1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
|
//===- ShapeToStandard.cpp - conversion from Shape to Standard dialect ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ShapeToStandard/ShapeToStandard.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Shape/IR/Shape.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/STLExtras.h"
namespace mlir {
#define GEN_PASS_DEF_CONVERTSHAPETOSTANDARDPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::shape;
using namespace mlir::scf;
/// Conversion patterns.
namespace {
class AnyOpConversion : public OpConversionPattern<AnyOp> {
public:
using OpConversionPattern<AnyOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(AnyOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult
AnyOpConversion::matchAndRewrite(AnyOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// Replace `any` with its first operand.
// Any operand would be a valid substitution.
rewriter.replaceOp(op, {adaptor.getInputs().front()});
return success();
}
namespace {
template <typename SrcOpTy, typename DstOpTy>
class BinaryOpConversion : public OpConversionPattern<SrcOpTy> {
public:
using OpConversionPattern<SrcOpTy>::OpConversionPattern;
LogicalResult
matchAndRewrite(SrcOpTy op, typename SrcOpTy::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// For now, only error-free types are supported by this lowering.
if (isa<SizeType>(op.getType()))
return failure();
rewriter.replaceOpWithNewOp<DstOpTy>(op, adaptor.getLhs(),
adaptor.getRhs());
return success();
}
};
} // namespace
namespace {
struct BroadcastOpConverter : public OpConversionPattern<BroadcastOp> {
using OpConversionPattern<BroadcastOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(BroadcastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
// Get the resulting extent in a given dimension. This is computed with any
// number of extent tensors and shifted offsets into them.
Value getBroadcastedDim(ImplicitLocOpBuilder lb, ValueRange extentTensors,
ValueRange rankDiffs, Value outputDimension) {
Value one = arith::ConstantIndexOp::create(lb, 1);
Value broadcastedDim = one;
for (auto tup : llvm::zip(extentTensors, rankDiffs)) {
Value shape = std::get<0>(tup);
Value rankDiff = std::get<1>(tup);
Value outOfBounds = arith::CmpIOp::create(lb, arith::CmpIPredicate::ult,
outputDimension, rankDiff);
Type indexTy = lb.getIndexType();
broadcastedDim =
IfOp::create(
lb, outOfBounds,
[&](OpBuilder &b, Location loc) {
scf::YieldOp::create(b, loc, broadcastedDim);
},
[&](OpBuilder &b, Location loc) {
// The broadcasting logic is:
// - if one extent (here we arbitrarily choose the
// extent from the greater-rank operand) is equal to 1,
// then take the extent from the other operand
// - otherwise, take the extent as-is.
// Note that this logic remains correct in the presence
// of dimensions of zero extent.
Value lesserRankOperandDimension = arith::SubIOp::create(
b, loc, indexTy, outputDimension, rankDiff);
Value lesserRankOperandExtent = tensor::ExtractOp::create(
b, loc, shape, ValueRange{lesserRankOperandDimension});
Value dimIsOne =
arith::CmpIOp::create(b, loc, arith::CmpIPredicate::eq,
lesserRankOperandExtent, one);
Value dim = arith::SelectOp::create(
b, loc, dimIsOne, broadcastedDim, lesserRankOperandExtent);
scf::YieldOp::create(b, loc, dim);
})
.getResult(0);
}
return broadcastedDim;
}
} // namespace
LogicalResult BroadcastOpConverter::matchAndRewrite(
BroadcastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// For now, this lowering is only defined on `tensor<?xindex>` operands, not
// on shapes.
if (isa<ShapeType>(op.getType()))
return failure();
auto loc = op.getLoc();
ImplicitLocOpBuilder lb(loc, rewriter);
Value zero = arith::ConstantIndexOp::create(lb, 0);
Type indexTy = lb.getIndexType();
// Save all the ranks for bounds checking. Because this is a tensor
// representing the shape extents, the rank is the extent of the only
// dimension in the tensor.
