1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
|
//===- MemRefToSPIRV.cpp - MemRef to SPIR-V Patterns ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns to convert MemRef dialect to SPIR-V dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVAttributes.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVEnums.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVTypes.h"
#include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Visitors.h"
#include <cassert>
#include <optional>
#define DEBUG_TYPE "memref-to-spirv-pattern"
using namespace mlir;
//===----------------------------------------------------------------------===//
// Utility functions
//===----------------------------------------------------------------------===//
/// Returns the offset of the value in `targetBits` representation.
///
/// `srcIdx` is an index into a 1-D array with each element having `sourceBits`.
/// It's assumed to be non-negative.
///
/// When accessing an element in the array treating as having elements of
/// `targetBits`, multiple values are loaded in the same time. The method
/// returns the offset where the `srcIdx` locates in the value. For example, if
/// `sourceBits` equals to 8 and `targetBits` equals to 32, the x-th element is
/// located at (x % 4) * 8. Because there are four elements in one i32, and one
/// element has 8 bits.
static Value getOffsetForBitwidth(Location loc, Value srcIdx, int sourceBits,
int targetBits, OpBuilder &builder) {
assert(targetBits % sourceBits == 0);
Type type = srcIdx.getType();
IntegerAttr idxAttr = builder.getIntegerAttr(type, targetBits / sourceBits);
auto idx = builder.createOrFold<spirv::ConstantOp>(loc, type, idxAttr);
IntegerAttr srcBitsAttr = builder.getIntegerAttr(type, sourceBits);
auto srcBitsValue =
builder.createOrFold<spirv::ConstantOp>(loc, type, srcBitsAttr);
auto m = builder.createOrFold<spirv::UModOp>(loc, srcIdx, idx);
return builder.createOrFold<spirv::IMulOp>(loc, type, m, srcBitsValue);
}
/// Returns an adjusted spirv::AccessChainOp. Based on the
/// extension/capabilities, certain integer bitwidths `sourceBits` might not be
/// supported. During conversion if a memref of an unsupported type is used,
/// load/stores to this memref need to be modified to use a supported higher
/// bitwidth `targetBits` and extracting the required bits. For an accessing a
/// 1D array (spirv.array or spirv.rtarray), the last index is modified to load
/// the bits needed. The extraction of the actual bits needed are handled
/// separately. Note that this only works for a 1-D tensor.
static Value
adjustAccessChainForBitwidth(const SPIRVTypeConverter &typeConverter,
spirv::AccessChainOp op, int sourceBits,
int targetBits, OpBuilder &builder) {
assert(targetBits % sourceBits == 0);
const auto loc = op.getLoc();
Value lastDim = op->getOperand(op.getNumOperands() - 1);
Type type = lastDim.getType();
IntegerAttr attr = builder.getIntegerAttr(type, targetBits / sourceBits);
auto idx = builder.createOrFold<spirv::ConstantOp>(loc, type, attr);
auto indices = llvm::to_vector<4>(op.getIndices());
// There are two elements if this is a 1-D tensor.
assert(indices.size() == 2);
indices.back() = builder.createOrFold<spirv::SDivOp>(loc, lastDim, idx);
Type t = typeConverter.convertType(op.getComponentPtr().getType());
return spirv::AccessChainOp::create(builder, loc, t, op.getBasePtr(),
indices);
}
/// Casts the given `srcBool` into an integer of `dstType`.
static Value castBoolToIntN(Location loc, Value srcBool, Type dstType,
OpBuilder &builder) {
assert(srcBool.getType().isInteger(1));
if (dstType.isInteger(1))
return srcBool;
Value zero = spirv::ConstantOp::getZero(dstType, loc, builder);
Value one = spirv::ConstantOp::getOne(dstType, loc, builder);
return builder.createOrFold<spirv::SelectOp>(loc, dstType, srcBool, one,
zero);
}
/// Returns the `targetBits`-bit value shifted by the given `offset`, and cast
/// to the type destination type, and masked.
static Value shiftValue(Location loc, Value value, Value offset, Value mask,
OpBuilder &builder) {
IntegerType dstType = cast<IntegerType>(mask.getType());
int targetBits = static_cast<int>(dstType.getWidth());
int valueBits = value.getType().getIntOrFloatBitWidth();
assert(valueBits <= targetBits);
if (valueBits == 1) {
value = castBoolToIntN(loc, value, dstType, builder);
} else {
if (valueBits < targetBits) {
value = spirv::UConvertOp::create(
builder, loc, builder.getIntegerType(targetBits), value);
}
value = builder.createOrFold<spirv::BitwiseAndOp>(loc, value, mask);
}
return builder.createOrFold<spirv::ShiftLeftLogicalOp>(loc, value.getType(),
value, offset);
}
/// Returns true if the allocations of memref `type` generated from `allocOp`
/// can be lowered to SPIR-V.
