1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
|
//===- NVGPUToNVVM.cpp - NVGPU to NVVM dialect conversion -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/NVGPUToNVVM/NVGPUToNVVM.h"
#include "mlir/Conversion/GPUCommon/GPUCommonPass.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/LLVMCommon/VectorPattern.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/IR/Value.h"
#include "mlir/Pass/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
#define DEBUG_TYPE "nvgpu-to-nvvm"
#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
#define DBGSE() (llvm::dbgs())
namespace mlir {
#define GEN_PASS_DEF_CONVERTNVGPUTONVVMPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
/// Number of bits that needs to be excluded when building matrix descriptor for
/// wgmma operations.
constexpr int exclude4LSB = 4;
/// GPU has 32 bit registers, this function truncates values when larger width
/// is not needed.
static Value truncToI32(ImplicitLocOpBuilder &b, Value value) {
Type type = value.getType();
assert(llvm::isa<IntegerType>(type) && "expected an integer Value");
if (type.getIntOrFloatBitWidth() <= 32)
return value;
return LLVM::TruncOp::create(b, b.getI32Type(), value);
}
/// Returns the type for the intrinsic given the vectorResultType of the
/// `gpu.mma.sync` operation.
static Type inferIntrinsicResultType(Type vectorResultType) {
MLIRContext *ctx = vectorResultType.getContext();
auto a = cast<LLVM::LLVMArrayType>(vectorResultType);
auto f16x2Ty = VectorType::get(2, Float16Type::get(ctx));
auto i32Ty = IntegerType::get(ctx, 32);
auto i32x2Ty = VectorType::get(2, i32Ty);
Type f64Ty = Float64Type::get(ctx);
Type f64x2Ty = VectorType::get(2, f64Ty);
Type f32Ty = Float32Type::get(ctx);
Type f32x2Ty = VectorType::get(2, f32Ty);
if (a.getElementType() == f16x2Ty) {
return LLVM::LLVMStructType::getLiteral(
ctx, SmallVector<Type>(a.getNumElements(), f16x2Ty));
}
if (a.getElementType() == i32x2Ty) {
return LLVM::LLVMStructType::getLiteral(
ctx,
SmallVector<Type>(static_cast<size_t>(a.getNumElements()) * 2, i32Ty));
}
if (a.getElementType() == f64x2Ty) {
return LLVM::LLVMStructType::getLiteral(ctx, {f64Ty, f64Ty});
}
if (a.getElementType() == f32x2Ty) {
return LLVM::LLVMStructType::getLiteral(
ctx,
SmallVector<Type>(static_cast<size_t>(a.getNumElements()) * 2, f32Ty));
}
if (a.getElementType() == VectorType::get(1, f32Ty)) {
return LLVM::LLVMStructType::getLiteral(
ctx, SmallVector<Type>(static_cast<size_t>(a.getNumElements()), f32Ty));
}
return vectorResultType;
}
/// Convert the SSA result of the NVVM intrinsic `nvvm.mma.sync` (which is
/// always an LLVM struct) into a fragment that is compatible with the vector
/// type of this operation. This involves extracting elements from the struct
/// and inserting them into an LLVM array. These extra data-movement
/// operations should be canonicalized away by the LLVM backend.
static Value convertIntrinsicResult(Location loc, Type intrinsicResultType,
Type resultType, Value intrinsicResult,
RewriterBase &rewriter) {
MLIRContext *ctx = rewriter.getContext();
auto structType = dyn_cast<LLVM::LLVMStructType>(intrinsicResultType);
auto arrayType = dyn_cast<LLVM::LLVMArrayType>(resultType);
Type i32Ty = rewriter.getI32Type();
Type f32Ty = rewriter.getF32Type();
Type f64Ty = rewriter.getF64Type();
Type f16x2Ty = VectorType::get(2, rewriter.getF16Type());
Type i32x2Ty = VectorType::get(2, i32Ty);
Type f64x2Ty = VectorType::get(2, f64Ty);
Type f32x2Ty = VectorType::get(2, f32Ty);
Type f32x1Ty = VectorType::get(1, f32Ty);
auto makeConst = [&](int32_t index) -> Value {
return LLVM::ConstantOp::create(rewriter, loc, IntegerType::get(ctx, 32),
rewriter.getI32IntegerAttr(index));
};
if (arrayType) {
SmallVector<Value, 4> elements;
// The intrinsic returns 32-bit wide elements in a form which can be
// directly bitcasted and inserted into the result vector.
if (arrayType.getElementType() == f16x2Ty ||
arrayType.getElementType() == f32x1Ty) {
for (unsigned i = 0; i < structType.getBody().size(); i++) {
Value el =
LLVM::ExtractValueOp::create(rewriter, loc, intrinsicResult, i);
el = rewriter.createOrFold<LLVM::BitcastOp>(
loc, arrayType.getElementType(), el);
elements.push_back(el);
}
}
// The intrinsic returns i32, f64, and f32 values as individual scalars,
// even when the result is notionally a 64-bit wide element (e.g. f32x2). We
// need to extract them from the struct and pack them into the 64-bit wide
// rows of the vector result.
if (arrayType.getElementType() == i32x2Ty ||
arrayType.getElementType() == f64x2Ty ||
arrayType.getElementType() == f32x2Ty) {
for (unsigned i = 0, e = structType.getBody().size() / 2; i < e; i++) {
Value vec =
LLVM::PoisonOp::create(rewriter, loc, arrayType.getElementType());
Value x1 =
LLVM::ExtractValueOp::create(rewriter, loc, intrinsicResult, i * 2);
Value x2 = LLVM::ExtractValueOp::create(rewriter, loc, intrinsicResult,
i * 2 + 1);
vec = LLVM::InsertElementOp::create(rewriter, loc, vec.getType(), vec,
x1, makeConst(0));
vec = LLVM::InsertElementOp::create(rewriter, loc, vec.getType(), vec,
x2, makeConst(1));
elements.push_back(vec);
}
}
// Create the final vectorized result.
Value result = LLVM::PoisonOp::create(rewriter, loc, arrayType);
for (const auto &el : llvm::enumerate(elements)) {
result = LLVM::InsertValueOp::create(rewriter, loc, result, el.value(),
el.index());
}
return result;
}
return intrinsicResult;
}
/// The `gpu.mma.sync` converter below expects matrix fragment operands to be
/// given as 2D `vectors` where the rows are 32b or 64b wide. The
/// `nvvm.mma.sync` op expects these argments to be a given in a long list of
/// scalars of certain types. This function helps unpack the `vector` arguments
/// and cast them to the types expected by `nvvm.mma.sync`.
static SmallVector<Value> unpackOperandVector(ImplicitLocOpBuilder &b,
Value operand,
NVVM::MMATypes operandPtxType) {
SmallVector<Value> result;
Type i32Ty = b.getI32Type();
Type f64Ty = b.getF64Type();
Type f32Ty = b.getF32Type();
Type i64Ty = b.getI64Type();
Type i8x4Ty = VectorType::get(4, b.getI8Type());
Type i4x8Ty = VectorType::get(8, b.getIntegerType(4));
Type f32x1Ty = VectorType::get(1, f32Ty);
auto arrayTy = cast<LLVM::LLVMArrayType>(operand.getType());
for (unsigned i = 0, e = arrayTy.getNumElements(); i < e; ++i) {
Value toUse = LLVM::ExtractValueOp::create(b, operand, i);
// For 4xi8 vectors, the intrinsic expects these to be provided as i32
// scalar types.
if (arrayTy.getElementType() == i8x4Ty ||
arrayTy.getElementType() == i4x8Ty ||
(arrayTy.getElementType() == f32x1Ty &&
operandPtxType == NVVM::MMATypes::tf32)) {
result.push_back(LLVM::BitcastOp::create(b, i32Ty, toUse));
continue;
}
// For some element types (i32, f32, f64), we need to unpack the inner
// vector/array type as well because the intrinsic expects individual
// scalars to be provided.
VectorType innerArrayTy = dyn_cast<VectorType>(arrayTy.getElementType());
if (innerArrayTy && (innerArrayTy.getElementType() == i32Ty ||
innerArrayTy.getElementType() == f64Ty ||
innerArrayTy.getElementType() == f32Ty)) {
for (unsigned idx = 0, innerSize = innerArrayTy.getNumElements();
idx < innerSize; idx++) {
result.push_back(LLVM::ExtractElementOp::create(
b, toUse,
LLVM::ConstantOp::create(b, i64Ty, b.getI64IntegerAttr(idx))));
}
continue;
}
result.push_back(toUse);
}
return result;
}
/// Returns whether mbarrier object has shared memory address space.
static bool isMbarrierShared(nvgpu::MBarrierGroupType barrierType) {
return (mlir::nvgpu::NVGPUDialect::isSharedMemoryAddressSpace(
barrierType.getMemorySpace()));
}
/// Returns the memory space attribute of the mbarrier object.
Attribute nvgpu::getMbarrierMemorySpace(MLIRContext *context,
nvgpu::MBarrierGroupType barrierType) {
Attribute memorySpace = {};
if (isMbarrierShared(barrierType)) {
memorySpace =
IntegerAttr::get(IntegerType::get(context, 64),
nvgpu::NVGPUDialect::kSharedMemoryAddressSpace);
}
return memorySpace;
}
/// Returns memref type of the mbarrier object. The type is defined in the
/// MBarrierGroupType.
