1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
|
//===-- XeVMToLLVM.cpp - XeVM to LLVM dialect conversion --------*- C++ -*-===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/XeVMToLLVM/XeVMToLLVM.h"
#include "mlir/Conversion/ConvertToLLVM/ToLLVMInterface.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/XeVMDialect.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
#include "llvm/Support/FormatVariadic.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Types.h"
#include "llvm/ADT/TypeSwitch.h"
namespace mlir {
#define GEN_PASS_DEF_CONVERTXEVMTOLLVMPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace xevm;
namespace {
struct LLVMFuncAttributeOptions {
bool isConvergent = false;
bool isNoUnwind = false;
bool isWillReturn = false;
LLVM::MemoryEffectsAttr memEffectsAttr{};
};
static constexpr LLVMFuncAttributeOptions noUnwindAttrs = {
false, true, false, {}};
static constexpr LLVMFuncAttributeOptions noUnwindWillReturnAttrs = {
false, true, true, {}};
static constexpr LLVMFuncAttributeOptions convergentNoUnwindWillReturnAttrs = {
true, true, true, {}};
std::string getTypeMangling(Type ty, bool isUnsigned = false) {
return TypeSwitch<Type, std::string>(ty)
.Case([isUnsigned](VectorType ty) -> std::string {
return "Dv" + std::to_string(ty.getNumElements()) + "_" +
getTypeMangling(ty.getElementType(), isUnsigned);
})
.Case([](Float16Type) -> std::string { return "Dh"; })
.Case([](Float32Type) -> std::string { return "f"; })
.Case([](Float64Type) -> std::string { return "d"; })
.Case([isUnsigned](IntegerType ty) -> std::string {
switch (ty.getWidth()) {
case 8:
return isUnsigned ? "h" : "c";
case 16:
return isUnsigned ? "t" : "s";
case 32:
return isUnsigned ? "j" : "i";
case 64:
return isUnsigned ? "m" : "l";
default:
llvm_unreachable("unhandled integer type");
}
})
.Default([](Type) -> std::string {
llvm_unreachable("unhandled type for mangling");
});
}
std::string mangle(StringRef baseName, ArrayRef<Type> types,
ArrayRef<bool> isUnsigned = {}) {
assert((isUnsigned.empty() || isUnsigned.size() == types.size()) &&
"Signedness info doesn't match");
std::string s;
llvm::raw_string_ostream os(s);
llvm::SmallDenseMap<Type, unsigned> substitutions;
os << "_Z" << baseName.size() << baseName;
for (auto [idx, type] : llvm::enumerate(types)) {
auto it = substitutions.find(type);
if (it != substitutions.end()) {
os << "S";
// First substitution is `S_`, second is `S0_`, and so on.
if (unsigned firstIdx = it->getSecond(); firstIdx > 0)
os << firstIdx - 1;
os << "_";
} else {
if (!type.isIntOrFloat())
substitutions[type] = substitutions.size();
os << getTypeMangling(type, isUnsigned.empty() ? false : isUnsigned[idx]);
}
}
return os.str();
}
template <bool isLoad, typename OpType>
int32_t getL1CacheControl(OpType op) {
int32_t control = 0;
if constexpr (isLoad) {
switch (*op.getCacheControl()) {
case LoadCacheControl::L1UC_L2UC_L3UC:
case LoadCacheControl::L1UC_L2UC_L3C:
case LoadCacheControl::L1UC_L2C_L3UC:
case LoadCacheControl::L1UC_L2C_L3C:
control = 1;
break;
case LoadCacheControl::L1C_L2UC_L3UC:
case LoadCacheControl::L1C_L2UC_L3C:
case LoadCacheControl::L1C_L2C_L3UC:
case LoadCacheControl::L1C_L2C_L3C:
control = 2;
break;
case LoadCacheControl::L1S_L2UC_L3UC:
case LoadCacheControl::L1S_L2UC_L3C:
case LoadCacheControl::L1S_L2C_L3UC:
case LoadCacheControl::L1S_L2C_L3C:
control = 3;
break;