static bool isAllocationSupported(Operation *allocOp, MemRefType type) {
if (isa<memref::AllocOp, memref::DeallocOp>(allocOp)) {
auto sc = dyn_cast_or_null<spirv::StorageClassAttr>(type.getMemorySpace());
if (!sc || sc.getValue() != spirv::StorageClass::Workgroup)
return false;
} else if (isa<memref::AllocaOp>(allocOp)) {
auto sc = dyn_cast_or_null<spirv::StorageClassAttr>(type.getMemorySpace());
if (!sc || sc.getValue() != spirv::StorageClass::Function)
return false;
} else {
return false;
}
// Currently only support static shape and int or float or vector of int or
// float element type.
if (!type.hasStaticShape())
return false;
Type elementType = type.getElementType();
if (auto vecType = dyn_cast<VectorType>(elementType))
elementType = vecType.getElementType();
return elementType.isIntOrFloat();
}
/// Returns the scope to use for atomic operations use for emulating store
/// operations of unsupported integer bitwidths, based on the memref
/// type. Returns std::nullopt on failure.
static std::optional<spirv::Scope> getAtomicOpScope(MemRefType type) {
auto sc = dyn_cast_or_null<spirv::StorageClassAttr>(type.getMemorySpace());
switch (sc.getValue()) {
case spirv::StorageClass::StorageBuffer:
return spirv::Scope::Device;
case spirv::StorageClass::Workgroup:
return spirv::Scope::Workgroup;
default:
break;
}
return {};
}
/// Casts the given `srcInt` into a boolean value.
static Value castIntNToBool(Location loc, Value srcInt, OpBuilder &builder) {
if (srcInt.getType().isInteger(1))
return srcInt;
auto one = spirv::ConstantOp::getZero(srcInt.getType(), loc, builder);
return builder.createOrFold<spirv::INotEqualOp>(loc, srcInt, one);
}
//===----------------------------------------------------------------------===//
// Operation conversion
//===----------------------------------------------------------------------===//
// Note that DRR cannot be used for the patterns in this file: we may need to
// convert type along the way, which requires ConversionPattern. DRR generates
// normal RewritePattern.
namespace {
/// Converts memref.alloca to SPIR-V Function variables.
class AllocaOpPattern final : public OpConversionPattern<memref::AllocaOp> {
public:
using OpConversionPattern<memref::AllocaOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(memref::AllocaOp allocaOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// Converts an allocation operation to SPIR-V. Currently only supports lowering
/// to Workgroup memory when the size is constant. Note that this pattern needs
/// to be applied in a pass that runs at least at spirv.module scope since it
/// wil ladd global variables into the spirv.module.
class AllocOpPattern final : public OpConversionPattern<memref::AllocOp> {
public:
using OpConversionPattern<memref::AllocOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(memref::AllocOp operation, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// Converts memref.automic_rmw operations to SPIR-V atomic operations.
class AtomicRMWOpPattern final
: public OpConversionPattern<memref::AtomicRMWOp> {
public:
using OpConversionPattern<memref::AtomicRMWOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(memref::AtomicRMWOp atomicOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// Removed a deallocation if it is a supported allocation. Currently only
/// removes deallocation if the memory space is workgroup memory.
class DeallocOpPattern final : public OpConversionPattern<memref::DeallocOp> {
public:
using OpConversionPattern<memref::DeallocOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(memref::DeallocOp operation, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// Converts memref.load to spirv.Load + spirv.AccessChain on integers.
class IntLoadOpPattern final : public OpConversionPattern<memref::LoadOp> {
public:
using OpConversionPattern<memref::LoadOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// Converts memref.load to spirv.Load + spirv.AccessChain.
class LoadOpPattern final : public OpConversionPattern<memref::LoadOp> {
public:
using OpConversionPattern<memref::LoadOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// Converts memref.store to spirv.Store on integers.
class IntStoreOpPattern final : public OpConversionPattern<memref::StoreOp> {
public:
using OpConversionPattern<memref::StoreOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(memref::StoreOp storeOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// Converts memref.memory_space_cast to the appropriate spirv cast operations.