SmallVector<Value> ranks, rankDiffs;
llvm::append_range(ranks, llvm::map_range(adaptor.getShapes(), [&](Value v) {
return tensor::DimOp::create(lb, v, zero);
}));
// Find the maximum rank
Value maxRank = ranks.front();
for (Value v : llvm::drop_begin(ranks, 1)) {
maxRank = arith::MaxUIOp::create(lb, v, maxRank);
}
// Calculate the difference of ranks and the maximum rank for later offsets.
llvm::append_range(rankDiffs, llvm::map_range(ranks, [&](Value v) {
return arith::SubIOp::create(lb, indexTy, maxRank, v);
}));
Value replacement = tensor::GenerateOp::create(
lb, getExtentTensorType(lb.getContext()), ValueRange{maxRank},
[&](OpBuilder &b, Location loc, ValueRange args) {
Value broadcastedDim =
getBroadcastedDim(ImplicitLocOpBuilder(loc, b), adaptor.getShapes(),
rankDiffs, args[0]);
tensor::YieldOp::create(b, loc, broadcastedDim);
});
if (replacement.getType() != op.getType())
replacement = tensor::CastOp::create(lb, op.getType(), replacement);
rewriter.replaceOp(op, replacement);
return success();
}
namespace {
class ConstShapeOpConverter : public OpConversionPattern<ConstShapeOp> {
public:
using OpConversionPattern<ConstShapeOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ConstShapeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult ConstShapeOpConverter::matchAndRewrite(
ConstShapeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// For now, this lowering supports only extent tensors, not `shape.shape`
// types.
if (isa<ShapeType>(op.getType()))
return failure();
auto loc = op.getLoc();
SmallVector<Value, 4> extentOperands;
for (auto extent : op.getShape()) {
extentOperands.push_back(arith::ConstantIndexOp::create(
rewriter, loc, extent.getLimitedValue()));
}
Type resultTy =
RankedTensorType::get({op.getShape().size()}, rewriter.getIndexType());
Value tensor =
tensor::FromElementsOp::create(rewriter, loc, resultTy, extentOperands);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultTy, tensor);
return success();
}
namespace {
class ConstSizeOpConversion : public OpConversionPattern<ConstSizeOp> {
public:
using OpConversionPattern<ConstSizeOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ConstSizeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult ConstSizeOpConversion::matchAndRewrite(
ConstSizeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
rewriter.replaceOpWithNewOp<arith::ConstantIndexOp>(
op, op.getValue().getSExtValue());
return success();
}
namespace {
struct IsBroadcastableOpConverter
: public OpConversionPattern<IsBroadcastableOp> {
using OpConversionPattern<IsBroadcastableOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(IsBroadcastableOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult IsBroadcastableOpConverter::matchAndRewrite(
IsBroadcastableOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// For now, this lowering is only defined on `tensor<?xindex>` operands, not
// on shapes.
if (!llvm::all_of(op.getShapes(),
[](Value v) { return !isa<ShapeType>(v.getType()); }))
return failure();
auto loc = op.getLoc();
ImplicitLocOpBuilder lb(loc, rewriter);
Value zero = arith::ConstantIndexOp::create(lb, 0);
Value one = arith::ConstantIndexOp::create(lb, 1);
Type indexTy = lb.getIndexType();
// Save all the ranks for bounds checking. Because this is a tensor
// representing the shape extents, the rank is the extent of the only
// dimension in the tensor.