case LoadCacheControl::INVALIDATE_READ:
control = 4;
break;
}
} else {
switch (*op.getCacheControl()) {
case StoreCacheControl::L1UC_L2UC_L3UC:
case StoreCacheControl::L1UC_L2UC_L3WB:
case StoreCacheControl::L1UC_L2WB_L3UC:
case StoreCacheControl::L1UC_L2WB_L3WB:
control = 1;
break;
case StoreCacheControl::L1WT_L2UC_L3UC:
case StoreCacheControl::L1WT_L2UC_L3WB:
case StoreCacheControl::L1WT_L2WB_L3UC:
case StoreCacheControl::L1WT_L2WB_L3WB:
control = 2;
break;
case StoreCacheControl::L1S_L2UC_L3UC:
case StoreCacheControl::L1S_L2UC_L3WB:
case StoreCacheControl::L1S_L2WB_L3UC:
case StoreCacheControl::L1S_L2WB_L3WB:
control = 3;
break;
case StoreCacheControl::L1WB_L2UC_L3UC:
case StoreCacheControl::L1WB_L2WB_L3UC:
case StoreCacheControl::L1WB_L2UC_L3WB:
control = 4;
break;
}
}
return control;
}
template <bool isLoad, typename OpType>
int32_t getL3CacheControl(OpType op) {
int32_t control = 0;
if constexpr (isLoad) {
switch (*op.getCacheControl()) {
case LoadCacheControl::L1UC_L2UC_L3UC:
case LoadCacheControl::L1UC_L2C_L3UC:
case LoadCacheControl::L1C_L2UC_L3UC:
case LoadCacheControl::L1C_L2C_L3UC:
case LoadCacheControl::L1S_L2UC_L3UC:
case LoadCacheControl::L1S_L2C_L3UC:
control = 1;
break;
case LoadCacheControl::L1UC_L2UC_L3C:
case LoadCacheControl::L1UC_L2C_L3C:
case LoadCacheControl::L1C_L2UC_L3C:
case LoadCacheControl::L1C_L2C_L3C:
case LoadCacheControl::L1S_L2UC_L3C:
case LoadCacheControl::L1S_L2C_L3C:
control = 2;
break;
case LoadCacheControl::INVALIDATE_READ:
control = 4;
break;
}
} else {
switch (*op.getCacheControl()) {
case StoreCacheControl::L1UC_L2UC_L3UC:
case StoreCacheControl::L1UC_L2WB_L3UC:
case StoreCacheControl::L1WT_L2UC_L3UC:
case StoreCacheControl::L1WT_L2WB_L3UC:
case StoreCacheControl::L1S_L2UC_L3UC:
case StoreCacheControl::L1S_L2WB_L3UC:
case StoreCacheControl::L1WB_L2UC_L3UC:
case StoreCacheControl::L1WB_L2WB_L3UC:
control = 1;
break;
case StoreCacheControl::L1UC_L2UC_L3WB:
case StoreCacheControl::L1UC_L2WB_L3WB:
case StoreCacheControl::L1WT_L2UC_L3WB:
case StoreCacheControl::L1WT_L2WB_L3WB:
case StoreCacheControl::L1S_L2UC_L3WB:
case StoreCacheControl::L1S_L2WB_L3WB:
case StoreCacheControl::L1WB_L2UC_L3WB:
control = 2;
break;
}
}
return control;
}
template <bool isLoad, typename OpType>
static std::optional<ArrayAttr>
getCacheControlMetadata(ConversionPatternRewriter &rewriter, OpType op) {
if (!op.getCacheControl())
return {};
constexpr int32_t decorationCacheControlArity{4};
constexpr int32_t loadCacheControlKey{6442};
constexpr int32_t storeCacheControlKey{6443};
const int32_t controlKey{isLoad ? loadCacheControlKey : storeCacheControlKey};
SmallVector<int32_t, decorationCacheControlArity> decorationsL1{
controlKey, 0, getL1CacheControl<isLoad, OpType>(op), 0};
SmallVector<int32_t, decorationCacheControlArity> decorationsL3{
controlKey, 1, getL3CacheControl<isLoad, OpType>(op), 0};
auto arrayAttrL1 = rewriter.getI32ArrayAttr(decorationsL1);
auto arrayAttrL3 = rewriter.getI32ArrayAttr(decorationsL3);
SmallVector<Attribute, 2> combinedAttrs = {arrayAttrL1, arrayAttrL3};
return rewriter.getArrayAttr(combinedAttrs);
}
static LLVM::CallOp createDeviceFunctionCall(
ConversionPatternRewriter &rewriter, StringRef funcName, Type retType,
ArrayRef<Type> argTypes, ArrayRef<Value> args,
mlir::ArrayRef<std::pair<unsigned, mlir::StringRef>> paramAttrs,
LLVMFuncAttributeOptions funcAttributeOptions, Operation *op) {