MemRefType nvgpu::getMBarrierMemrefType(MLIRContext *context,
nvgpu::MBarrierGroupType barrierType) {
Attribute memorySpace = nvgpu::getMbarrierMemorySpace(context, barrierType);
MemRefLayoutAttrInterface layout;
return MemRefType::get({barrierType.getNumBarriers()},
IntegerType::get(context, 64), layout, memorySpace);
}
namespace {
struct MmaLdMatrixOpToNVVM : public ConvertOpToLLVMPattern<nvgpu::LdMatrixOp> {
using ConvertOpToLLVMPattern<nvgpu::LdMatrixOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::LdMatrixOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
MLIRContext *ctx = getContext();
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
// The result type of ldmatrix will always be a struct of 32bit integer
// registers if more than one 32bit value is returned. Otherwise, the result
// is a single i32. The result type of the GPU operation is always a vector
// of shape (NumRegisters, VectorRegister) where VectorRegister is the
// vector type of the result and always 32 bits long. We bitcast the result
// of the NVVM::LdMatrix to this vector type.
auto vectorResultType = dyn_cast<VectorType>(op->getResultTypes()[0]);
if (!vectorResultType) {
return failure();
}
Type innerVectorType = VectorType::get(vectorResultType.getDimSize(1),
vectorResultType.getElementType());
int64_t num32BitRegs = vectorResultType.getDimSize(0);
Type ldMatrixResultType;
if (num32BitRegs > 1) {
ldMatrixResultType = LLVM::LLVMStructType::getLiteral(
ctx, SmallVector<Type>(num32BitRegs, rewriter.getI32Type()));
} else {
ldMatrixResultType = rewriter.getI32Type();
}
auto srcMemrefType = cast<MemRefType>(op.getSrcMemref().getType());
Value srcPtr =
getStridedElementPtr(rewriter, b.getLoc(), srcMemrefType,
adaptor.getSrcMemref(), adaptor.getIndices());
Value ldMatrixResult = NVVM::LdMatrixOp::create(
b, ldMatrixResultType, srcPtr,
/*num=*/op.getNumTiles(),
/*layout=*/op.getTranspose() ? NVVM::MMALayout::col
: NVVM::MMALayout::row);
// The ldmatrix operation returns either a single i32 value or a struct of
// i32 values. Here we unpack those values and cast them back to their
// actual vector type (still of width 32b) and repack them into a result
// struct.
Type finalResultType = typeConverter->convertType(vectorResultType);
Value result = LLVM::PoisonOp::create(b, finalResultType);
for (int64_t i = 0, e = vectorResultType.getDimSize(0); i < e; i++) {
Value i32Register =
num32BitRegs > 1 ? LLVM::ExtractValueOp::create(b, ldMatrixResult, i)
: ldMatrixResult;
Value casted = LLVM::BitcastOp::create(b, innerVectorType, i32Register);
result = LLVM::InsertValueOp::create(b, result, casted, i);
}
rewriter.replaceOp(op, result);
return success();
}
};
/// Convert the given type into the corresponding PTX type (NVVM::MMATypes
/// enum).
static FailureOr<NVVM::MMATypes> getNvvmMmaType(Type t) {
Type elType = getElementTypeOrSelf(t);
if (elType.isInteger(8))
return NVVM::MMATypes::s8;
if (elType.isInteger(4))
return NVVM::MMATypes::s4;
if (elType.isF16())
return NVVM::MMATypes::f16;
if (elType.isF64())
return NVVM::MMATypes::f64;
if (elType.isF32())
return NVVM::MMATypes::tf32;
return failure();
}
struct MmaSyncOptoNVVM : public ConvertOpToLLVMPattern<nvgpu::MmaSyncOp> {
using ConvertOpToLLVMPattern<nvgpu::MmaSyncOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::MmaSyncOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
// Get the shapes of the MMAMatrix type being used. The shapes will
// choose which intrinsic this op will be lowered to.
VectorType aType = op.getMatrixA().getType();
VectorType bType = op.getMatrixA().getType();
VectorType cType = op.getMatrixC().getType();
std::array<int64_t, 3> gemmShape = op.getMmaShapeAsArray();
// Tensor Cores (mma.sync) on F32 works only with TensorFloat32 (TF32).
bool tf32Enabled = op->hasAttr(op.getTf32EnabledAttrName());
if (aType.getElementType().isF32() && !tf32Enabled)
return failure();
FailureOr<NVVM::MMATypes> ptxTypeA = getNvvmMmaType(aType);
if (failed(ptxTypeA))
return op->emitOpError("failed to deduce operand PTX types");
FailureOr<NVVM::MMATypes> ptxTypeB = getNvvmMmaType(bType);
if (failed(ptxTypeB))
return op->emitOpError("failed to deduce operand PTX types");
std::optional<NVVM::MMATypes> ptxTypeC =
NVVM::MmaOp::inferOperandMMAType(cType.getElementType(),
/*isAccumulator=*/true);
if (!ptxTypeC)
return op->emitError(
"could not infer the PTX type for the accumulator/result");
// TODO: add an attribute to the op to customize this behavior.
std::optional<NVVM::MMAIntOverflow> overflow(std::nullopt);
if (isa<IntegerType>(aType.getElementType()))
overflow = NVVM::MMAIntOverflow::satfinite;
SmallVector<Value> matA =
unpackOperandVector(b, adaptor.getMatrixA(), *ptxTypeA);
SmallVector<Value> matB =
unpackOperandVector(b, adaptor.getMatrixB(), *ptxTypeB);
SmallVector<Value> matC =
unpackOperandVector(b, adaptor.getMatrixC(), *ptxTypeC);
Type desiredRetTy = typeConverter->convertType(op->getResultTypes()[0]);
Type intrinsicResTy = inferIntrinsicResultType(
typeConverter->convertType(op->getResultTypes()[0]));
Value intrinsicResult =
NVVM::MmaOp::create(b, intrinsicResTy, matA, matB, matC,
/*shape=*/gemmShape,
/*b1Op=*/std::nullopt,
/*intOverflow=*/overflow,
/*multiplicandPtxTypes=*/
std::array<NVVM::MMATypes, 2>{*ptxTypeA, *ptxTypeB},
/*multiplicandLayouts=*/
std::array<NVVM::MMALayout, 2>{
NVVM::MMALayout::row, NVVM::MMALayout::col});
rewriter.replaceOp(op, convertIntrinsicResult(op.getLoc(), intrinsicResTy,
desiredRetTy, intrinsicResult,
rewriter));
return success();
}
};
struct ConvertNVGPUToNVVMPass
: public impl::ConvertNVGPUToNVVMPassBase<ConvertNVGPUToNVVMPass> {
using Base::Base;
void getDependentDialects(DialectRegistry ®istry) const override {
registry.insert<memref::MemRefDialect, LLVM::LLVMDialect, NVVM::NVVMDialect,
arith::ArithDialect>();
}
void runOnOperation() override {
LowerToLLVMOptions options(&getContext());
RewritePatternSet patterns(&getContext());
LLVMTypeConverter converter(&getContext(), options);
IRRewriter rewriter(&getContext());
populateGpuMemorySpaceAttributeConversions(
converter, [](gpu::AddressSpace space) -> unsigned {
switch (space) {
case gpu::AddressSpace::Global:
return static_cast<unsigned>(
NVVM::NVVMMemorySpace::kGlobalMemorySpace);
case gpu::AddressSpace::Workgroup:
return static_cast<unsigned>(
NVVM::NVVMMemorySpace::kSharedMemorySpace);
case gpu::AddressSpace::Private:
return 0;
}
llvm_unreachable("unknown address space enum value");
return 0;
});
/// device-side async tokens cannot be materialized in nvvm. We just
/// convert them to a dummy i32 type in order to easily drop them during
/// conversion.
converter.addConversion([&](nvgpu::DeviceAsyncTokenType type) -> Type {
return converter.convertType(IntegerType::get(type.getContext(), 32));
});
converter.addConversion([&](nvgpu::WarpgroupAccumulatorType type) -> Type {
Type elemType = type.getFragmented().getElementType();
int64_t sizeM = type.getFragmented().getDimSize(0);
int64_t sizeN = type.getFragmented().getDimSize(1);
unsigned numMembers;
if (elemType.isF32() || elemType.isInteger(32))
numMembers = sizeN / 2;
else if (elemType.isF16())
numMembers = sizeN / 4;
else
llvm_unreachable("unsupported type for warpgroup accumulator");
SmallVector<Type> innerStructBody;
for (unsigned i = 0; i < numMembers; i++)
innerStructBody.push_back(elemType);
auto innerStructType =
LLVM::LLVMStructType::getLiteral(type.getContext(), innerStructBody);
SmallVector<Type> structBody;
for (int i = 0; i < sizeM; i += kWgmmaSizeM)
structBody.push_back(innerStructType);
auto convertedType =
LLVM::LLVMStructType::getLiteral(type.getContext(), structBody);
return converter.convertType(convertedType);
});
converter.addConversion([&](nvgpu::MBarrierTokenType type) -> Type {
return converter.convertType(IntegerType::get(type.getContext(), 64));
});
converter.addConversion(
[&](nvgpu::WarpgroupMatrixDescriptorType type) -> Type {
return converter.convertType(IntegerType::get(type.getContext(), 64));
});
converter.addConversion([&](nvgpu::MBarrierGroupType type) -> Type {
return converter.convertType(
nvgpu::getMBarrierMemrefType(rewriter.getContext(), type));
});
converter.addConversion([&](nvgpu::TensorMapDescriptorType type) -> Type {
return LLVM::LLVMPointerType::get(type.getContext());
});
populateNVGPUToNVVMConversionPatterns(converter, patterns);
LLVMConversionTarget target(getContext());
target.addLegalDialect<::mlir::LLVM::LLVMDialect>();
target.addLegalDialect<::mlir::arith::ArithDialect>();
target.addLegalDialect<::mlir::memref::MemRefDialect>();
target.addLegalDialect<::mlir::NVVM::NVVMDialect>();
mlir::scf::populateSCFStructuralTypeConversionsAndLegality(
converter, patterns, target);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
/// Returns the constraints for the sparse MMA inline assembly instruction.
static std::string buildMmaSparseAsmConstraintString(unsigned matASize,
unsigned matBSize,
unsigned matCSize) {
std::string str;
llvm::raw_string_ostream ss(str);
for (unsigned i = 0; i < matCSize; i++)
ss << "=r,";
for (unsigned i = 0; i < matASize + matBSize + matCSize; i++)
ss << "r,";
// The final operand is for the sparsity metadata.
