1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
//===- RootOrdering.cpp - Optimal root ordering ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// An implementation of Edmonds' optimal branching algorithm. This is a
// directed analogue of the minimum spanning tree problem for a given root.
//
//===----------------------------------------------------------------------===//
#include "RootOrdering.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include <utility>
using namespace mlir;
using namespace mlir::pdl_to_pdl_interp;
/// Returns the cycle implied by the specified parent relation, starting at the
/// given node.
static SmallVector<Value> getCycle(const DenseMap<Value, Value> &parents,
Value rep) {
SmallVector<Value> cycle;
Value node = rep;
do {
cycle.push_back(node);
node = parents.lookup(node);
assert(node && "got an empty value in the cycle");
} while (node != rep);
return cycle;
}
/// Contracts the specified cycle in the given graph in-place.
/// The parentsCost map specifies, for each node in the cycle, the lowest cost
/// among the edges entering that node. Then, the nodes in the cycle C are
/// replaced with a single node v_C (the first node in the cycle). All edges
/// (u, v) entering the cycle, v \in C, are replaced with a single edge
/// (u, v_C) with an appropriately chosen cost, and the selected node v is
/// marked in the output map actualTarget[u]. All edges (u, v) leaving the
/// cycle, u \in C, are replaced with a single edge (v_C, v), and the selected
/// node u is marked in the ouptut map actualSource[v].
static void contract(RootOrderingGraph &graph, ArrayRef<Value> cycle,
const DenseMap<Value, unsigned> &parentDepths,
DenseMap<Value, Value> &actualSource,
DenseMap<Value, Value> &actualTarget) {
Value rep = cycle.front();
DenseSet<Value> cycleSet(cycle.begin(), cycle.end());
// Now, contract the cycle, marking the actual sources and targets.
DenseMap<Value, RootOrderingEntry> repEntries;
for (auto outer = graph.begin(), e = graph.end(); outer != e; ++outer) {
Value target = outer->first;
if (cycleSet.contains(target)) {
// Target in the cycle => edges incoming to the cycle or within the cycle.
unsigned parentDepth = parentDepths.lookup(target);
for (const auto &inner : outer->second) {
Value source = inner.first;
// Ignore edges within the cycle.
if (cycleSet.contains(source))
continue;
// Edge incoming to the cycle.
std::pair<unsigned, unsigned> cost = inner.second.cost;
assert(parentDepth <= cost.first && "invalid parent depth");
// Subtract the cost of the parent within the cycle from the cost of
// the edge incoming to the cycle. This update ensures that the cost
// of the minimum-weight spanning arborescence of the entire graph is
// the cost of arborescence for the contracted graph plus the cost of
// the cycle, no matter which edge in the cycle we choose to drop.
cost.first -= parentDepth;
auto it = repEntries.find(source);
if (it == repEntries.end() || it->second.cost > cost) {
actualTarget[source] = target;
// Do not bother populating the connector (the connector is only
// relevant for the final traversal, not for the optimal branching).
repEntries[source].cost = cost;
}
}
// Erase the node in the cycle.
graph.erase(outer);
} else {
// Target not in cycle => edges going away from or unrelated to the cycle.
DenseMap<Value, RootOrderingEntry> &entries = outer->second;
Value bestSource;
std::pair<unsigned, unsigned> bestCost;
auto inner = entries.begin(), innerE = entries.end();
while (inner != innerE) {
Value source = inner->first;
if (cycleSet.contains(source)) {
// Going-away edge => get its cost and erase it.
if (!bestSource || bestCost > inner->second.cost) {
bestSource = source;
bestCost = inner->second.cost;
}
entries.erase(inner++);
} else {
++inner;
}
}
// There were going-away edges, contract them.
if (bestSource) {
entries[rep].cost = bestCost;
actualSource[target] = bestSource;
}
}
}
// Store the edges to the representative.
graph[rep] = std::move(repEntries);
}
OptimalBranching::OptimalBranching(RootOrderingGraph graph, Value root)
: graph(std::move(graph)), root(root) {}
unsigned OptimalBranching::solve() {
// Initialize the parents and total cost.
parents.clear();
parents[root] = Value();
unsigned totalCost = 0;
// A map that stores the cost of the optimal local choice for each node
// in a directed cycle. This map is cleared every time we seed the search.
DenseMap<Value, unsigned> parentDepths;
parentDepths.reserve(graph.size());
// Determine if the optimal local choice results in an acyclic graph. This is
// done by computing the optimal local choice and traversing up the computed
// parents. On success, `parents` will contain the parent of each node.
for (const auto &outer : graph) {
Value node = outer.first;
if (parents.count(node)) // already visited
continue;
// Follow the trail of best sources until we reach an already visited node.
// The code will assert if we cannot reach an already visited node, i.e.,
// the graph is not strongly connected.
parentDepths.clear();
do {
auto it = graph.find(node);
assert(it != graph.end() && "the graph is not strongly connected");
// Find the best local parent, taking into account both the depth and the
// tie breaking rules.
Value &bestSource = parents[node];
std::pair<unsigned, unsigned> bestCost;
for (const auto &inner : it->second) {
const RootOrderingEntry &entry = inner.second;
if (!bestSource /* initial */ || bestCost > entry.cost) {
bestSource = inner.first;
bestCost = entry.cost;
}
}
assert(bestSource && "the graph is not strongly connected");
parentDepths[node] = bestCost.first;
node = bestSource;
totalCost += bestCost.first;
} while (!parents.count(node));
// If we reached a non-root node, we have a cycle.
if (parentDepths.count(node)) {
// Determine the cycle starting at the representative node.
SmallVector<Value> cycle = getCycle(parents, node);
// The following maps disambiguate the source / target of the edges
// going out of / into the cycle.
DenseMap<Value, Value> actualSource, actualTarget;
// Contract the cycle and recurse.
contract(graph, cycle, parentDepths, actualSource, actualTarget);
totalCost = solve();
// Redirect the going-away edges.
for (auto &p : parents)
if (p.second == node)
// The parent is the node representating the cycle; replace it
// with the actual (best) source in the cycle.
p.second = actualSource.lookup(p.first);
// Redirect the unique incoming edge and copy the cycle.
Value parent = parents.lookup(node);
Value entry = actualTarget.lookup(parent);
cycle.push_back(node); // complete the cycle
for (size_t i = 0, e = cycle.size() - 1; i < e; ++i) {
totalCost += parentDepths.lookup(cycle[i]);
if (cycle[i] == entry)
parents[cycle[i]] = parent; // break the cycle
else
parents[cycle[i]] = cycle[i + 1];
}
// `parents` has a complete solution.
break;
}
}
return totalCost;
}
OptimalBranching::EdgeList
OptimalBranching::preOrderTraversal(ArrayRef<Value> nodes) const {
// Invert the parent mapping.
DenseMap<Value, std::vector<Value>> children;
for (Value node : nodes) {
if (node != root) {
Value parent = parents.lookup(node);
assert(parent && "invalid parent");
children[parent].push_back(node);
}
}
// The result which simultaneously acts as a queue.
EdgeList result;
result.reserve(nodes.size());
result.emplace_back(root, Value());
// Perform a BFS, pushing into the queue.
for (size_t i = 0; i < result.size(); ++i) {
Value node = result[i].first;
for (Value child : children[node])
result.emplace_back(child, node);
}
return result;
}
|