << symbolUse.getSymbolRef() << " : "
<< *symbol->getInherentAttr(SymbolTable::getSymbolAttrName());
}
}
symbol->emitRemark() << "symbol has " << llvm::size(*symbolUses) << " uses";
return WalkResult::advance();
}
void runOnOperation() override {
auto module = getOperation();
// Walk nested symbols.
SmallVector<func::FuncOp, 4> deadFunctions;
module.getBodyRegion().walk([&](Operation *nestedOp) {
if (isa<SymbolOpInterface>(nestedOp))
return operateOnSymbol(nestedOp, module, deadFunctions);
return WalkResult::advance();
});
SymbolTable table(module);
for (Operation *op : deadFunctions) {
// In order to test the SymbolTable::erase method, also erase completely
// useless functions.
auto name = SymbolTable::getSymbolName(op);
assert(table.lookup(name) && "expected no unknown operations");
table.erase(op);
assert(!table.lookup(name) &&
"expected erased operation to be unknown now");
module.emitRemark() << name.getValue() << " function successfully erased";
}
}
};
/// This is a symbol test pass that tests the symbol use replacement
/// functionality provided by the symbol table.
struct SymbolReplacementPass
: public PassWrapper<SymbolReplacementPass, OperationPass<ModuleOp>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(SymbolReplacementPass)
StringRef getArgument() const final { return "test-symbol-rauw"; }
StringRef getDescription() const final {
return "Test replacement of symbol uses";
}
void runOnOperation() override {
ModuleOp module = getOperation();
// Don't try to replace if we can't collect symbol uses.
if (!SymbolTable::getSymbolUses(&module.getBodyRegion()))
return;
SymbolTableCollection symbolTable;
SymbolUserMap symbolUsers(symbolTable, module);
module.getBodyRegion().walk([&](Operation *nestedOp) {
StringAttr newName = nestedOp->getAttrOfType<StringAttr>("sym.new_name");
if (!newName)
return;
symbolUsers.replaceAllUsesWith(nestedOp, newName);
SymbolTable::setSymbolName(nestedOp, newName);
});
}
};
} // namespace
namespace mlir {
void registerSymbolTestPasses() {
PassRegistration<SymbolUsesPass>();
PassRegistration<SymbolReplacementPass>();
}
} // namespace mlir
|