// The sparsity selector appears as direct literal.
ss << "r";
return str;
}
/// Returns the string for the `mma.sp.sync` instruction that corresponds to
/// the given parameters. Note that this function doesn't do any validation,
/// it's expected that the provided parameters correspond to a valid
/// instruction.
static std::string buildMmaSparseAsmString(
const std::array<int64_t, 3> &shape, unsigned matASize, unsigned matBSize,
unsigned matCSize, NVVM::MMATypes ptxTypeA, NVVM::MMATypes ptxTypeB,
NVVM::MMATypes ptxTypeC, NVVM::MMATypes ptxTypeD,
std::optional<NVVM::MMAIntOverflow> overflow, unsigned metaDataSelector) {
auto ptxTypeStr = [](NVVM::MMATypes ptxType) {
return NVVM::stringifyMMATypes(ptxType);
};
std::string asmStr;
llvm::raw_string_ostream ss(asmStr);
ss << "mma.sp.sync.aligned.m" << shape[0] << "n" << shape[1] << "k"
<< shape[2] << ".row.col.";
if (overflow)
ss << NVVM::stringifyMMAIntOverflow(*overflow) << ".";
ss << ptxTypeStr(ptxTypeD) << "." << ptxTypeStr(ptxTypeA) << "."
<< ptxTypeStr(ptxTypeB) << "." << ptxTypeStr(ptxTypeC) << " ";
unsigned asmArgIdx = 0;
// The operand string is structured into sections `{matC elements...},
// {matA elements...}, {matB elements...}, {matC elements}`.
for (const auto arrSize : {matCSize, matASize, matBSize, matCSize}) {
ss << "{";
for (unsigned i = 0; i < arrSize; i++)
ss << "$" << asmArgIdx++ << (i < arrSize - 1 ? "," : "");
ss << "},";
}
ss << "$" << asmArgIdx++ << ",";
assert(metaDataSelector <= 1);
ss << "0x" << metaDataSelector << ";";
return asmStr;
}
/// Builds an inline assembly operation corresponding to the specified MMA
/// sparse sync operation.
static FailureOr<LLVM::InlineAsmOp> emitMmaSparseSyncOpAsm(
ImplicitLocOpBuilder &b, NVVM::MMATypes ptxTypeA, NVVM::MMATypes ptxTypeB,
NVVM::MMATypes ptxTypeC, NVVM::MMATypes ptxTypeD,
std::optional<NVVM::MMAIntOverflow> overflow, ArrayRef<Value> unpackedAData,
ArrayRef<Value> unpackedB, ArrayRef<Value> unpackedC, Value indexData,
int64_t metadataSelector, const std::array<int64_t, 3> &shape,
Type intrinsicResultType) {
auto asmDialectAttr =
LLVM::AsmDialectAttr::get(b.getContext(), LLVM::AsmDialect::AD_ATT);
const unsigned matASize = unpackedAData.size();
const unsigned matBSize = unpackedB.size();
const unsigned matCSize = unpackedC.size();
std::string asmStr = buildMmaSparseAsmString(
shape, matASize, matBSize, matCSize, ptxTypeA, ptxTypeB, ptxTypeC,
ptxTypeD, overflow, metadataSelector);
std::string constraintStr =
buildMmaSparseAsmConstraintString(matASize, matBSize, matCSize);
SmallVector<Value> asmVals;
asmVals.reserve(matASize + matBSize + matCSize + 1);
for (ArrayRef<Value> args : {unpackedAData, unpackedB, unpackedC})
llvm::append_range(asmVals, args);
asmVals.push_back(indexData);
return LLVM::InlineAsmOp::create(b,
/*resultTypes=*/intrinsicResultType,
/*operands=*/asmVals,
/*asm_string=*/asmStr,
/*constraints=*/constraintStr,
/*has_side_effects=*/true,
/*is_align_stack=*/false,
LLVM::TailCallKind::None,
/*asm_dialect=*/asmDialectAttr,
/*operand_attrs=*/ArrayAttr());
}
/// Lowers `nvgpu.mma.sp.sync` to inline assembly.
struct NVGPUMmaSparseSyncLowering
: public ConvertOpToLLVMPattern<nvgpu::MmaSparseSyncOp> {
using ConvertOpToLLVMPattern<nvgpu::MmaSparseSyncOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::MmaSparseSyncOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
// Get the shapes of the MMAMatrix type being used. The shapes will
// choose which intrinsic this op will be lowered to.
VectorType aType = op.getMatrixA().getType();
VectorType bType = op.getMatrixB().getType();
VectorType cType = op.getMatrixC().getType();
FailureOr<NVVM::MMATypes> ptxTypeA = getNvvmMmaType(aType);
if (failed(ptxTypeA))
return op->emitOpError("failed to deduce operand PTX types");
FailureOr<NVVM::MMATypes> ptxTypeB = getNvvmMmaType(bType);
if (failed(ptxTypeB))
return op->emitOpError("failed to deduce operand PTX types");
std::optional<NVVM::MMATypes> ptxTypeC =
NVVM::MmaOp::inferOperandMMAType(cType.getElementType(),
/*isAccumulator=*/true);
if (!ptxTypeC)
return op->emitError(
"could not infer the PTX type for the accumulator/result");
// Same as `mma.sync`, F32 works only with TensorFloat32 (TF32).
bool tf32Enabled = op->hasAttr(op.getTf32EnabledAttrName());
if (aType.getElementType().isF32() && !tf32Enabled)
return failure();
// TODO: add an attribute to the op to customize this behavior.
std::optional<NVVM::MMAIntOverflow> overflow(std::nullopt);
if (isa<IntegerType>(aType.getElementType()))
overflow = NVVM::MMAIntOverflow::satfinite;
SmallVector<Value> matA =
unpackOperandVector(b, adaptor.getMatrixA(), *ptxTypeA);
SmallVector<Value> matB =
unpackOperandVector(b, adaptor.getMatrixB(), *ptxTypeB);
SmallVector<Value> matC =
unpackOperandVector(b, adaptor.getMatrixC(), *ptxTypeC);
Type desiredRetTy = typeConverter->convertType(op->getResultTypes()[0]);
Type intrinsicResTy = inferIntrinsicResultType(
typeConverter->convertType(op->getResultTypes()[0]));
// Bitcast the sparse metadata from vector<2xf16> to an i32.
Value sparseMetadata = adaptor.getSparseMetadata();
if (sparseMetadata.getType() != VectorType::get(2, rewriter.getI16Type()))
return op->emitOpError() << "Expected metadata type to be LLVM "
"VectorType of 2 i16 elements";
sparseMetadata =
LLVM::BitcastOp::create(b, rewriter.getI32Type(), sparseMetadata);
FailureOr<LLVM::InlineAsmOp> intrinsicResult = emitMmaSparseSyncOpAsm(
b, *ptxTypeA, *ptxTypeB, *ptxTypeC, *ptxTypeC, overflow, matA, matB,
matC, sparseMetadata, op.getSparsitySelector(), op.getMmaShapeAsArray(),
intrinsicResTy);
if (failed(intrinsicResult))
return failure();
assert((*intrinsicResult).getNumResults() == 1 &&
"expected inline asm op returns a single LLVM struct type");
rewriter.replaceOp(
op, convertIntrinsicResult(op.getLoc(), intrinsicResTy, desiredRetTy,
(*intrinsicResult)->getResult(0), rewriter));
return success();
}
};
struct NVGPUAsyncCopyLowering
: public ConvertOpToLLVMPattern<nvgpu::DeviceAsyncCopyOp> {
using ConvertOpToLLVMPattern<
nvgpu::DeviceAsyncCopyOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::DeviceAsyncCopyOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
Location loc = op.getLoc();
auto dstMemrefType = cast<MemRefType>(op.getDst().getType());
Value dstPtr =
getStridedElementPtr(rewriter, b.getLoc(), dstMemrefType,
adaptor.getDst(), adaptor.getDstIndices());
FailureOr<unsigned> dstAddressSpace =
getTypeConverter()->getMemRefAddressSpace(dstMemrefType);
if (failed(dstAddressSpace))
return rewriter.notifyMatchFailure(
loc, "destination memref address space not convertible to integer");
auto srcMemrefType = cast<MemRefType>(op.getSrc().getType());
FailureOr<unsigned> srcAddressSpace =
getTypeConverter()->getMemRefAddressSpace(srcMemrefType);
if (failed(srcAddressSpace))
return rewriter.notifyMatchFailure(
loc, "source memref address space not convertible to integer");
Value scrPtr =
getStridedElementPtr(rewriter, loc, srcMemrefType, adaptor.getSrc(),
adaptor.getSrcIndices());
// Intrinsics takes a global pointer so we need an address space cast.
auto srcPointerGlobalType = LLVM::LLVMPointerType::get(
op->getContext(), NVVM::NVVMMemorySpace::kGlobalMemorySpace);
scrPtr = LLVM::AddrSpaceCastOp::create(b, srcPointerGlobalType, scrPtr);
int64_t dstElements = adaptor.getDstElements().getZExtValue();
int64_t sizeInBytes =
(dstMemrefType.getElementTypeBitWidth() * dstElements) / 8;
// When the optional SrcElements argument is *not* present, the regular
// CpAsyncOp is generated. CopyAsyncOp reads bytes from source (global
// memory) to fill DstElements number of elements in the destination
// (shared memory).