class MemorySpaceCastOpPattern final
: public OpConversionPattern<memref::MemorySpaceCastOp> {
public:
using OpConversionPattern<memref::MemorySpaceCastOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(memref::MemorySpaceCastOp addrCastOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// Converts memref.store to spirv.Store.
class StoreOpPattern final : public OpConversionPattern<memref::StoreOp> {
public:
using OpConversionPattern<memref::StoreOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(memref::StoreOp storeOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class ReinterpretCastPattern final
: public OpConversionPattern<memref::ReinterpretCastOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(memref::ReinterpretCastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class CastPattern final : public OpConversionPattern<memref::CastOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(memref::CastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value src = adaptor.getSource();
Type srcType = src.getType();
const TypeConverter *converter = getTypeConverter();
Type dstType = converter->convertType(op.getType());
if (srcType != dstType)
return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
diag << "types doesn't match: " << srcType << " and " << dstType;
});
rewriter.replaceOp(op, src);
return success();
}
};
/// Converts memref.extract_aligned_pointer_as_index to spirv.ConvertPtrToU.
class ExtractAlignedPointerAsIndexOpPattern final
: public OpConversionPattern<memref::ExtractAlignedPointerAsIndexOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(memref::ExtractAlignedPointerAsIndexOp extractOp,
OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
//===----------------------------------------------------------------------===//
// AllocaOp
//===----------------------------------------------------------------------===//
LogicalResult
AllocaOpPattern::matchAndRewrite(memref::AllocaOp allocaOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
MemRefType allocType = allocaOp.getType();
if (!isAllocationSupported(allocaOp, allocType))
return rewriter.notifyMatchFailure(allocaOp, "unhandled allocation type");
// Get the SPIR-V type for the allocation.
Type spirvType = getTypeConverter()->convertType(allocType);
if (!spirvType)
return rewriter.notifyMatchFailure(allocaOp, "type conversion failed");
rewriter.replaceOpWithNewOp<spirv::VariableOp>(allocaOp, spirvType,
spirv::StorageClass::Function,
/*initializer=*/nullptr);
return success();
}
//===----------------------------------------------------------------------===//
// AllocOp
//===----------------------------------------------------------------------===//
LogicalResult
AllocOpPattern::matchAndRewrite(memref::AllocOp operation, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
MemRefType allocType = operation.getType();
if (!isAllocationSupported(operation, allocType))
return rewriter.notifyMatchFailure(operation, "unhandled allocation type");
// Get the SPIR-V type for the allocation.
Type spirvType = getTypeConverter()->convertType(allocType);
if (!spirvType)
return rewriter.notifyMatchFailure(operation, "type conversion failed");
// Insert spirv.GlobalVariable for this allocation.
Operation *parent =
SymbolTable::getNearestSymbolTable(operation->getParentOp());
if (!parent)
return failure();
Location loc = operation.getLoc();
spirv::GlobalVariableOp varOp;
{
OpBuilder::InsertionGuard guard(rewriter);
Block &entryBlock = *parent->getRegion(0).begin();
rewriter.setInsertionPointToStart(&entryBlock);
auto varOps = entryBlock.getOps<spirv::GlobalVariableOp>();
std::string varName =
std::string("__workgroup_mem__") +
std::to_string(std::distance(varOps.begin(), varOps.end()));
varOp = spirv::GlobalVariableOp::create(rewriter, loc, spirvType, varName,
/*initializer=*/nullptr);
}
// Get pointer to global variable at the current scope.