SmallVector<Value> ranks, rankDiffs;
llvm::append_range(ranks, llvm::map_range(adaptor.getShapes(), [&](Value v) {
return tensor::DimOp::create(lb, v, zero);
}));
// Find the maximum rank
Value maxRank = ranks.front();
for (Value v : llvm::drop_begin(ranks, 1)) {
maxRank = arith::MaxUIOp::create(lb, v, maxRank);
}
// Calculate the difference of ranks and the maximum rank for later offsets.
llvm::append_range(rankDiffs, llvm::map_range(ranks, [&](Value v) {
return arith::SubIOp::create(lb, indexTy, maxRank, v);
}));
Type i1Ty = rewriter.getI1Type();
Value trueVal = arith::ConstantOp::create(rewriter, loc, i1Ty,
rewriter.getBoolAttr(true));
auto reduceResult = ForOp::create(
lb, loc, zero, maxRank, one, ValueRange{trueVal},
[&](OpBuilder &b, Location loc, Value iv, ValueRange iterArgs) {
// Find a non-1 dim, if it exists. Note that the first part of this
// could reuse the Broadcast lowering entirely, but we redo the work
// here to make optimizations easier between the two loops.
Value broadcastedDim = getBroadcastedDim(
ImplicitLocOpBuilder(loc, b), adaptor.getShapes(), rankDiffs, iv);
Value broadcastable = iterArgs[0];
for (auto tup : llvm::zip(adaptor.getShapes(), rankDiffs)) {
Value shape, rankDiff;
std::tie(shape, rankDiff) = tup;
Value outOfBounds = arith::CmpIOp::create(
b, loc, arith::CmpIPredicate::ult, iv, rankDiff);
broadcastable =
IfOp::create(
b, loc, outOfBounds,
[&](OpBuilder &b, Location loc) {
// Non existent dimensions are always broadcastable
scf::YieldOp::create(b, loc, broadcastable);
},
[&](OpBuilder &b, Location loc) {
// Every value needs to be either 1, or the same non-1
// value to be broadcastable in this dim.
Value operandDimension =
arith::SubIOp::create(b, loc, indexTy, iv, rankDiff);
Value dimensionExtent = tensor::ExtractOp::create(
b, loc, shape, ValueRange{operandDimension});
Value equalOne = arith::CmpIOp::create(
b, loc, arith::CmpIPredicate::eq, dimensionExtent, one);
Value equalBroadcasted =
arith::CmpIOp::create(b, loc, arith::CmpIPredicate::eq,
dimensionExtent, broadcastedDim);
Value result = arith::AndIOp::create(
b, loc, broadcastable,
arith::OrIOp::create(b, loc, equalOne,
equalBroadcasted));
scf::YieldOp::create(b, loc, result);
})
.getResult(0);
}
scf::YieldOp::create(b, loc, broadcastable);
});
rewriter.replaceOp(op, reduceResult.getResults().front());
return success();
}
namespace {
class DimOpConverter : public OpConversionPattern<DimOp> {
using OpConversionPattern<DimOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(DimOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult
DimOpConverter::matchAndRewrite(DimOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// Lower to dim(X, i) to get_extent(shape_of(X), i) and rely on further
// lowerings. This can be further optimized if needed to avoid intermediate
// steps.
auto shapeOf = shape::ShapeOfOp::create(rewriter, op.getLoc(), op.getValue());
rewriter.replaceOpWithNewOp<shape::GetExtentOp>(op, op.getType(), shapeOf,
op.getIndex());
return success();
}
namespace {
class GetExtentOpConverter : public OpConversionPattern<GetExtentOp> {
using OpConversionPattern<GetExtentOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(GetExtentOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult GetExtentOpConverter::matchAndRewrite(
GetExtentOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// For now, only error-free types are supported by this lowering.
if (isa<SizeType>(op.getType()))
return failure();
// Derive shape extent directly from shape origin if possible. This
// circumvents the necessity to materialize the shape in memory.
if (auto shapeOfOp = op.getShape().getDefiningOp<ShapeOfOp>()) {
if (isa<ShapedType>(shapeOfOp.getArg().getType())) {
rewriter.replaceOpWithNewOp<tensor::DimOp>(op, shapeOfOp.getArg(),
adaptor.getDim());
return success();
}
}
rewriter.replaceOpWithNewOp<tensor::ExtractOp>(op, rewriter.getIndexType(),
adaptor.getShape(),
ValueRange{adaptor.getDim()});
return success();
}
namespace {
class RankOpConverter : public OpConversionPattern<shape::RankOp> {
public:
using OpConversionPattern<shape::RankOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(shape::RankOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult
RankOpConverter::matchAndRewrite(shape::RankOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// For now, this lowering supports only error-free types.