Value srcBytes = adaptor.getSrcElements();
if (srcBytes) {
// When the optional SrcElements argument is present, the source (global
// memory) of CpAsyncOp is read only for SrcElements number of elements.
// The rest of the DstElements in the destination (shared memory) are
// filled with zeros.
Value c3I32 =
LLVM::ConstantOp::create(b, b.getI32Type(), b.getI32IntegerAttr(3));
Value bitwidth = LLVM::ConstantOp::create(
b, b.getI32Type(),
b.getI32IntegerAttr(srcMemrefType.getElementTypeBitWidth()));
Value srcElementsI32 = LLVM::TruncOp::create(b, b.getI32Type(), srcBytes);
srcBytes = LLVM::LShrOp::create(
b, LLVM::MulOp::create(b, bitwidth, srcElementsI32), c3I32);
}
// Cache global (.cg) for 16 dst bytes, Cache all (.ca) for sizes other than
// 16 dst bytes.
NVVM::LoadCacheModifierKind cacheModifier =
(op.getBypassL1().value_or(false) && sizeInBytes == 16)
? NVVM::LoadCacheModifierKind::CG
: NVVM::LoadCacheModifierKind::CA;
NVVM::CpAsyncOp::create(
b, dstPtr, scrPtr, rewriter.getI32IntegerAttr(sizeInBytes),
NVVM::LoadCacheModifierKindAttr::get(op->getContext(), cacheModifier),
srcBytes);
// Drop the result token.
Value zero =
LLVM::ConstantOp::create(b, IntegerType::get(op.getContext(), 32),
rewriter.getI32IntegerAttr(0));
rewriter.replaceOp(op, zero);
return success();
}
};
struct NVGPUAsyncCreateGroupLowering
: public ConvertOpToLLVMPattern<nvgpu::DeviceAsyncCreateGroupOp> {
using ConvertOpToLLVMPattern<
nvgpu::DeviceAsyncCreateGroupOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::DeviceAsyncCreateGroupOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
NVVM::CpAsyncCommitGroupOp::create(rewriter, op.getLoc());
// Drop the result token.
Value zero = LLVM::ConstantOp::create(rewriter, op->getLoc(),
IntegerType::get(op.getContext(), 32),
rewriter.getI32IntegerAttr(0));
rewriter.replaceOp(op, zero);
return success();
}
};
struct NVGPUAsyncWaitLowering
: public ConvertOpToLLVMPattern<nvgpu::DeviceAsyncWaitOp> {
using ConvertOpToLLVMPattern<
nvgpu::DeviceAsyncWaitOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::DeviceAsyncWaitOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// If numGroup is not present pick 0 as a conservative correct value.
int32_t numGroups = adaptor.getNumGroups().value_or(0);
NVVM::CpAsyncWaitGroupOp::create(rewriter, op.getLoc(), numGroups);
rewriter.eraseOp(op);
return success();
}
};
/// Creates mbarrier object in shared memory
struct NVGPUMBarrierCreateLowering
: public ConvertOpToLLVMPattern<nvgpu::MBarrierCreateOp> {
using ConvertOpToLLVMPattern<nvgpu::MBarrierCreateOp>::ConvertOpToLLVMPattern;
template <typename moduleT>
memref::GlobalOp generateGlobalBarrier(ConversionPatternRewriter &rewriter,
Operation *funcOp, moduleT moduleOp,
MemRefType barrierType) const {
SymbolTable symbolTable(moduleOp);
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(&moduleOp.front());
auto global = memref::GlobalOp::create(
rewriter, funcOp->getLoc(), "__mbarrier",
/*sym_visibility=*/rewriter.getStringAttr("private"),
/*type=*/barrierType,
/*initial_value=*/ElementsAttr(),
/*constant=*/false,
/*alignment=*/rewriter.getI64IntegerAttr(8));
symbolTable.insert(global);
return global;
}
LogicalResult
matchAndRewrite(nvgpu::MBarrierCreateOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Operation *funcOp = op->getParentOp();
MemRefType barrierType = nvgpu::getMBarrierMemrefType(
rewriter.getContext(), op.getBarriers().getType());
memref::GlobalOp global;
if (auto moduleOp = funcOp->getParentOfType<gpu::GPUModuleOp>())
global = generateGlobalBarrier(rewriter, funcOp, moduleOp, barrierType);
else if (auto moduleOp = funcOp->getParentOfType<ModuleOp>())
global = generateGlobalBarrier(rewriter, funcOp, moduleOp, barrierType);
rewriter.setInsertionPoint(op);
rewriter.replaceOpWithNewOp<memref::GetGlobalOp>(op, barrierType,
global.getName());
return success();
}
};
/// Base class for lowering mbarrier operations to nvvm intrinsics.
template <typename SourceOp>
struct MBarrierBasePattern : public ConvertOpToLLVMPattern<SourceOp> {
public:
using ConvertOpToLLVMPattern<SourceOp>::ConvertOpToLLVMPattern;
/// Returns the base pointer of the mbarrier object.
Value getMbarrierPtr(ImplicitLocOpBuilder &b,
nvgpu::MBarrierGroupType mbarType, Value memrefDesc,
Value mbarId,
ConversionPatternRewriter &rewriter) const {
MemRefType mbarrierMemrefType =
nvgpu::getMBarrierMemrefType(rewriter.getContext(), mbarType);
return ConvertToLLVMPattern::getStridedElementPtr(
rewriter, b.getLoc(), mbarrierMemrefType, memrefDesc, {mbarId});
}
};
struct NVGPUMBarrierGetLowering
: public MBarrierBasePattern<nvgpu::MBarrierGetOp> {
using MBarrierBasePattern<nvgpu::MBarrierGetOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::MBarrierGetOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
nvgpu::MBarrierGroupType mbarrierType = op.getBarriers().getType();
rewriter.setInsertionPoint(op);
Value barrier = getMbarrierPtr(b, mbarrierType, adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
Type resType = op.getMbarrierPointer().getType();
rewriter.replaceOpWithNewOp<LLVM::PtrToIntOp>(op, resType, barrier);
return success();
}
};
/// Lowers `nvgpu.mbarrier.init` to `nvvm.mbarrier.init`
struct NVGPUMBarrierInitLowering
: public MBarrierBasePattern<nvgpu::MBarrierInitOp> {
using MBarrierBasePattern<nvgpu::MBarrierInitOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::MBarrierInitOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
nvgpu::MBarrierGroupType mbarrierType = op.getBarriers().getType();
rewriter.setInsertionPoint(op);
Value barrier = getMbarrierPtr(b, mbarrierType, adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
Value count = truncToI32(b, adaptor.getCount());
if (isMbarrierShared(mbarrierType)) {
rewriter.replaceOpWithNewOp<NVVM::MBarrierInitSharedOp>(
op, barrier, count, adaptor.getPredicate());
} else {
rewriter.replaceOpWithNewOp<NVVM::MBarrierInitOp>(op, barrier, count,
adaptor.getPredicate());
}
return success();
}
};
/// Lowers `nvgpu.mbarrier.arrive` to `nvvm.mbarrier.arrive`
struct NVGPUMBarrierArriveLowering
: public MBarrierBasePattern<nvgpu::MBarrierArriveOp> {
using MBarrierBasePattern<nvgpu::MBarrierArriveOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::MBarrierArriveOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value barrier =
getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
Type tokenType = getTypeConverter()->convertType(
nvgpu::MBarrierTokenType::get(op->getContext()));
if (isMbarrierShared(op.getBarriers().getType())) {
rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveSharedOp>(op, tokenType,
barrier);
} else {
rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveOp>(op, tokenType,
barrier);
}
return success();
}
};
/// Lowers `nvgpu.mbarrier.arrive.nocomplete` to
/// `nvvm.mbarrier.arrive.nocomplete`
struct NVGPUMBarrierArriveNoCompleteLowering
: public MBarrierBasePattern<nvgpu::MBarrierArriveNoCompleteOp> {
using MBarrierBasePattern<
nvgpu::MBarrierArriveNoCompleteOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::MBarrierArriveNoCompleteOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value barrier =
getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
Type tokenType = getTypeConverter()->convertType(
nvgpu::MBarrierTokenType::get(op->getContext()));
Value count = truncToI32(b, adaptor.getCount());