auto moduleOp = op->getParentWithTrait<OpTrait::SymbolTable>();
assert(moduleOp && "Expecting module");
Location loc = op->getLoc();
auto funcOpRes =
LLVM::lookupOrCreateFn(rewriter, moduleOp, funcName, argTypes, retType);
assert(!failed(funcOpRes));
LLVM::LLVMFuncOp funcOp = funcOpRes.value();
funcOp.setCConv(LLVM::cconv::CConv::SPIR_FUNC);
funcOp.setConvergent(funcAttributeOptions.isConvergent);
funcOp.setNoUnwind(funcAttributeOptions.isNoUnwind);
funcOp.setWillReturn(funcAttributeOptions.isWillReturn);
if (funcAttributeOptions.memEffectsAttr)
funcOp.setMemoryEffectsAttr(funcAttributeOptions.memEffectsAttr);
for (auto [idx, attrName] : paramAttrs)
funcOp.setArgAttr(idx, attrName, rewriter.getUnitAttr());
auto callOp = LLVM::CallOp::create(rewriter, loc, funcOp, args);
callOp->setAttrs(funcOp->getAttrs());
return callOp;
}
class MMAToOCLPattern : public OpConversionPattern<xevm::MMAOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(xevm::MMAOp op, xevm::MMAOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (!op.getC()) {
return rewriter.notifyMatchFailure(op, "OCL requires C operand");
}
auto precisionA = op.getTypes().getA();
auto precisionB = op.getTypes().getB();
auto precisionC = op.getTypes().getC();
auto precisionD = op.getTypes().getD();
if (precisionC != precisionD) {
return rewriter.notifyMatchFailure(op, "type of C and D need to match");
}
if (precisionC != xevm::ElemType::S32 &&
precisionC != xevm::ElemType::F32 &&
precisionC != xevm::ElemType::F16 &&
precisionC != xevm::ElemType::BF16) {
return rewriter.notifyMatchFailure(
op, "type of C and D must be S32, F32, F16 or BF16");
}
if (precisionA == xevm::ElemType::S32 ||
precisionA == xevm::ElemType::F32) {
return rewriter.notifyMatchFailure(op, "type of A cannot be S32 or F32");
}
if (precisionB == xevm::ElemType::S32 ||
precisionB == xevm::ElemType::F32) {
return rewriter.notifyMatchFailure(op, "type of B cannot be S32 or F32");
}
constexpr uint32_t bitWidthPackedA{16};
constexpr uint32_t bitWidthPackedB{32};
auto loc = op.getLoc();
auto castIfNeeded = [&](Value val, Type packedType) -> Value {
VectorType origTy = cast<VectorType>(val.getType());
const uint32_t vecBitSize =
origTy.getNumElements() *
origTy.getElementType().getIntOrFloatBitWidth();
VectorType newTy = VectorType::get(
vecBitSize / packedType.getIntOrFloatBitWidth(), packedType);
if (origTy != newTy)
val = LLVM::BitcastOp::create(rewriter, loc, newTy, val);
return val;
};
Value a = op.getA();
Type packedAType = (op.getTypes().getA() == xevm::ElemType::TF32)
? cast<Type>(rewriter.getF32Type())
: rewriter.getIntegerType(bitWidthPackedA);
a = castIfNeeded(a, packedAType);
Value b = op.getB();
Type packedBType = (op.getTypes().getB() == xevm::ElemType::TF32)
? cast<Type>(rewriter.getF32Type())
: rewriter.getIntegerType(bitWidthPackedB);
b = castIfNeeded(b, packedBType);
Value c = op.getC();
VectorType cOrigTy = cast<VectorType>(c.getType());
VectorType resOrigTy = cast<VectorType>(op->getResultTypes()[0]);
assert(cOrigTy == resOrigTy && "Accumulator and result type mismatch");
// OCL builtins encode bfloat16 as int16
VectorType cTy =
cOrigTy.getElementType().isBF16()
? VectorType::get(cOrigTy.getShape(), rewriter.getIntegerType(16))
: cOrigTy;
VectorType resTy = cTy;
if (cOrigTy != cTy)
c = LLVM::BitcastOp::create(rewriter, loc, cTy, c);
constexpr int32_t systolicDepth{8};
