aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Transforms/LoopInvariantCodeMotion.cpp
blob: ed0adbf21a00bd53b29096e146ceab34f8c50c2a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
//===- LoopInvariantCodeMotion.cpp - Code to perform loop fusion-----------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements loop invariant code motion.
//
//===----------------------------------------------------------------------===//

#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/AffineOps/AffineOps.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "licm"

using namespace mlir;

namespace {

/// Loop invariant code motion (LICM) pass.
/// TODO(asabne) : The pass is missing zero-trip tests.
/// TODO(asabne) : Check for the presence of side effects before hoisting.
struct LoopInvariantCodeMotion : public FunctionPass<LoopInvariantCodeMotion> {
  void runOnFunction() override;
  void runOnAffineForOp(AffineForOp forOp);
};
} // end anonymous namespace

static bool
checkInvarianceOfNestedIfOps(Operation *op, Value *indVar,
                             SmallPtrSetImpl<Operation *> &definedOps,
                             SmallPtrSetImpl<Operation *> &opsToHoist);
static bool isOpLoopInvariant(Operation &op, Value *indVar,
                              SmallPtrSetImpl<Operation *> &definedOps,
                              SmallPtrSetImpl<Operation *> &opsToHoist);

static bool
areAllOpsInTheBlockListInvariant(Region &blockList, Value *indVar,
                                 SmallPtrSetImpl<Operation *> &definedOps,
                                 SmallPtrSetImpl<Operation *> &opsToHoist);

static bool isMemRefDereferencingOp(Operation &op) {
  // TODO(asabne): Support DMA Ops.
  if (isa<AffineLoadOp>(op) || isa<AffineStoreOp>(op)) {
    return true;
  }
  return false;
}

std::unique_ptr<OpPassBase<FuncOp>> mlir::createLoopInvariantCodeMotionPass() {
  return std::make_unique<LoopInvariantCodeMotion>();
}

// Returns true if the individual op is loop invariant.
bool isOpLoopInvariant(Operation &op, Value *indVar,
                       SmallPtrSetImpl<Operation *> &definedOps,
                       SmallPtrSetImpl<Operation *> &opsToHoist) {
  LLVM_DEBUG(llvm::dbgs() << "iterating on op: " << op;);

  if (isa<AffineIfOp>(op)) {
    if (!checkInvarianceOfNestedIfOps(&op, indVar, definedOps, opsToHoist)) {
      return false;
    }
  } else if (isa<AffineForOp>(op)) {
    // If the body of a predicated region has a for loop, we don't hoist the
    // 'affine.if'.
    return false;
  } else if (isa<AffineDmaStartOp>(op) || isa<AffineDmaWaitOp>(op)) {
    // TODO(asabne): Support DMA ops.
    return false;
  } else if (!isa<ConstantOp>(op)) {
    if (isMemRefDereferencingOp(op)) {
      Value *memref = isa<AffineLoadOp>(op)
                          ? cast<AffineLoadOp>(op).getMemRef()
                          : cast<AffineStoreOp>(op).getMemRef();
      for (auto *user : memref->getUsers()) {
        // If this memref has a user that is a DMA, give up because these
        // operations write to this memref.
        if (isa<AffineDmaStartOp>(op) || isa<AffineDmaWaitOp>(op)) {
          return false;
        }
        // If the memref used by the load/store is used in a store elsewhere in
        // the loop nest, we do not hoist. Similarly, if the memref used in a
        // load is also being stored too, we do not hoist the load.
        if (isa<AffineStoreOp>(user) ||
            (isa<AffineLoadOp>(user) && isa<AffineStoreOp>(op))) {
          if (&op != user) {
            SmallVector<AffineForOp, 8> userIVs;
            getLoopIVs(*user, &userIVs);
            // Check that userIVs don't contain the for loop around the op.
            if (llvm::is_contained(userIVs, getForInductionVarOwner(indVar))) {
              return false;
            }
          }
        }
      }
    }