rewriter.replaceOpWithNewOp<spirv::AddressOfOp>(operation, varOp);
return success();
}
//===----------------------------------------------------------------------===//
// AllocOp
//===----------------------------------------------------------------------===//
LogicalResult
AtomicRMWOpPattern::matchAndRewrite(memref::AtomicRMWOp atomicOp,
OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (isa<FloatType>(atomicOp.getType()))
return rewriter.notifyMatchFailure(atomicOp,
"unimplemented floating-point case");
auto memrefType = cast<MemRefType>(atomicOp.getMemref().getType());
std::optional<spirv::Scope> scope = getAtomicOpScope(memrefType);
if (!scope)
return rewriter.notifyMatchFailure(atomicOp,
"unsupported memref memory space");
auto &typeConverter = *getTypeConverter<SPIRVTypeConverter>();
Type resultType = typeConverter.convertType(atomicOp.getType());
if (!resultType)
return rewriter.notifyMatchFailure(atomicOp,
"failed to convert result type");
auto loc = atomicOp.getLoc();
Value ptr =
spirv::getElementPtr(typeConverter, memrefType, adaptor.getMemref(),
adaptor.getIndices(), loc, rewriter);
if (!ptr)
return failure();
#define ATOMIC_CASE(kind, spirvOp) \
case arith::AtomicRMWKind::kind: \
rewriter.replaceOpWithNewOp<spirv::spirvOp>( \
atomicOp, resultType, ptr, *scope, \
spirv::MemorySemantics::AcquireRelease, adaptor.getValue()); \
break
switch (atomicOp.getKind()) {
ATOMIC_CASE(addi, AtomicIAddOp);
ATOMIC_CASE(maxs, AtomicSMaxOp);
ATOMIC_CASE(maxu, AtomicUMaxOp);
ATOMIC_CASE(mins, AtomicSMinOp);
ATOMIC_CASE(minu, AtomicUMinOp);
ATOMIC_CASE(ori, AtomicOrOp);
ATOMIC_CASE(andi, AtomicAndOp);
default:
return rewriter.notifyMatchFailure(atomicOp, "unimplemented atomic kind");
}
#undef ATOMIC_CASE
return success();
}
//===----------------------------------------------------------------------===//
// DeallocOp
//===----------------------------------------------------------------------===//
LogicalResult
DeallocOpPattern::matchAndRewrite(memref::DeallocOp operation,
OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
MemRefType deallocType = cast<MemRefType>(operation.getMemref().getType());
if (!isAllocationSupported(operation, deallocType))
return rewriter.notifyMatchFailure(operation, "unhandled allocation type");
rewriter.eraseOp(operation);
return success();
}
//===----------------------------------------------------------------------===//
// LoadOp
//===----------------------------------------------------------------------===//
struct MemoryRequirements {
spirv::MemoryAccessAttr memoryAccess;
IntegerAttr alignment;
};
/// Given an accessed SPIR-V pointer, calculates its alignment requirements, if
/// any.
static FailureOr<MemoryRequirements>
calculateMemoryRequirements(Value accessedPtr, bool isNontemporal) {
MLIRContext *ctx = accessedPtr.getContext();
auto memoryAccess = spirv::MemoryAccess::None;
if (isNontemporal) {
memoryAccess = spirv::MemoryAccess::Nontemporal;
}
auto ptrType = cast<spirv::PointerType>(accessedPtr.getType());
if (ptrType.getStorageClass() != spirv::StorageClass::PhysicalStorageBuffer) {
if (memoryAccess == spirv::MemoryAccess::None) {
return MemoryRequirements{spirv::MemoryAccessAttr{}, IntegerAttr{}};
}
return MemoryRequirements{spirv::MemoryAccessAttr::get(ctx, memoryAccess),
IntegerAttr{}};
}
// PhysicalStorageBuffers require the `Aligned` attribute.
auto pointeeType = dyn_cast<spirv::ScalarType>(ptrType.getPointeeType());
if (!pointeeType)
return failure();
// For scalar types, the alignment is determined by their size.
std::optional<int64_t> sizeInBytes = pointeeType.getSizeInBytes();
if (!sizeInBytes.has_value())
return failure();
memoryAccess = memoryAccess | spirv::MemoryAccess::Aligned;
auto memAccessAttr = spirv::MemoryAccessAttr::get(ctx, memoryAccess);
auto alignment = IntegerAttr::get(IntegerType::get(ctx, 32), *sizeInBytes);
return MemoryRequirements{memAccessAttr, alignment};
}
/// Given an accessed SPIR-V pointer and the original memref load/store
/// `memAccess` op, calculates the alignment requirements, if any. Takes into
/// account the alignment attributes applied to the load/store op.