if (isa<SizeType>(op.getType()))
return failure();
rewriter.replaceOpWithNewOp<tensor::DimOp>(op, adaptor.getShape(), 0);
return success();
}
namespace {
/// Converts `shape.reduce` to `scf.for`.
struct ReduceOpConverter : public OpConversionPattern<shape::ReduceOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(shape::ReduceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
ReduceOpConverter::matchAndRewrite(shape::ReduceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// For now, this lowering is only defined on `tensor<?xindex>` operands.
if (isa<ShapeType>(op.getShape().getType()))
return failure();
auto loc = op.getLoc();
Value zero = arith::ConstantIndexOp::create(rewriter, loc, 0);
Value one = arith::ConstantIndexOp::create(rewriter, loc, 1);
Type indexTy = rewriter.getIndexType();
Value rank =
tensor::DimOp::create(rewriter, loc, indexTy, adaptor.getShape(), zero);
auto loop = scf::ForOp::create(
rewriter, loc, zero, rank, one, op.getInitVals(),
[&](OpBuilder &b, Location loc, Value iv, ValueRange args) {
Value extent =
tensor::ExtractOp::create(b, loc, adaptor.getShape(), iv);
SmallVector<Value, 2> mappedValues{iv, extent};
mappedValues.append(args.begin(), args.end());
IRMapping mapping;
Block *reduceBody = op.getBody();
mapping.map(reduceBody->getArguments(), mappedValues);
for (auto &nested : reduceBody->without_terminator())
b.clone(nested, mapping);
SmallVector<Value, 2> mappedResults;
for (auto result : reduceBody->getTerminator()->getOperands())
mappedResults.push_back(mapping.lookup(result));
scf::YieldOp::create(b, loc, mappedResults);
});
rewriter.replaceOp(op, loop.getResults());
return success();
}
namespace {
/// Converts `shape.shape_eq` to an `scf.for` loop. For now, the lowering is
/// only defined on `tensor<?xindex>` operands. The test for equality first
/// compares their size and, if equal, checks every extent for equality.
///
/// Example:
///
/// %result = shape.shape_eq %a, %b : tensor<?xindex>, tensor<?xindex>
///
/// becomes
///
/// %c0 = arith.constant 0 : index
/// %0 = dim %arg0, %c0 : tensor<?xindex>
/// %1 = dim %arg1, %c0 : tensor<?xindex>
/// %2 = arith.cmpi "eq", %0, %1 : index
/// %result = scf.if %2 -> (i1) {
/// %c1 = arith.constant 1 : index
/// %true = arith.constant true
/// %4 = scf.for %arg2 = %c0 to %0 step %c1 iter_args(%arg3 = %true) -> (i1) {
/// %5 = tensor.extract %arg0[%arg2] : tensor<?xindex>
/// %6 = tensor.extract %arg1[%arg2] : tensor<?xindex>
/// %7 = arith.cmpi "eq", %5, %6 : index
/// %8 = arith.andi %arg3, %7 : i1
/// scf.yield %8 : i1
/// }
/// scf.yield %4 : i1
/// } else {
/// %false = arith.constant false
/// scf.yield %false : i1
/// }
///
struct ShapeEqOpConverter : public OpConversionPattern<ShapeEqOp> {
using OpConversionPattern<ShapeEqOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ShapeEqOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult
ShapeEqOpConverter::matchAndRewrite(ShapeEqOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (!llvm::all_of(op.getShapes(),
[](Value v) { return !isa<ShapeType>(v.getType()); }))
return failure();
Type i1Ty = rewriter.getI1Type();
if (op.getShapes().size() <= 1) {
rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, i1Ty,
rewriter.getBoolAttr(true));
return success();
}
auto loc = op.getLoc();
Type indexTy = rewriter.getIndexType();
Value zero = arith::ConstantIndexOp::create(rewriter, loc, 0);
Value firstShape = adaptor.getShapes().front();
Value firstRank =
tensor::DimOp::create(rewriter, loc, indexTy, firstShape, zero);
Value result = nullptr;
// Generate a linear sequence of compares, all with firstShape as lhs.