    // Insert this op in the defined ops list.
    definedOps.insert(&op);

    if (op.getNumOperands() == 0 && !isa<AffineTerminatorOp>(op)) {
      LLVM_DEBUG(llvm::dbgs() << "\nNon-constant op with 0 operands\n");
      return false;
    }
    for (unsigned int i = 0; i < op.getNumOperands(); ++i) {
      auto *operandSrc = op.getOperand(i)->getDefiningOp();

      LLVM_DEBUG(
          op.getOperand(i)->print(llvm::dbgs() << "\nIterating on operand\n"));

      // If the loop IV is the operand, this op isn't loop invariant.
      if (indVar == op.getOperand(i)) {
        LLVM_DEBUG(llvm::dbgs() << "\nLoop IV is the operand\n");
        return false;
      }

      if (operandSrc != nullptr) {
        LLVM_DEBUG(llvm::dbgs()
                   << *operandSrc << "\nIterating on operand src\n");

        // If the value was defined in the loop (outside of the
        // if/else region), and that operation itself wasn't meant to
        // be hoisted, then mark this operation loop dependent.
        if (definedOps.count(operandSrc) && opsToHoist.count(operandSrc) == 0) {
          return false;
        }
      }
    }
  }

  // If no operand was loop variant, mark this op for motion.
  opsToHoist.insert(&op);
  return true;
}

// Checks if all ops in a region (i.e. list of blocks) are loop invariant.
bool areAllOpsInTheBlockListInvariant(
    Region &blockList, Value *indVar, SmallPtrSetImpl<Operation *> &definedOps,
    SmallPtrSetImpl<Operation *> &opsToHoist) {

  for (auto &b : blockList) {
    for (auto &op : b) {
      if (!isOpLoopInvariant(op, indVar, definedOps, opsToHoist)) {
        return false;
      }
    }
  }

  return true;
}

// Returns true if the affine.if op can be hoisted.
bool checkInvarianceOfNestedIfOps(Operation *op, Value *indVar,
                                  SmallPtrSetImpl<Operation *> &definedOps,
                                  SmallPtrSetImpl<Operation *> &opsToHoist) {
  assert(isa<AffineIfOp>(op));
  auto ifOp = cast<AffineIfOp>(op);

  if (!areAllOpsInTheBlockListInvariant(ifOp.thenRegion(), indVar, definedOps,
                                        opsToHoist)) {
    return false;
  }

  if (!areAllOpsInTheBlockListInvariant(ifOp.elseRegion(), indVar, definedOps,
                                        opsToHoist)) {
    return false;
  }

  return true;
}

void LoopInvariantCodeMotion::runOnAffineForOp(AffineForOp forOp) {
  auto *loopBody = forOp.getBody();
  auto *indVar = forOp.getInductionVar();

  SmallPtrSet<Operation *, 8> definedOps;
  // This is the place where hoisted instructions would reside.
  OpBuilder b(forOp.getOperation());

  SmallPtrSet<Operation *, 8> opsToHoist;
  SmallVector<Operation *, 8> opsToMove;

  for (auto &op : *loopBody) {
    // We don't hoist for loops.
    if (!isa<AffineForOp>(op)) {
      if (!isa<AffineTerminatorOp>(op)) {
        if (isOpLoopInvariant(op, indVar, definedOps, opsToHoist)) {
          opsToMove.push_back(&op);
        }
      }
    }
  }

  // For all instructions that we found to be invariant, place sequentially
  // right before the for loop.
  for (auto *op : opsToMove) {
    op->moveBefore(forOp);
  }

  LLVM_DEBUG(forOp.getOperation()->print(llvm::dbgs() << "Modified loop\n"));
}

void LoopInvariantCodeMotion::runOnFunction() {
  // Walk through all loops in a function in innermost-loop-first order.  This
  // way, we first LICM from the inner loop, and place the ops in
  // the outer loop, which in turn can be further LICM'ed.
  getFunction().walk([&](AffineForOp op) {
    LLVM_DEBUG(op.getOperation()->print(llvm::dbgs() << "\nOriginal loop\n"));
    runOnAffineForOp(op);
  });
}

static PassRegistration<LoopInvariantCodeMotion>
    pass("affine-loop-invariant-code-motion",
         "Hoist loop invariant instructions outside of the loop");