template <class LoadOrStoreOp>
static FailureOr<MemoryRequirements>
calculateMemoryRequirements(Value accessedPtr, LoadOrStoreOp loadOrStoreOp) {
static_assert(
llvm::is_one_of<LoadOrStoreOp, memref::LoadOp, memref::StoreOp>::value,
"Must be called on either memref::LoadOp or memref::StoreOp");
Operation *memrefAccessOp = loadOrStoreOp.getOperation();
auto memrefMemAccess = memrefAccessOp->getAttrOfType<spirv::MemoryAccessAttr>(
spirv::attributeName<spirv::MemoryAccess>());
auto memrefAlignment =
memrefAccessOp->getAttrOfType<IntegerAttr>("alignment");
if (memrefMemAccess && memrefAlignment)
return MemoryRequirements{memrefMemAccess, memrefAlignment};
return calculateMemoryRequirements(accessedPtr,
loadOrStoreOp.getNontemporal());
}
LogicalResult
IntLoadOpPattern::matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto loc = loadOp.getLoc();
auto memrefType = cast<MemRefType>(loadOp.getMemref().getType());
if (!memrefType.getElementType().isSignlessInteger())
return failure();
const auto &typeConverter = *getTypeConverter<SPIRVTypeConverter>();
Value accessChain =
spirv::getElementPtr(typeConverter, memrefType, adaptor.getMemref(),
adaptor.getIndices(), loc, rewriter);
if (!accessChain)
return failure();
int srcBits = memrefType.getElementType().getIntOrFloatBitWidth();
bool isBool = srcBits == 1;
if (isBool)
srcBits = typeConverter.getOptions().boolNumBits;
auto pointerType = typeConverter.convertType<spirv::PointerType>(memrefType);
if (!pointerType)
return rewriter.notifyMatchFailure(loadOp, "failed to convert memref type");
Type pointeeType = pointerType.getPointeeType();
Type dstType;
if (typeConverter.allows(spirv::Capability::Kernel)) {
if (auto arrayType = dyn_cast<spirv::ArrayType>(pointeeType))
dstType = arrayType.getElementType();
else
dstType = pointeeType;
} else {
// For Vulkan we need to extract element from wrapping struct and array.
Type structElemType =
cast<spirv::StructType>(pointeeType).getElementType(0);
if (auto arrayType = dyn_cast<spirv::ArrayType>(structElemType))
dstType = arrayType.getElementType();
else
dstType = cast<spirv::RuntimeArrayType>(structElemType).getElementType();
}
int dstBits = dstType.getIntOrFloatBitWidth();
assert(dstBits % srcBits == 0);
// If the rewritten load op has the same bit width, use the loading value
// directly.
if (srcBits == dstBits) {
auto memoryRequirements = calculateMemoryRequirements(accessChain, loadOp);
if (failed(memoryRequirements))
return rewriter.notifyMatchFailure(
loadOp, "failed to determine memory requirements");
auto [memoryAccess, alignment] = *memoryRequirements;
Value loadVal = spirv::LoadOp::create(rewriter, loc, accessChain,
memoryAccess, alignment);
if (isBool)
loadVal = castIntNToBool(loc, loadVal, rewriter);
rewriter.replaceOp(loadOp, loadVal);
return success();
}
// Bitcasting is currently unsupported for Kernel capability /
// spirv.PtrAccessChain.
if (typeConverter.allows(spirv::Capability::Kernel))
return failure();
auto accessChainOp = accessChain.getDefiningOp<spirv::AccessChainOp>();
if (!accessChainOp)
return failure();
// Assume that getElementPtr() works linearizely. If it's a scalar, the method
// still returns a linearized accessing. If the accessing is not linearized,
// there will be offset issues.
assert(accessChainOp.getIndices().size() == 2);
Value adjustedPtr = adjustAccessChainForBitwidth(typeConverter, accessChainOp,
srcBits, dstBits, rewriter);
auto memoryRequirements = calculateMemoryRequirements(adjustedPtr, loadOp);
if (failed(memoryRequirements))
return rewriter.notifyMatchFailure(
loadOp, "failed to determine memory requirements");
auto [memoryAccess, alignment] = *memoryRequirements;
Value spvLoadOp = spirv::LoadOp::create(rewriter, loc, dstType, adjustedPtr,
memoryAccess, alignment);
// Shift the bits to the rightmost.
// ____XXXX________ -> ____________XXXX
Value lastDim = accessChainOp->getOperand(accessChainOp.getNumOperands() - 1);
Value offset = getOffsetForBitwidth(loc, lastDim, srcBits, dstBits, rewriter);
Value result = rewriter.createOrFold<spirv::ShiftRightArithmeticOp>(
loc, spvLoadOp.getType(), spvLoadOp, offset);
// Apply the mask to extract corresponding bits.
Value mask = rewriter.createOrFold<spirv::ConstantOp>(
loc, dstType, rewriter.getIntegerAttr(dstType, (1 << srcBits) - 1));
result =
rewriter.createOrFold<spirv::BitwiseAndOp>(loc, dstType, result, mask);
// Apply sign extension on the loading value unconditionally. The signedness
// semantic is carried in the operator itself, we relies other pattern to
// handle the casting.