if (isMbarrierShared(op.getBarriers().getType())) {
rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveNocompleteSharedOp>(
op, tokenType, barrier, count);
} else {
rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveNocompleteOp>(
op, tokenType, barrier, count);
}
return success();
}
};
/// Lowers `nvgpu.mbarrier.test.wait` to `nvvm.mbarrier.test.wait`
struct NVGPUMBarrierTestWaitLowering
: public MBarrierBasePattern<nvgpu::MBarrierTestWaitOp> {
using MBarrierBasePattern<nvgpu::MBarrierTestWaitOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::MBarrierTestWaitOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value barrier =
getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
Type retType = rewriter.getI1Type();
if (isMbarrierShared(op.getBarriers().getType())) {
rewriter.replaceOpWithNewOp<NVVM::MBarrierTestWaitSharedOp>(
op, retType, barrier, adaptor.getToken());
} else {
rewriter.replaceOpWithNewOp<NVVM::MBarrierTestWaitOp>(
op, retType, barrier, adaptor.getToken());
}
return success();
}
};
struct NVGPUMBarrierArriveExpectTxLowering
: public MBarrierBasePattern<nvgpu::MBarrierArriveExpectTxOp> {
using MBarrierBasePattern<
nvgpu::MBarrierArriveExpectTxOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::MBarrierArriveExpectTxOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value barrier =
getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
Value txcount = truncToI32(b, adaptor.getTxcount());
if (isMbarrierShared(op.getBarriers().getType())) {
rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveExpectTxSharedOp>(
op, barrier, txcount, adaptor.getPredicate());
return success();
}
rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveExpectTxOp>(
op, barrier, txcount, adaptor.getPredicate());
return success();
}
};
struct NVGPUMBarrierTryWaitParityLowering
: public MBarrierBasePattern<nvgpu::MBarrierTryWaitParityOp> {
using MBarrierBasePattern<
nvgpu::MBarrierTryWaitParityOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::MBarrierTryWaitParityOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value barrier =
getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
Value ticks = truncToI32(b, adaptor.getTicks());
Value phase =
LLVM::ZExtOp::create(b, b.getI32Type(), adaptor.getPhaseParity());
if (isMbarrierShared(op.getBarriers().getType())) {
rewriter.replaceOpWithNewOp<NVVM::MBarrierTryWaitParitySharedOp>(
op, barrier, phase, ticks);
return success();
}
rewriter.replaceOpWithNewOp<NVVM::MBarrierTryWaitParityOp>(op, barrier,
phase, ticks);
return success();
}
};
struct NVGPUTmaAsyncLoadOpLowering
: public MBarrierBasePattern<nvgpu::TmaAsyncLoadOp> {
using MBarrierBasePattern<nvgpu::TmaAsyncLoadOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::TmaAsyncLoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
auto srcMemrefType = cast<MemRefType>(op.getDst().getType());
Value dest = getStridedElementPtr(rewriter, op->getLoc(), srcMemrefType,
adaptor.getDst(), {});
Value barrier =
getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
SmallVector<Value> coords = adaptor.getCoordinates();
for (auto [index, value] : llvm::enumerate(coords)) {
coords[index] = truncToI32(b, value);
}
rewriter.replaceOpWithNewOp<NVVM::CpAsyncBulkTensorGlobalToSharedClusterOp>(
op, dest, adaptor.getTensorMapDescriptor(), coords, barrier,
ValueRange{}, adaptor.getMulticastMask(), Value{},
adaptor.getPredicate());
return success();
}
};
struct NVGPUTmaAsyncStoreOpLowering
: public MBarrierBasePattern<nvgpu::TmaAsyncStoreOp> {
using MBarrierBasePattern<nvgpu::TmaAsyncStoreOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::TmaAsyncStoreOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
auto srcMemrefType = cast<MemRefType>(op.getSrc().getType());
Value dest = getStridedElementPtr(rewriter, op->getLoc(), srcMemrefType,
adaptor.getSrc(), {});
SmallVector<Value> coords = adaptor.getCoordinates();
for (auto [index, value] : llvm::enumerate(coords)) {
coords[index] = truncToI32(b, value);
}
rewriter.replaceOpWithNewOp<NVVM::CpAsyncBulkTensorSharedCTAToGlobalOp>(
op, adaptor.getTensorMapDescriptor(), dest, coords,
adaptor.getPredicate());
return success();
}
};
struct NVGPUGenerateWarpgroupDescriptorLowering
: public ConvertOpToLLVMPattern<nvgpu::WarpgroupGenerateDescriptorOp> {
using ConvertOpToLLVMPattern<
nvgpu::WarpgroupGenerateDescriptorOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::WarpgroupGenerateDescriptorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
nvgpu::TensorMapSwizzleKind swizzleKind =
op.getTensorMap().getType().getSwizzle();
unsigned layout =
(swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_128B) ? 128
: (swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_64B) ? 64
: (swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_32B) ? 32
: 1;
unsigned swizzle =
(swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_128B) ? 1
: (swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_64B) ? 2
: (swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_32B) ? 3
: 0;
auto ti64 = b.getIntegerType(64);
auto makeConst = [&](uint64_t index) -> Value {
return LLVM::ConstantOp::create(b, ti64, b.getI64IntegerAttr(index));
};
auto shiftLeft = [&](Value value, unsigned shift) -> Value {
return LLVM::ShlOp::create(b, ti64, value, makeConst(shift));
};
auto shiftRight = [&](Value value, unsigned shift) -> Value {
return LLVM::LShrOp::create(b, ti64, value, makeConst(shift));
};
auto insertBit = [&](Value desc, Value val, int startBit) {
return LLVM::OrOp::create(b, ti64, desc, shiftLeft(val, startBit));
};
int64_t sizeN = op.getTensorMap().getType().getTensor().getDimSize(0);
uint64_t strideDimVal = (layout << 3) >> exclude4LSB;
uint64_t leadDimVal = (sizeN * layout) >> exclude4LSB;
uint64_t offsetVal = 0;
Value strideDim = makeConst(strideDimVal);
Value leadDim = makeConst(leadDimVal);
Value baseAddr = getStridedElementPtr(
rewriter, op->getLoc(), cast<MemRefType>(op.getTensor().getType()),
adaptor.getTensor(), {});
Value basePtr = LLVM::PtrToIntOp::create(b, ti64, baseAddr);
// Just use 14 bits for base address
Value basePtr14bit = shiftRight(shiftLeft(basePtr, 46), 50);
int startSwizzleBit = 62, startOffsetBit = 49, startStrideBit = 32,
startLeadBit = 16, startBaseAddrBit = 0;
Value dsc = makeConst(0);
// // [62,64) swizzle type
dsc = insertBit(dsc, makeConst(swizzle), startSwizzleBit);
// // [49,52) base_offset
dsc = insertBit(dsc, makeConst(offsetVal), startOffsetBit);
// // [32,46) stride
dsc = insertBit(dsc, strideDim, startStrideBit);
// // [16,30) leading dimension
dsc = insertBit(dsc, leadDim, startLeadBit);
// // [0,14) start_address
dsc = insertBit(dsc, basePtr14bit, startBaseAddrBit);
LLVM_DEBUG(DBGS() << "Generating warpgroup.descriptor: "
<< "leading_off:" << leadDimVal << "\t"
<< "stride_off :" << strideDimVal << "\t"
<< "base_offset:" << offsetVal << "\t"
<< "layout_type:" << swizzle << " ("
<< nvgpu::stringifyTensorMapSwizzleKind(swizzleKind)
<< ")\n start_addr : " << baseAddr << "\n");
rewriter.replaceOp(op, dsc);
return success();
}
};
static Value makeI64Const(ImplicitLocOpBuilder &b, int32_t index) {
return LLVM::ConstantOp::create(b, b.getIntegerType(64),
b.getI32IntegerAttr(index));
}
/// Returns a Value that holds data type enum that is expected by CUDA driver.