for (Value shape : adaptor.getShapes().drop_front(1)) {
Value rank = tensor::DimOp::create(rewriter, loc, indexTy, shape, zero);
Value eqRank = arith::CmpIOp::create(
rewriter, loc, arith::CmpIPredicate::eq, firstRank, rank);
auto same = IfOp::create(
rewriter, loc, eqRank,
[&](OpBuilder &b, Location loc) {
Value one = arith::ConstantIndexOp::create(b, loc, 1);
Value init =
arith::ConstantOp::create(b, loc, i1Ty, b.getBoolAttr(true));
auto loop = scf::ForOp::create(
b, loc, zero, firstRank, one, ValueRange{init},
[&](OpBuilder &b, Location nestedLoc, Value iv, ValueRange args) {
Value conj = args[0];
Value lhsExtent =
tensor::ExtractOp::create(b, loc, firstShape, iv);
Value rhsExtent = tensor::ExtractOp::create(b, loc, shape, iv);
Value eqExtent = arith::CmpIOp::create(
b, loc, arith::CmpIPredicate::eq, lhsExtent, rhsExtent);
Value conjNext = arith::AndIOp::create(b, loc, conj, eqExtent);
scf::YieldOp::create(b, loc, ValueRange({conjNext}));
});
scf::YieldOp::create(b, loc, loop.getResults());
},
[&](OpBuilder &b, Location loc) {
Value result =
arith::ConstantOp::create(b, loc, i1Ty, b.getBoolAttr(false));
scf::YieldOp::create(b, loc, result);
});
result = !result ? same.getResult(0)
: arith::AndIOp::create(rewriter, loc, result,
same.getResult(0));
}
rewriter.replaceOp(op, result);
return success();
}
namespace {
class ShapeOfOpConversion : public OpConversionPattern<ShapeOfOp> {
public:
using OpConversionPattern<ShapeOfOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ShapeOfOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult ShapeOfOpConversion::matchAndRewrite(
ShapeOfOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// For now, only error-free types are supported by this lowering.
if (isa<ShapeType>(op.getType()))
return failure();
// For ranked tensor arguments, lower to `tensor.from_elements`.
auto loc = op.getLoc();
Value tensor = adaptor.getArg();
Type tensorTy = tensor.getType();
if (isa<RankedTensorType>(tensorTy)) {
// Build values for individual extents.
SmallVector<Value, 8> extentValues;
RankedTensorType rankedTensorTy = cast<RankedTensorType>(tensorTy);
int64_t rank = rankedTensorTy.getRank();
for (int64_t i = 0; i < rank; i++) {
if (rankedTensorTy.isDynamicDim(i)) {
Value extent = tensor::DimOp::create(rewriter, loc, tensor, i);
extentValues.push_back(extent);
} else {
Value extent = arith::ConstantIndexOp::create(
rewriter, loc, rankedTensorTy.getDimSize(i));
extentValues.push_back(extent);
}
}
// Materialize extent tensor.