IntegerAttr shiftValueAttr =
rewriter.getIntegerAttr(dstType, dstBits - srcBits);
Value shiftValue =
rewriter.createOrFold<spirv::ConstantOp>(loc, dstType, shiftValueAttr);
result = rewriter.createOrFold<spirv::ShiftLeftLogicalOp>(loc, dstType,
result, shiftValue);
result = rewriter.createOrFold<spirv::ShiftRightArithmeticOp>(
loc, dstType, result, shiftValue);
rewriter.replaceOp(loadOp, result);
assert(accessChainOp.use_empty());
rewriter.eraseOp(accessChainOp);
return success();
}
LogicalResult
LoadOpPattern::matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto memrefType = cast<MemRefType>(loadOp.getMemref().getType());
if (memrefType.getElementType().isSignlessInteger())
return failure();
Value loadPtr = spirv::getElementPtr(
*getTypeConverter<SPIRVTypeConverter>(), memrefType, adaptor.getMemref(),
adaptor.getIndices(), loadOp.getLoc(), rewriter);
if (!loadPtr)
return failure();
auto memoryRequirements = calculateMemoryRequirements(loadPtr, loadOp);
if (failed(memoryRequirements))
return rewriter.notifyMatchFailure(
loadOp, "failed to determine memory requirements");
auto [memoryAccess, alignment] = *memoryRequirements;
rewriter.replaceOpWithNewOp<spirv::LoadOp>(loadOp, loadPtr, memoryAccess,
alignment);
return success();
}
LogicalResult
IntStoreOpPattern::matchAndRewrite(memref::StoreOp storeOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto memrefType = cast<MemRefType>(storeOp.getMemref().getType());
if (!memrefType.getElementType().isSignlessInteger())
return rewriter.notifyMatchFailure(storeOp,
"element type is not a signless int");
auto loc = storeOp.getLoc();
auto &typeConverter = *getTypeConverter<SPIRVTypeConverter>();
Value accessChain =
spirv::getElementPtr(typeConverter, memrefType, adaptor.getMemref(),
adaptor.getIndices(), loc, rewriter);
if (!accessChain)
return rewriter.notifyMatchFailure(
storeOp, "failed to convert element pointer type");
int srcBits = memrefType.getElementType().getIntOrFloatBitWidth();
bool isBool = srcBits == 1;
if (isBool)
srcBits = typeConverter.getOptions().boolNumBits;
auto pointerType = typeConverter.convertType<spirv::PointerType>(memrefType);
if (!pointerType)
return rewriter.notifyMatchFailure(storeOp,
"failed to convert memref type");
Type pointeeType = pointerType.getPointeeType();
IntegerType dstType;
if (typeConverter.allows(spirv::Capability::Kernel)) {
if (auto arrayType = dyn_cast<spirv::ArrayType>(pointeeType))
dstType = dyn_cast<IntegerType>(arrayType.getElementType());
else
dstType = dyn_cast<IntegerType>(pointeeType);
} else {
// For Vulkan we need to extract element from wrapping struct and array.
Type structElemType =
cast<spirv::StructType>(pointeeType).getElementType(0);
if (auto arrayType = dyn_cast<spirv::ArrayType>(structElemType))
dstType = dyn_cast<IntegerType>(arrayType.getElementType());
else
dstType = dyn_cast<IntegerType>(
cast<spirv::RuntimeArrayType>(structElemType).getElementType());
}
if (!dstType)
return rewriter.notifyMatchFailure(
storeOp, "failed to determine destination element type");
int dstBits = static_cast<int>(dstType.getWidth());
assert(dstBits % srcBits == 0);
if (srcBits == dstBits) {
auto memoryRequirements = calculateMemoryRequirements(accessChain, storeOp);
if (failed(memoryRequirements))
return rewriter.notifyMatchFailure(
storeOp, "failed to determine memory requirements");
auto [memoryAccess, alignment] = *memoryRequirements;
Value storeVal = adaptor.getValue();
if (isBool)
storeVal = castBoolToIntN(loc, storeVal, dstType, rewriter);
rewriter.replaceOpWithNewOp<spirv::StoreOp>(storeOp, accessChain, storeVal,
memoryAccess, alignment);
return success();
}
// Bitcasting is currently unsupported for Kernel capability /
// spirv.PtrAccessChain.
if (typeConverter.allows(spirv::Capability::Kernel))
return failure();
auto accessChainOp = accessChain.getDefiningOp<spirv::AccessChainOp>();
if (!accessChainOp)
return failure();
// Since there are multiple threads in the processing, the emulation will be
// done with atomic operations. E.g., if the stored value is i8, rewrite the
// StoreOp to:
// 1) load a 32-bit integer
// 2) clear 8 bits in the loaded value
// 3) set 8 bits in the loaded value
// 4) store 32-bit value back
//
// Step 2 is done with AtomicAnd, and step 3 is done with AtomicOr (of the
// loaded 32-bit value and the shifted 8-bit store value) as another atomic
// step.
assert(accessChainOp.getIndices().size() == 2);
Value lastDim = accessChainOp->getOperand(accessChainOp.getNumOperands() - 1);
Value offset = getOffsetForBitwidth(loc, lastDim, srcBits, dstBits, rewriter);
// Create a mask to clear the destination. E.g., if it is the second i8 in
// i32, 0xFFFF00FF is created.