std::string fnName =
llvm::formatv("intel_sub_group_{0}_{1}_matrix_mad_k{2}",
stringifyElemType(op.getTypes().getA()).str(),
stringifyElemType(op.getTypes().getB()).str(),
systolicDepth *
getNumOperandsPerDword(op.getTypes().getA()))
.str();
SmallVector<Type> argTypes{a.getType(), b.getType(), cTy};
fnName = mangle(fnName, argTypes);
SmallVector<Value> args{a, b, c};
auto memAttr = rewriter.getAttr<LLVM::MemoryEffectsAttr>(
/*other=*/LLVM::ModRefInfo::NoModRef,
/*argMem=*/LLVM::ModRefInfo::NoModRef,
/*inaccessibleMem=*/LLVM::ModRefInfo::NoModRef);
auto funcAttrs = convergentNoUnwindWillReturnAttrs;
funcAttrs.memEffectsAttr = memAttr;
Value result =
createDeviceFunctionCall(rewriter, fnName, resTy, argTypes, args, {},
funcAttrs, op.getOperation())
->getResult(0);
if (resOrigTy != resTy)
result = LLVM::BitcastOp::create(rewriter, loc, resOrigTy, result);
rewriter.replaceOp(op, result);
return success();
}
private:
static unsigned getNumOperandsPerDword(xevm::ElemType pTy) {
switch (pTy) {
case xevm::ElemType::TF32:
return 1;
case xevm::ElemType::BF16:
case xevm::ElemType::F16:
return 2;
case xevm::ElemType::U8:
case xevm::ElemType::S8:
return 4;
default:
llvm_unreachable("unsupported xevm::ElemType");
}
}
};
class PrefetchToOCLPattern : public OpConversionPattern<PrefetchOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(PrefetchOp op, PrefetchOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
const std::string fnName{"_Z8prefetchPU3AS1Kcm"};
Value one =
LLVM::ConstantOp::create(rewriter, loc, rewriter.getI64Type(), 1);
SmallVector<Value> args{op.getPtr(), one};
SmallVector<Type> argTypes;
for (auto arg : args)
argTypes.push_back(arg.getType());
auto funcAttr = noUnwindAttrs;
auto memAttr = rewriter.getAttr<LLVM::MemoryEffectsAttr>(
/*other=*/LLVM::ModRefInfo::NoModRef,
/*argMem=*/LLVM::ModRefInfo::Ref,
/*inaccessibleMem=*/LLVM::ModRefInfo::NoModRef);
funcAttr.memEffectsAttr = memAttr;
LLVM::CallOp call = createDeviceFunctionCall(
rewriter, fnName, LLVM::LLVMVoidType::get(rewriter.getContext()),
argTypes, args, {}, funcAttr, op.getOperation());
if (std::optional<ArrayAttr> optCacheControls =
getCacheControlMetadata<true>(rewriter, op))
call->setAttr(XeVMDialect::getCacheControlsAttrName(), *optCacheControls);
rewriter.eraseOp(op);
return success();
}
};
class MemfenceToOCLPattern : public OpConversionPattern<MemfenceOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(MemfenceOp op, MemfenceOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
const std::string fnName{"atomic_work_item_fence"};
int memScope, addrSpace;
switch (op.getAddrspace()) {
case xevm::AddrSpace::SHARED:
addrSpace = 1; // CLK_LOCAL_MEM_FENCE
break;
case xevm::AddrSpace::GLOBAL:
addrSpace = 2; // CLK_GLOBAL_MEM_FENCE
break;
default:
// GENERIC is not supported in OpenCL
return rewriter.notifyMatchFailure(
op, "Fence only supports global and shared address spaces.");
}
switch (op.getScope()) {
case xevm::MemScope::WORKGROUP:
memScope = 1;
break;
case xevm::MemScope::DEVICE:
memScope = 2;
break;
default:
// CLUSTER and SYSTEM are not supported in OpenCL
return rewriter.notifyMatchFailure(
op, "Fence only supports workgroup and device memory scopes.");
}
Type i32Type = rewriter.getI32Type();
Value acqRel = LLVM::ConstantOp::create(rewriter, loc, i32Type, 4);
Value memScopeConst =
LLVM::ConstantOp::create(rewriter, loc, i32Type, memScope);