static Value elementTypeAsLLVMConstant(ImplicitLocOpBuilder &b, Type type) {
// Enum is from CUDA driver API
// https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html
enum CUtensorMapDataTypeEnum {
CU_TENSOR_MAP_DATA_TYPE_UINT8 = 0,
CU_TENSOR_MAP_DATA_TYPE_UINT16,
CU_TENSOR_MAP_DATA_TYPE_UINT32,
CU_TENSOR_MAP_DATA_TYPE_INT32,
CU_TENSOR_MAP_DATA_TYPE_UINT64,
CU_TENSOR_MAP_DATA_TYPE_INT64,
CU_TENSOR_MAP_DATA_TYPE_FLOAT16,
CU_TENSOR_MAP_DATA_TYPE_FLOAT32,
CU_TENSOR_MAP_DATA_TYPE_FLOAT64,
CU_TENSOR_MAP_DATA_TYPE_BFLOAT16,
CU_TENSOR_MAP_DATA_TYPE_FLOAT32_FTZ,
CU_TENSOR_MAP_DATA_TYPE_TFLOAT32,
CU_TENSOR_MAP_DATA_TYPE_TFLOAT32_FTZ
};
if (type.isUnsignedInteger(8))
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_UINT8);
if (type.isUnsignedInteger(16))
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_UINT16);
if (type.isUnsignedInteger(32))
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_UINT32);
if (type.isUnsignedInteger(64))
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_UINT64);
if (type.isSignlessInteger(32))
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_INT32);
if (type.isSignlessInteger(64))
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_INT64);
if (type.isF16())
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_FLOAT16);
if (type.isF32())
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_FLOAT32);
if (type.isF64())
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_FLOAT64);
if (type.isBF16())
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_BFLOAT16);
llvm_unreachable("Not supported data type");
}
struct NVGPUTmaCreateDescriptorOpLowering
: public ConvertOpToLLVMPattern<nvgpu::TmaCreateDescriptorOp> {
using ConvertOpToLLVMPattern<
nvgpu::TmaCreateDescriptorOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::TmaCreateDescriptorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
auto llvmPointerType = LLVM::LLVMPointerType::get(op->getContext());
Type llvmInt64Type = IntegerType::get(op->getContext(), 64);
Value tensorElementType =
elementTypeAsLLVMConstant(b, op.getTensor().getType().getElementType());
auto promotedOperands = getTypeConverter()->promoteOperands(
b.getLoc(), op->getOperands(), adaptor.getOperands(), b);
Value boxArrayPtr = LLVM::AllocaOp::create(
b, llvmPointerType, llvmInt64Type, makeI64Const(b, 5));
for (auto [index, value] : llvm::enumerate(adaptor.getBoxDimensions())) {
Value gep = LLVM::GEPOp::create(b, llvmPointerType, llvmPointerType,
boxArrayPtr, makeI64Const(b, index));
LLVM::StoreOp::create(b, value, gep);
}
nvgpu::TensorMapDescriptorType desc = op.getTensorMap().getType();
// Set Arguments for the function call
SmallVector<Value> arguments;
arguments.push_back(promotedOperands[0]); // rank
arguments.push_back(promotedOperands[1]); // descriptor
arguments.push_back(tensorElementType); // data type
arguments.push_back(
makeI64Const(b, (int)desc.getInterleave())); // interleave
arguments.push_back(makeI64Const(b, (int)desc.getSwizzle())); // swizzle
arguments.push_back(makeI64Const(b, (int)desc.getL2promo())); // l2promo
arguments.push_back(makeI64Const(b, (int)desc.getOob())); // oob
arguments.push_back(boxArrayPtr); // box dimensions
// Set data types of the arguments
SmallVector<Type> argTypes = {
llvmInt64Type, /* int64_t tensorRank */
llvmPointerType, /* ptr */
llvmInt64Type, /* int64_t */
llvmInt64Type, /* int64_t */
llvmInt64Type, /* int64_t */
llvmInt64Type, /* int64_t */
llvmInt64Type, /* int64_t */
llvmPointerType /* ptr */
};
FunctionCallBuilder hostRegisterCallBuilder = {
"mgpuTensorMapEncodeTiledMemref", llvmPointerType, argTypes};
Value tensorMap =
hostRegisterCallBuilder.create(b.getLoc(), b, arguments).getResult();
rewriter.replaceOp(op, tensorMap);
return success();
}
};
struct NVGPUWarpgroupMmaOpLowering
: public ConvertOpToLLVMPattern<nvgpu::WarpgroupMmaOp> {
using ConvertOpToLLVMPattern<nvgpu::WarpgroupMmaOp>::ConvertOpToLLVMPattern;
/// This is a helper class to generate required NVVM Ops for warp-group level
/// matrix multiplication.
/// When the given GEMM shape is larger than the shape of
/// a wgmma instrution in PTX, it can generate multiple NVVM::WgmmaMmaAsyncOp
/// Op(s), group and execute them asynchronously. The class also handles
/// waiting for completion and iterates through WarpgroupMatrixDescriptor to
/// create descriptors for each instruction.
///
/// For example this is the case when the shape of GEMM is 128x128x128
///
/// nvvm.wgmma.fence.aligned
///
/// nvvm.wgmma.mma.async descA, descB
/// iterate(descA, descB)
/// nvvm.wgmma.mma.async descA, descB
/// [6x times more]
///
/// nvvm.wgmma.group.sync.aligned
/// nvvm.wgmma.wait.group.sync [groupId]
///
class WarpgroupGemm {
nvgpu::WarpgroupMmaOp op;
ImplicitLocOpBuilder b;
OpAdaptor adaptor;
// Entire shape of the given Op
int64_t totalM, totalN, totalK;
// Shape of one wgmma instruction
int wgmmaM = 0, wgmmaN = 0, wgmmaK = 0;
// Iteration counts for GEMM
int iterationM = 0, iterationN = 0, iterationK = 0;
/// The function returns the shape of wgmma instruction that is defined in
/// PTX programming guide.
/// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#asynchronous-warpgroup-level-matrix-shape
void findWgmmaShape(int64_t sizeM, int64_t sizeN, Type inputElemType) {
wgmmaM = 64;
wgmmaN = sizeN;
if (inputElemType.isTF32()) {
wgmmaK = 8;
} else if (inputElemType.isF16() || inputElemType.isBF16()) {
wgmmaK = 16;
} else if (isa<Float8E4M3FNType, Float8E5M2Type>(inputElemType) ||
inputElemType.isInteger(16)) {
wgmmaK = 32;
} else if (inputElemType.isInteger(1)) {
wgmmaK = 256;
} else {
llvm_unreachable("msg: not supported K shape");
}
LLVM_DEBUG(DBGS() << "Generating WgmmaMmaAsyncOp shape[m = " << wgmmaM
<< ", n = " << wgmmaN << ", k = " << wgmmaK << "]\n");
}
/// Generates WGMMATypesAttr from MLIR Type
NVVM::WGMMATypesAttr generateWgmmaType(Type type,
bool useF32 = false) const {
auto getWgmmaType = [=](Type elemType) {
if (elemType.isF32() || elemType.isTF32())
return useF32 ? NVVM::WGMMATypes::f32 : NVVM::WGMMATypes::tf32;
if (elemType.isF16())
return NVVM::WGMMATypes::f16;
if (elemType.isBF16())
return NVVM::WGMMATypes::bf16;
if (isa<Float8E4M3FNType>(elemType))
return NVVM::WGMMATypes::e4m3;
if (isa<Float8E5M2Type>(elemType))
return NVVM::WGMMATypes::e5m2;
if (elemType.isInteger(1))
return NVVM::WGMMATypes::b1;
if (elemType.isInteger(8))
return NVVM::WGMMATypes::s8;
if (elemType.isUnsignedInteger(8))
return NVVM::WGMMATypes::u8;
if (elemType.isInteger(32))
return NVVM::WGMMATypes::s32;
llvm_unreachable("unsupported type");
};
return NVVM::WGMMATypesAttr::get(op->getContext(), getWgmmaType(type));
}
/// Generates layout attribute for the input matrix for wgmma instruction
NVVM::MMALayoutAttr
generateWgmmaLayout(std::optional<bool> transpose) const {
if (transpose.value_or(false))
return NVVM::MMALayoutAttr::get(op->getContext(), NVVM::MMALayout::col);
return NVVM::MMALayoutAttr::get(op->getContext(), NVVM::MMALayout::row);
}
/// Generates shape attribute for wgmma instruction
NVVM::MMAShapeAttr generateWgmmaShape() const {
return NVVM::MMAShapeAttr::get(op->getContext(), wgmmaM, wgmmaN, wgmmaK);
}
/// Generates scale attributes of output matrix for wgmma instruction
NVVM::WGMMAScaleOutAttr generateScaleOut() const {
return NVVM::WGMMAScaleOutAttr::get(op->getContext(),
NVVM::WGMMAScaleOut::one);
}
/// Generates scale attributes of input matrix for wgmma instruction
NVVM::WGMMAScaleInAttr generateScaleIn() const {
return NVVM::WGMMAScaleInAttr::get(op->getContext(),
NVVM::WGMMAScaleIn::one);
}
/// Basic function to generate Add
Value makeAdd(Value lhs, Value rhs) {
return LLVM::AddOp::create(b, lhs.getType(), lhs, rhs);
};
/// Moves the descriptor pointer of matrix-A for the next wgmma instruction.
/// Currently, it only handles row-major.
///
/// It moves the pointer like below for [128][64] size:
/// +2 +4 +6
/// ↓ ↓ ↓
/// descA ---> +--+--+--+--+
/// |->|->|->|->|
/// | | | | |
/// | | | | |
/// | | | | |
/// descA+512---> +-----------+
/// | | | | |
/// | | | | |
/// | | | | |
/// | | | | |
/// +-----------+
///
Value iterateDescriptorA(Value desc, int i, int j, int k) {
MemRefType matrixTypeA = op.getDescriptorA().getType().getTensor();
Type elemA = matrixTypeA.getElementType();
int byte = elemA.getIntOrFloatBitWidth() / 8;
int tileShapeA = matrixTypeA.getDimSize(1);
int incrementVal = ((wgmmaK * k) + (totalK * tileShapeA * i)) * byte;
incrementVal = incrementVal >> exclude4LSB;
LLVM_DEBUG(DBGS() << "\t\t[m: " << i << " n: " << j << " k: " << k
<< "] [wgmma descriptors] Descriptor A + "
<< incrementVal << " | \t ");
if (!incrementVal)
return desc;
return makeAdd(desc, makeI64Const(b, incrementVal));
}
/// Moves the descriptor pointer of matrix-B for the next wgmma instruction.
/// Currently, it only handles column-major.
///
/// It moves the pointer like below for [128][64] size:
/// descB ---> +--+--+--+--+--+--+--+--+
/// |↓ | | | | | | | |
/// |↓ | | | | | | | |
/// |↓ | | | | | | | |
/// |↓ | | | | | | | |
/// +--+--+--+--+--+--+--+--+
///
Value iterateDescriptorB(Value desc, int i, int j, int k) {
MemRefType matrixTypeB = op.getDescriptorB().getType().getTensor();
Type elemB = matrixTypeB.getElementType();
int byte = elemB.getIntOrFloatBitWidth() / 8;
int incrementVal = matrixTypeB.getDimSize(0) * wgmmaK * k * byte;
incrementVal = incrementVal >> exclude4LSB;
LLVM_DEBUG(DBGSE() << "Descriptor B + " << incrementVal << "\n");
if (!incrementVal)
return desc;
return makeAdd(desc, makeI64Const(b, incrementVal));
}
/// This function generates a WgmmaMmaAsyncOp using provided GMMA matrix
/// descriptors and arranges them based on induction variables: i, j, and k.