Value mask = rewriter.createOrFold<spirv::ConstantOp>(
loc, dstType, rewriter.getIntegerAttr(dstType, (1 << srcBits) - 1));
Value clearBitsMask = rewriter.createOrFold<spirv::ShiftLeftLogicalOp>(
loc, dstType, mask, offset);
clearBitsMask =
rewriter.createOrFold<spirv::NotOp>(loc, dstType, clearBitsMask);
Value storeVal = shiftValue(loc, adaptor.getValue(), offset, mask, rewriter);
Value adjustedPtr = adjustAccessChainForBitwidth(typeConverter, accessChainOp,
srcBits, dstBits, rewriter);
std::optional<spirv::Scope> scope = getAtomicOpScope(memrefType);
if (!scope)
return rewriter.notifyMatchFailure(storeOp, "atomic scope not available");
Value result = spirv::AtomicAndOp::create(
rewriter, loc, dstType, adjustedPtr, *scope,
spirv::MemorySemantics::AcquireRelease, clearBitsMask);
result = spirv::AtomicOrOp::create(
rewriter, loc, dstType, adjustedPtr, *scope,
spirv::MemorySemantics::AcquireRelease, storeVal);
// The AtomicOrOp has no side effect. Since it is already inserted, we can
// just remove the original StoreOp. Note that rewriter.replaceOp()
// doesn't work because it only accepts that the numbers of result are the
// same.
rewriter.eraseOp(storeOp);
assert(accessChainOp.use_empty());
rewriter.eraseOp(accessChainOp);
return success();
}
//===----------------------------------------------------------------------===//
// MemorySpaceCastOp
//===----------------------------------------------------------------------===//
LogicalResult MemorySpaceCastOpPattern::matchAndRewrite(
memref::MemorySpaceCastOp addrCastOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = addrCastOp.getLoc();
auto &typeConverter = *getTypeConverter<SPIRVTypeConverter>();
if (!typeConverter.allows(spirv::Capability::Kernel))
return rewriter.notifyMatchFailure(
loc, "address space casts require kernel capability");
auto sourceType = dyn_cast<MemRefType>(addrCastOp.getSource().getType());
if (!sourceType)
return rewriter.notifyMatchFailure(
loc, "SPIR-V lowering requires ranked memref types");
auto resultType = cast<MemRefType>(addrCastOp.getResult().getType());
auto sourceStorageClassAttr =
dyn_cast_or_null<spirv::StorageClassAttr>(sourceType.getMemorySpace());
if (!sourceStorageClassAttr)
return rewriter.notifyMatchFailure(loc, [sourceType](Diagnostic &diag) {
diag << "source address space " << sourceType.getMemorySpace()
<< " must be a SPIR-V storage class";
});
auto resultStorageClassAttr =
dyn_cast_or_null<spirv::StorageClassAttr>(resultType.getMemorySpace());
if (!resultStorageClassAttr)
return rewriter.notifyMatchFailure(loc, [resultType](Diagnostic &diag) {
diag << "result address space " << resultType.getMemorySpace()
<< " must be a SPIR-V storage class";
});
spirv::StorageClass sourceSc = sourceStorageClassAttr.getValue();
spirv::StorageClass resultSc = resultStorageClassAttr.getValue();
Value result = adaptor.getSource();
Type resultPtrType = typeConverter.convertType(resultType);
if (!resultPtrType)
return rewriter.notifyMatchFailure(addrCastOp,
"failed to convert memref type");
Type genericPtrType = resultPtrType;
// SPIR-V doesn't have a general address space cast operation. Instead, it has
// conversions to and from generic pointers. To implement the general case,
// we use specific-to-generic conversions when the source class is not
// generic. Then when the result storage class is not generic, we convert the
// generic pointer (either the input on ar intermediate result) to that
// class. This also means that we'll need the intermediate generic pointer
// type if neither the source or destination have it.