Value addrSpaceConst =
LLVM::ConstantOp::create(rewriter, loc, i32Type, addrSpace);
SmallVector<Value> args{addrSpaceConst, acqRel, memScopeConst};
SmallVector<Type> argTypes{3, i32Type};
createDeviceFunctionCall(rewriter, mangle(fnName, argTypes),
LLVM::LLVMVoidType::get(rewriter.getContext()),
argTypes, args, {}, noUnwindAttrs,
op.getOperation());
rewriter.eraseOp(op);
return success();
}
};
template <typename OpType>
class LoadStorePrefetchToOCLPattern : public OpConversionPattern<OpType> {
using OpConversionPattern<OpType>::OpConversionPattern;
LogicalResult
matchAndRewrite(OpType op, typename OpType::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
constexpr bool isLoad = std::is_same_v<OpType, BlockLoad2dOp>;
constexpr bool isPrefetch = std::is_same_v<OpType, BlockPrefetch2dOp>;
auto loc = op.getLoc();
VectorType vecType;
bool packReg = false;
bool transpose = false;
if constexpr (isLoad) {
vecType = op.getRes().getType();
packReg = op.getPackRegister();
transpose = op.getTranspose();
} else if constexpr (!isPrefetch) {
vecType = op.getStoredVal().getType();
}
auto i32Type = rewriter.getI32Type();
Value byteCoord =
LLVM::UndefOp::create(rewriter, loc, VectorType::get(2, i32Type));
Value zero = LLVM::ConstantOp::create(rewriter, loc, i32Type, 0);
Value one = LLVM::ConstantOp::create(rewriter, loc, i32Type, 1);
byteCoord = LLVM::InsertElementOp::create(
rewriter, loc, VectorType::get(2, i32Type), byteCoord, op.getX(), zero);
byteCoord = LLVM::InsertElementOp::create(
rewriter, loc, VectorType::get(2, i32Type), byteCoord, op.getY(), one);
SmallVector<Value> args{op.getPtr(), op.getBaseWidth(), op.getBaseHeight(),
op.getBasePitch(), byteCoord};
SmallVector<Type> retTypes;
Value spvLoadDstPtr;
std::string funcName{"intel_sub_group_2d_block_"};
std::string bitWidthId;
LLVMFuncAttributeOptions funcAttr{noUnwindWillReturnAttrs};
SmallVector<std::pair<unsigned, StringRef>, 4> paramAttrs;
if constexpr (isPrefetch) { // Prefetch
funcName += "prefetch";
paramAttrs = {std::make_pair(0, LLVM::LLVMDialect::getNonNullAttrName())};
auto memAttr = rewriter.getAttr<LLVM::MemoryEffectsAttr>(
/*other=*/LLVM::ModRefInfo::NoModRef,
/*argMem=*/LLVM::ModRefInfo::Ref,
/*inaccessibleMem=*/LLVM::ModRefInfo::NoModRef);
funcAttr = noUnwindAttrs;
funcAttr.memEffectsAttr = memAttr;
} else {
auto vecElemType = vecType.getElementType();
auto vecElemBitWidth = vecElemType.getIntOrFloatBitWidth();
Value numElems = LLVM::ConstantOp::create(rewriter, loc, i32Type,
vecType.getNumElements());
auto dstOrSrcPtr = LLVM::AllocaOp::create(
rewriter, loc, LLVM::LLVMPointerType::get(rewriter.getContext()),
vecElemType, numElems);
args.push_back(dstOrSrcPtr);
if constexpr (isLoad) { // Load
funcName += "read";
bitWidthId = getTypeMangling(vecElemType, /*isUnsigned=*/true);
if (packReg)
funcName += "_transform";
else if (transpose)
funcName += "_transpose";
spvLoadDstPtr = dstOrSrcPtr;
retTypes.push_back(vecType);
paramAttrs = {
std::make_pair(0, LLVM::LLVMDialect::getNonNullAttrName()),
std::make_pair(0, LLVM::LLVMDialect::getReadonlyAttrName()),
std::make_pair(5, LLVM::LLVMDialect::getNonNullAttrName()),
std::make_pair(5, LLVM::LLVMDialect::getWriteOnlyAttrName()),
};
} else { // Store
funcName += "write";
bitWidthId = (vecElemBitWidth == 32)
? "j"
: ((vecElemBitWidth == 16) ? "t" : "h");
LLVM::StoreOp::create(rewriter, loc, op.getStoredVal(), dstOrSrcPtr);