Value generateWgmma(int i, int j, int k, Value matrixC) {
LLVM_DEBUG(DBGS() << "\t wgmma."
<< "m" << wgmmaM << "n" << wgmmaN << "k" << wgmmaK
<< "(A[" << (iterationM * wgmmaM) << ":"
<< (iterationM * wgmmaM) + wgmmaM << "]["
<< (iterationK * wgmmaK) << ":"
<< (iterationK * wgmmaK + wgmmaK) << "] * "
<< " B[" << (iterationK * wgmmaK) << ":"
<< (iterationK * wgmmaK + wgmmaK) << "][" << 0 << ":"
<< wgmmaN << "])\n");
Value descriptorA = iterateDescriptorA(adaptor.getDescriptorA(), i, j, k);
Value descriptorB = iterateDescriptorB(adaptor.getDescriptorB(), i, j, k);
Type elemA = op.getDescriptorA().getType().getTensor().getElementType();
NVVM::WGMMATypesAttr itypeA = generateWgmmaType(elemA);
Type elemB = op.getDescriptorB().getType().getTensor().getElementType();
NVVM::WGMMATypesAttr itypeB = generateWgmmaType(elemB);
Type elemD = op.getMatrixC().getType().getFragmented().getElementType();
NVVM::WGMMATypesAttr itypeD = generateWgmmaType(elemD, true);
NVVM::MMAShapeAttr shape = generateWgmmaShape();
NVVM::WGMMAScaleOutAttr scaleOut = generateScaleOut();
NVVM::WGMMAScaleInAttr scaleIn = generateScaleIn();
NVVM::MMALayoutAttr layoutA = generateWgmmaLayout(op.getTransposeA());
NVVM::MMALayoutAttr layoutB = generateWgmmaLayout(!op.getTransposeB());
auto overflow = NVVM::MMAIntOverflowAttr::get(
op->getContext(), NVVM::MMAIntOverflow::wrapped);
return NVVM::WgmmaMmaAsyncOp::create(
b, matrixC.getType(), matrixC, descriptorA, descriptorB, shape,
itypeA, itypeB, itypeD, scaleOut, scaleIn, scaleIn, layoutA, layoutB,
overflow);
}
/// Generates multiple wgmma instructions to complete the given GEMM shape
Value generateWgmmaGroup() {
Value wgmmaResult =
LLVM::PoisonOp::create(b, adaptor.getMatrixC().getType());
// Perform GEMM
SmallVector<Value> wgmmaResults;
for (int i = 0; i < iterationM; ++i) {
Value matrixC =
LLVM::ExtractValueOp::create(b, adaptor.getMatrixC(), i);
for (int j = 0; j < iterationN; ++j)
for (int k = 0; k < iterationK; ++k)
matrixC = generateWgmma(i, j, k, matrixC);
wgmmaResults.push_back(matrixC);
}
for (auto [idx, matrix] : llvm::enumerate(wgmmaResults)) {
wgmmaResult = LLVM::InsertValueOp::create(b, wgmmaResult.getType(),
wgmmaResult, matrix, idx);
}
return wgmmaResult;
}
public:
WarpgroupGemm(nvgpu::WarpgroupMmaOp op, ImplicitLocOpBuilder &b,
OpAdaptor adaptor)
: op(op), b(b), adaptor(adaptor) {
// Find the entire GEMM Shape
totalM = op.getDescriptorA().getType().getTensor().getDimSize(0);
totalN = op.getDescriptorB().getType().getTensor().getDimSize(1);
totalK = op.getDescriptorA().getType().getTensor().getDimSize(1);
LLVM_DEBUG(DBGS() << "===--- GEMM D[" << totalM << "][" << totalN
<< "] += A[" << totalM << "][" << totalK << "] * B["
<< totalK << "][" << totalN << "] ---===\n");
// Find the shape for one wgmma instruction
findWgmmaShape(
totalM, totalN,
op.getDescriptorA().getType().getTensor().getElementType());
// Iterations counts to complete the given shape with wgmma shape
iterationM = totalM / wgmmaM;
iterationN = totalN / wgmmaN;
iterationK = totalK / wgmmaK;
}
/// Generates WgmmaMmaAsync Ops to complete the specified GEMM shape. It
/// includes generating a fence Op (WgmmaFenceAlignedOp) before the
/// instructions and group synchronization, as well as waiting
/// (WgmmaGroupSyncAlignedOp) for group synchronization
/// (WgmmaWaitGroupSyncOp) after the instructions.
Value generateWarpgroupMma() {
NVVM::WgmmaFenceAlignedOp::create(b);
Value wgmmaResult = generateWgmmaGroup();
NVVM::WgmmaGroupSyncAlignedOp::create(b);
NVVM::WgmmaWaitGroupSyncOp::create(b, op.getWaitGroup());
return wgmmaResult;
}
};
LogicalResult
matchAndRewrite(nvgpu::WarpgroupMmaOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
// Step 1. Build a helper class
WarpgroupGemm warpgroupGemm(op, b, adaptor);
// Step 2. Get the entire GEMM Shape
Value wgmmaResult = warpgroupGemm.generateWarpgroupMma();
// Step 3. Replace fragmented result struct with the op results
rewriter.replaceOp(op, wgmmaResult);
return success();
}
};
struct NVGPUWarpgroupMmaStoreOpLowering
: public ConvertOpToLLVMPattern<nvgpu::WarpgroupMmaStoreOp> {
using ConvertOpToLLVMPattern<
nvgpu::WarpgroupMmaStoreOp>::ConvertOpToLLVMPattern;
/// This function stores a fragmented register matrix owned by a warp group
/// (128 threads) into a memref. Each thread has 64 registers, each the size
/// of a struct.
/// Here is what each threads (T) holds, each `d` is struct value with a
/// number.
///
/// Threads in warp-group (128 threads) and what they owns in the matrixD:
/// 0-31 Warp-0 -> MatrixD[0:15 ][0:N]
/// 32-63 Warp-1 -> MatrixD[16:31][0:N]
/// 64-95 Warp-2 -> MatrixD[32:47][0:N]
/// 96-127 Warp-3 -> MatrixD[48:64][0:N]
///
/// Matrix-D:
/// +______________________________________________________________________+
/// | 0-1 | 2-3 | 4-5 | 6-7 | 8-9 | 10-11|..|N-8,N-7 |
/// 0 | T0:d0-d1 |T1:d0-d1 |T2:d0-d1 |T3:d0-d1 |T0:d4-d5| T1:d4-d5..|T0:dX-dY|
/// 1 | T4:d0-d1 |T5:d0-d1 |T6:d0-d1 |T7:d0-d1 |T4:d4-d5| T5:d4-d5..|T4:dX-dY|
/// ..| .........|.........|.........|.........|........|...........|........|
/// 8 | T0:d2-d3 |T1:d2-d3 |T2:d2-d3 |T3:d2-d3 |T0:d6-d7|T1:d6-d7,..|T0:dZ-dW|
/// 9 | T4:d2-d3 |T5:d2-d3 |T6:d2-d3 |T7:d2-d3 |T4:d6-d7| T5:d6-d7..|T4:dZ-dW|
/// ..| .........|.........|.........|.........|........|...........|........|
/// 15| T28:d2-d3|T29:d2-d3|T30:d2-d3|T31:d2-d3|........|...........|........|
/// 16| T32:d2-d3|T33:d2-d3|T34:d2-d3|T35:d2-d3|........|...........|........|
/// ..| .........|.........|.........|.........|........|...........|........|
/// 32| T64:d2-d3|T65:d2-d3|T66:d2-d3|T67:d2-d3|........|...........|........|
/// ..| .........|.........|.........|.........|........|...........|........|
/// 48| T96:d2-d3|T97:d2-d3|T98:d2-d3|T99:d2-d3|........|...........|........|
/// ..| .........|.........|.........|.........|........|...........|........|
/// +______________________________________________________________________+
///
/// \param rewriter: The pattern rewriter.
/// \param matrixD: Result of the warp-group MMA operation (fragmented
/// matrix). It is holded by a thread and a struct with 64 elements.
/// \param dstMemref: The memref where the registers will be stored.