if (sourceSc != spirv::StorageClass::Generic &&
resultSc != spirv::StorageClass::Generic) {
Type intermediateType =
MemRefType::get(sourceType.getShape(), sourceType.getElementType(),
sourceType.getLayout(),
rewriter.getAttr<spirv::StorageClassAttr>(
spirv::StorageClass::Generic));
genericPtrType = typeConverter.convertType(intermediateType);
}
if (sourceSc != spirv::StorageClass::Generic) {
result = spirv::PtrCastToGenericOp::create(rewriter, loc, genericPtrType,
result);
}
if (resultSc != spirv::StorageClass::Generic) {
result =
spirv::GenericCastToPtrOp::create(rewriter, loc, resultPtrType, result);
}
rewriter.replaceOp(addrCastOp, result);
return success();
}
LogicalResult
StoreOpPattern::matchAndRewrite(memref::StoreOp storeOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto memrefType = cast<MemRefType>(storeOp.getMemref().getType());
if (memrefType.getElementType().isSignlessInteger())
return rewriter.notifyMatchFailure(storeOp, "signless int");
auto storePtr = spirv::getElementPtr(
*getTypeConverter<SPIRVTypeConverter>(), memrefType, adaptor.getMemref(),
adaptor.getIndices(), storeOp.getLoc(), rewriter);
if (!storePtr)
return rewriter.notifyMatchFailure(storeOp, "type conversion failed");
auto memoryRequirements = calculateMemoryRequirements(storePtr, storeOp);
if (failed(memoryRequirements))
return rewriter.notifyMatchFailure(
storeOp, "failed to determine memory requirements");
auto [memoryAccess, alignment] = *memoryRequirements;
rewriter.replaceOpWithNewOp<spirv::StoreOp>(
storeOp, storePtr, adaptor.getValue(), memoryAccess, alignment);
return success();
}
LogicalResult ReinterpretCastPattern::matchAndRewrite(
memref::ReinterpretCastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value src = adaptor.getSource();
auto srcType = dyn_cast<spirv::PointerType>(src.getType());
if (!srcType)
return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
diag << "invalid src type " << src.getType();
});
const TypeConverter *converter = getTypeConverter();
auto dstType = converter->convertType<spirv::PointerType>(op.getType());
if (dstType != srcType)
return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
diag << "invalid dst type " << op.getType();
});
OpFoldResult offset =
getMixedValues(adaptor.getStaticOffsets(), adaptor.getOffsets(), rewriter)
.front();
if (isZeroInteger(offset)) {
rewriter.replaceOp(op, src);
return success();
}
Type intType = converter->convertType(rewriter.getIndexType());
if (!intType)
return rewriter.notifyMatchFailure(op, "failed to convert index type");
Location loc = op.getLoc();
auto offsetValue = [&]() -> Value {
if (auto val = dyn_cast<Value>(offset))
return val;
int64_t attrVal = cast<IntegerAttr>(cast<Attribute>(offset)).getInt();
Attribute attr = rewriter.getIntegerAttr(intType, attrVal);
return rewriter.createOrFold<spirv::ConstantOp>(loc, intType, attr);
}();
rewriter.replaceOpWithNewOp<spirv::InBoundsPtrAccessChainOp>(
op, src, offsetValue, ValueRange());
return success();
}
//===----------------------------------------------------------------------===//
// ExtractAlignedPointerAsIndexOp
//===----------------------------------------------------------------------===//
LogicalResult ExtractAlignedPointerAsIndexOpPattern::matchAndRewrite(
memref::ExtractAlignedPointerAsIndexOp extractOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto &typeConverter = *getTypeConverter<SPIRVTypeConverter>();
Type indexType = typeConverter.getIndexType();
rewriter.replaceOpWithNewOp<spirv::ConvertPtrToUOp>(extractOp, indexType,
adaptor.getSource());
return success();
}
//===----------------------------------------------------------------------===//
// Pattern population
//===----------------------------------------------------------------------===//
namespace mlir {
void populateMemRefToSPIRVPatterns(const SPIRVTypeConverter &typeConverter,
RewritePatternSet &patterns) {
patterns
.add<AllocaOpPattern, AllocOpPattern, AtomicRMWOpPattern,
DeallocOpPattern, IntLoadOpPattern, IntStoreOpPattern, LoadOpPattern,
MemorySpaceCastOpPattern, StoreOpPattern, ReinterpretCastPattern,
CastPattern, ExtractAlignedPointerAsIndexOpPattern>(
typeConverter, patterns.getContext());
}
} // namespace mlir
|