Value staticExtentTensor = tensor::FromElementsOp::create(
rewriter, loc, RankedTensorType::get({rank}, rewriter.getIndexType()),
extentValues);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, op.getType(),
staticExtentTensor);
return success();
}
// Lower to `tensor.generate` otherwise.
auto *ctx = rewriter.getContext();
Value rank = tensor::RankOp::create(rewriter, loc, tensor);
rewriter.replaceOpWithNewOp<tensor::GenerateOp>(
op, getExtentTensorType(ctx), ValueRange{rank},
[&](OpBuilder &b, Location loc, ValueRange args) {
Value dim = args.front();
Value extent = tensor::DimOp::create(b, loc, tensor, dim);
tensor::YieldOp::create(b, loc, extent);
});
return success();
}
namespace {
class SplitAtOpConversion : public OpConversionPattern<SplitAtOp> {
public:
using OpConversionPattern<SplitAtOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(SplitAtOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult SplitAtOpConversion::matchAndRewrite(
SplitAtOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// Error conditions are not implemented, only lower if all operands and
// results are extent tensors.
if (llvm::any_of(ValueRange{op.getOperand(), op.getHead(), op.getTail()},
[](Value v) { return isa<ShapeType>(v.getType()); }))
return failure();
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
Value zero = arith::ConstantIndexOp::create(b, 0);
Value rank = tensor::DimOp::create(b, adaptor.getOperand(), zero);
// index < 0 ? index + rank : index
Value originalIndex = adaptor.getIndex();
Value add = arith::AddIOp::create(b, originalIndex, rank);
Value indexIsNegative =
arith::CmpIOp::create(b, arith::CmpIPredicate::slt, originalIndex, zero);
Value index = arith::SelectOp::create(b, indexIsNegative, add, originalIndex);
Value one = arith::ConstantIndexOp::create(b, 1);
Value head =
tensor::ExtractSliceOp::create(b, adaptor.getOperand(), zero, index, one);
Value tailSize = arith::SubIOp::create(b, rank, index);
Value tail = tensor::ExtractSliceOp::create(b, adaptor.getOperand(), index,
tailSize, one);
rewriter.replaceOp(op, {head, tail});
return success();
}
namespace {
class ToExtentTensorOpConversion
: public OpConversionPattern<ToExtentTensorOp> {
public:
using OpConversionPattern<ToExtentTensorOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToExtentTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (!isa<RankedTensorType>(adaptor.getInput().getType()))
return rewriter.notifyMatchFailure(op, "input needs to be a tensor");
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, op.getType(),
adaptor.getInput());
return success();
}
};
} // namespace
namespace {
/// Import the Shape Ops to Std Patterns.
#include "ShapeToStandard.cpp.inc"
} // namespace
namespace {
/// Conversion pass.
class ConvertShapeToStandardPass
: public impl::ConvertShapeToStandardPassBase<ConvertShapeToStandardPass> {
void runOnOperation() override;
};
} // namespace
void ConvertShapeToStandardPass::runOnOperation() {
// Setup target legality.
MLIRContext &ctx = getContext();
ConversionTarget target(ctx);
target.addLegalDialect<arith::ArithDialect, SCFDialect,
tensor::TensorDialect>();
target.addLegalOp<CstrRequireOp, func::FuncOp, ModuleOp>();
// Setup conversion patterns.
RewritePatternSet patterns(&ctx);
populateShapeToStandardConversionPatterns(patterns);
// Apply conversion.
auto module = getOperation();
if (failed(applyPartialConversion(module, target, std::move(patterns))))
signalPassFailure();
}
void mlir::populateShapeToStandardConversionPatterns(
RewritePatternSet &patterns) {
// clang-format off
populateWithGenerated(patterns);
patterns.add<
AnyOpConversion,
BinaryOpConversion<AddOp, arith::AddIOp>,
BinaryOpConversion<MulOp, arith::MulIOp>,
BroadcastOpConverter,
ConstShapeOpConverter,
ConstSizeOpConversion,
DimOpConverter,
IsBroadcastableOpConverter,
GetExtentOpConverter,
RankOpConverter,
ReduceOpConverter,
ShapeEqOpConverter,
ShapeOfOpConversion,
SplitAtOpConversion,
ToExtentTensorOpConversion>(patterns.getContext());
// clang-format on
}
|