/// \param offset: the offset within the memref where the registers will be
/// stored.
void storeFragmentedMatrix(ImplicitLocOpBuilder &b, Value matrixD,
TypedValue<MemRefType> dstMemref,
int offset) const {
Type i32 = b.getI32Type();
auto makeConst = [&](int32_t index) -> Value {
return LLVM::ConstantOp::create(b, i32, b.getI32IntegerAttr(index));
};
Value c1 = makeConst(1);
Value c2 = makeConst(2);
Value c4 = makeConst(4);
Value c8 = makeConst(8);
Value c16 = makeConst(16);
Value warpSize = makeConst(kWarpSize);
auto makeMul = [&](Value lhs, Value rhs) -> Value {
return LLVM::MulOp::create(b, lhs.getType(), lhs, rhs);
};
auto makeAdd = [&](Value lhs, Value rhs) -> Value {
return LLVM::AddOp::create(b, lhs.getType(), lhs, rhs);
};
auto makeExtractAndStore = [&](int i, Value wgmmaResult, Value x, Value y,
TypedValue<::mlir::MemRefType> memref) {
Type it = b.getIndexType();
Value idx = arith::IndexCastOp::create(b, it, x);
Value idy0 = arith::IndexCastOp::create(b, it, y);
Value idy1 = arith::IndexCastOp::create(b, it, makeAdd(y, c1));
Value d0 = LLVM::ExtractValueOp::create(b, wgmmaResult, i);
Value d1 = LLVM::ExtractValueOp::create(b, wgmmaResult, i + 1);
memref::StoreOp::create(b, d0, memref, ValueRange{idx, idy0});
memref::StoreOp::create(b, d1, memref, ValueRange{idx, idy1});
};
Value tidx = NVVM::ThreadIdXOp::create(b, i32);
Value laneId = LLVM::URemOp::create(b, i32, tidx, warpSize);
Value warpId = LLVM::UDivOp::create(b, i32, tidx, warpSize);
Value lane4Id = LLVM::UDivOp::create(b, i32, laneId, c4);
Value lane4modId = LLVM::URemOp::create(b, i32, laneId, c4);
Value tj = makeMul(lane4modId, c2);
Value ti = makeAdd(lane4Id, makeMul(warpId, c16));
if (offset)
ti = makeAdd(ti, makeConst(offset));
auto structType = cast<LLVM::LLVMStructType>(matrixD.getType());
// Number of 32-bit registers owns per thread
constexpr unsigned numAdjacentRegisters = 2;
// Number of 8x8 matrices one below another per warp
constexpr unsigned numStackedMatrices = 2;
size_t storeCount = (structType.getBody().size() /
(numStackedMatrices * numAdjacentRegisters));
for (size_t i = 0; i < numStackedMatrices; ++i) {
Value idx = makeAdd(ti, makeMul(makeConst(i), c8));
for (size_t j = 0; j < storeCount; ++j) {
Value idy = makeAdd(tj, makeMul(makeConst(j), c8));
size_t structIndex = (i * numAdjacentRegisters) +
(j * (numStackedMatrices * numAdjacentRegisters));
makeExtractAndStore(structIndex, matrixD, idx, idy, dstMemref);
}
}
}
LogicalResult
matchAndRewrite(nvgpu::WarpgroupMmaStoreOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
int offset = 0;
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value matriDValue = adaptor.getMatrixD();
auto stype = cast<LLVM::LLVMStructType>(matriDValue.getType());
for (auto [idx, matrixD] : llvm::enumerate(stype.getBody())) {
auto structType = cast<LLVM::LLVMStructType>(matrixD);
Value innerStructValue =
LLVM::ExtractValueOp::create(b, matriDValue, idx);
storeFragmentedMatrix(b, innerStructValue, op.getDstMemref(), offset);
offset += structType.getBody().size();
}
rewriter.eraseOp(op);
return success();
}
};
struct NVGPUWarpgroupMmaInitAccumulatorOpLowering
: public ConvertOpToLLVMPattern<nvgpu::WarpgroupMmaInitAccumulatorOp> {
using ConvertOpToLLVMPattern<
nvgpu::WarpgroupMmaInitAccumulatorOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::WarpgroupMmaInitAccumulatorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
LLVM::LLVMStructType packStructType = cast<LLVM::LLVMStructType>(
getTypeConverter()->convertType(op.getMatrixC().getType()));
Type elemType = cast<LLVM::LLVMStructType>(packStructType.getBody().front())
.getBody()
.front();
Value zero = LLVM::ConstantOp::create(b, elemType, b.getZeroAttr(elemType));
Value packStruct = LLVM::PoisonOp::create(b, packStructType);
SmallVector<Value> innerStructs;
// Unpack the structs and set all values to zero
for (auto [idx, s] : llvm::enumerate(packStructType.getBody())) {
auto structType = cast<LLVM::LLVMStructType>(s);
Value structValue = LLVM::ExtractValueOp::create(b, packStruct, idx);
for (unsigned i = 0; i < structType.getBody().size(); ++i) {
structValue = LLVM::InsertValueOp::create(b, structType, structValue,
zero, ArrayRef<int64_t>({i}));
}
innerStructs.push_back(structValue);
}
// Pack the inner structs into a single struct
for (auto [idx, matrix] : llvm::enumerate(innerStructs)) {
packStruct = LLVM::InsertValueOp::create(b, packStruct.getType(),
packStruct, matrix, idx);
}
rewriter.replaceOp(op, packStruct);
return success();
}
};
struct NVGPUTmaFenceOpLowering
: public ConvertOpToLLVMPattern<nvgpu::TmaFenceOp> {
using ConvertOpToLLVMPattern<nvgpu::TmaFenceOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::TmaFenceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
MLIRContext *ctx = op.getContext();
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
auto i32Ty = b.getI32Type();
Value tensormapSize =
LLVM::ConstantOp::create(b, i32Ty, rewriter.getI32IntegerAttr(128));
auto memscope =
NVVM::MemScopeKindAttr::get(ctx, ::mlir::NVVM::MemScopeKind::SYS);
rewriter.replaceOpWithNewOp<NVVM::FenceProxyAcquireOp>(
op, memscope, adaptor.getTensorMapDescriptor(), tensormapSize);
return success();
}
};
struct NVGPUTmaPrefetchOpLowering
: public ConvertOpToLLVMPattern<nvgpu::TmaPrefetchOp> {
using ConvertOpToLLVMPattern<nvgpu::TmaPrefetchOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::TmaPrefetchOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<NVVM::PrefetchTensorMapOp>(
op, adaptor.getTensorMapDescriptor(), adaptor.getPredicate());
return success();
}
};
struct NVGPURcpOpLowering : public ConvertOpToLLVMPattern<nvgpu::RcpOp> {
using ConvertOpToLLVMPattern<nvgpu::RcpOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::RcpOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
auto i64Ty = b.getI64Type();
auto f32Ty = b.getF32Type();
VectorType inTy = op.getIn().getType();
// apply rcp.approx.ftz.f on each element in vector.
auto convert1DVec = [&](Type llvm1DVectorTy, Value inVec) {
Value ret1DVec = LLVM::PoisonOp::create(b, llvm1DVectorTy);
int numElems = llvm::cast<VectorType>(llvm1DVectorTy).getNumElements();
for (int i = 0; i < numElems; i++) {
Value idx = LLVM::ConstantOp::create(b, i64Ty, b.getI64IntegerAttr(i));
Value elem = LLVM::ExtractElementOp::create(b, inVec, idx);
Value dst = NVVM::RcpApproxFtzF32Op::create(b, f32Ty, elem);
ret1DVec = LLVM::InsertElementOp::create(b, ret1DVec, dst, idx);
}
return ret1DVec;
};
if (inTy.getRank() == 1) {
rewriter.replaceOp(op, convert1DVec(inTy, adaptor.getIn()));
return success();
}
return LLVM::detail::handleMultidimensionalVectors(
op.getOperation(), adaptor.getOperands(), *(this->getTypeConverter()),
[&](Type llvm1DVectorTy, ValueRange operands) -> Value {
OpAdaptor adaptor(operands);
return convert1DVec(llvm1DVectorTy, adaptor.getIn());
},
rewriter);
}
};
} // namespace
void mlir::populateNVGPUToNVVMConversionPatterns(
const LLVMTypeConverter &converter, RewritePatternSet &patterns) {
patterns.add<
NVGPUMBarrierCreateLowering, // nvgpu.mbarrier.create
NVGPUMBarrierInitLowering, // nvgpu.mbarrier.init
NVGPUMBarrierGetLowering, // nvgpu.mbarrier.get
NVGPUMBarrierArriveLowering, // nvgpu.mbarrier.arrive
NVGPUMBarrierArriveNoCompleteLowering, // nvgpu.mbarrier.arrive.no_complete
NVGPUMBarrierTestWaitLowering, // nvgpu.mbarrier.test_wait_parity
NVGPUMBarrierTryWaitParityLowering, // nvgpu.mbarrier.try_wait_parity
NVGPUTmaAsyncLoadOpLowering, // nvgpu.tma.async.load
NVGPUTmaAsyncStoreOpLowering, // nvgpu.tma.async.store
NVGPUTmaCreateDescriptorOpLowering, // nvgpu.tma.create.descriptor
NVGPUTmaPrefetchOpLowering, // nvgpu.tma.prefetch.descriptor
NVGPUTmaFenceOpLowering, // nvgpu.tma.fence.descriptor
NVGPUMBarrierArriveExpectTxLowering, // nvgpu.mbarrier.arrive.expect_tx
NVGPUGenerateWarpgroupDescriptorLowering, // nvgpu.warpgroup.generate.descriptor
NVGPUWarpgroupMmaOpLowering, // nvgpu.warpgroup.mma
NVGPUWarpgroupMmaStoreOpLowering, // nvgpu.warpgroup.mma.store
NVGPUWarpgroupMmaInitAccumulatorOpLowering, // nvgpu.warpgroup.mma.init.accumulator
MmaSyncOptoNVVM, MmaLdMatrixOpToNVVM, NVGPUAsyncCopyLowering,
NVGPUAsyncCreateGroupLowering, NVGPUAsyncWaitLowering,
NVGPUMmaSparseSyncLowering, NVGPURcpOpLowering>(converter);
}
|