paramAttrs = {
std::make_pair(0, LLVM::LLVMDialect::getNonNullAttrName()),
std::make_pair(0, LLVM::LLVMDialect::getWriteOnlyAttrName()),
std::make_pair(5, LLVM::LLVMDialect::getNonNullAttrName()),
std::make_pair(5, LLVM::LLVMDialect::getReadonlyAttrName()),
};
}
}
funcName =
llvm::formatv("{0}_{1}b_{2}r{3}x{4}c", funcName, op.getElemSizeInBits(),
op.getTileHeight(), op.getTileWidth(), op.getVBlocks())
.str();
std::string prefetchCode("");
if (!isPrefetch)
prefetchCode += "P";
funcName = llvm::formatv("_Z{0}{1}PU3AS1viiiDv2_i{2}{3}", funcName.size(),
funcName, prefetchCode, bitWidthId)
.str();
SmallVector<Type> argTypes;
for (auto arg : args) {
argTypes.push_back(arg.getType());
}
LLVM::CallOp call = createDeviceFunctionCall(
rewriter, funcName, LLVM::LLVMVoidType::get(rewriter.getContext()),
argTypes, args, paramAttrs, funcAttr, op.getOperation());
if (std::optional<ArrayAttr> optCacheControls =
getCacheControlMetadata < isLoad || isPrefetch > (rewriter, op)) {
call->setAttr(XeVMDialect::getCacheControlsAttrName(), *optCacheControls);
}
if constexpr (isLoad)
rewriter.replaceOp(
op, LLVM::LoadOp::create(rewriter, loc, vecType, spvLoadDstPtr));
else
rewriter.eraseOp(op);
return success();
}
};
//===----------------------------------------------------------------------===//
// Pass Definition
//===----------------------------------------------------------------------===//
struct ConvertXeVMToLLVMPass
: public impl::ConvertXeVMToLLVMPassBase<ConvertXeVMToLLVMPass> {
using Base::Base;
void getDependentDialects(DialectRegistry ®istry) const override {
registry.insert<LLVM::LLVMDialect, XeVMDialect>();
}
void runOnOperation() override {
ConversionTarget target(getContext());
target.addLegalDialect<LLVM::LLVMDialect>();
target.addIllegalDialect<XeVMDialect>();
RewritePatternSet patterns(&getContext());
populateXeVMToLLVMConversionPatterns(patterns);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// ConvertToLLVMPatternInterface implementation
//===----------------------------------------------------------------------===//
namespace {
/// Implement the interface to convert XeVM to LLVM.
struct XeVMToLLVMDialectInterface : public ConvertToLLVMPatternInterface {
using ConvertToLLVMPatternInterface::ConvertToLLVMPatternInterface;
void loadDependentDialects(MLIRContext *context) const final {
context->loadDialect<LLVM::LLVMDialect>();
}
/// Hook for derived dialect interface to provide conversion patterns
/// and mark dialect legal for the conversion target.
void populateConvertToLLVMConversionPatterns(
ConversionTarget &target, LLVMTypeConverter &typeConverter,
RewritePatternSet &patterns) const final {
populateXeVMToLLVMConversionPatterns(patterns);
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Pattern Population
//===----------------------------------------------------------------------===//
void ::mlir::populateXeVMToLLVMConversionPatterns(RewritePatternSet &patterns) {
patterns.add<LoadStorePrefetchToOCLPattern<BlockLoad2dOp>,
LoadStorePrefetchToOCLPattern<BlockStore2dOp>,
LoadStorePrefetchToOCLPattern<BlockPrefetch2dOp>,
MMAToOCLPattern, MemfenceToOCLPattern, PrefetchToOCLPattern>(
patterns.getContext());
}
void ::mlir::registerConvertXeVMToLLVMInterface(DialectRegistry ®istry) {
registry.addExtension(+[](MLIRContext *ctx, XeVMDialect *dialect) {
dialect->addInterfaces<XeVMToLLVMDialectInterface>();
});
}
|