aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Conversion/MathToFuncs/MathToFuncs.cpp
blob: 855c582a5c363b6eeb412bc33f98ffb3242c4126 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
//===- MathToFuncs.cpp - Math to outlined implementation conversion -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/MathToFuncs/MathToFuncs.h"

#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"

namespace mlir {
#define GEN_PASS_DEF_CONVERTMATHTOFUNCS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir

using namespace mlir;

#define DEBUG_TYPE "math-to-funcs"
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE "]: ")

namespace {
// Pattern to convert vector operations to scalar operations.
template <typename Op>
struct VecOpToScalarOp : public OpRewritePattern<Op> {
public:
  using OpRewritePattern<Op>::OpRewritePattern;

  LogicalResult matchAndRewrite(Op op, PatternRewriter &rewriter) const final;
};

// Callback type for getting pre-generated FuncOp implementing
// an operation of the given type.
using GetFuncCallbackTy = function_ref<func::FuncOp(Operation *, Type)>;

// Pattern to convert scalar IPowIOp into a call of outlined
// software implementation.
class IPowIOpLowering : public OpRewritePattern<math::IPowIOp> {
public:
  IPowIOpLowering(MLIRContext *context, GetFuncCallbackTy cb)
      : OpRewritePattern<math::IPowIOp>(context), getFuncOpCallback(cb) {}

  /// Convert IPowI into a call to a local function implementing
  /// the power operation. The local function computes a scalar result,
  /// so vector forms of IPowI are linearized.
  LogicalResult matchAndRewrite(math::IPowIOp op,
                                PatternRewriter &rewriter) const final;

private:
  GetFuncCallbackTy getFuncOpCallback;
};

// Pattern to convert scalar FPowIOp into a call of outlined
// software implementation.
class FPowIOpLowering : public OpRewritePattern<math::FPowIOp> {
public:
  FPowIOpLowering(MLIRContext *context, GetFuncCallbackTy cb)
      : OpRewritePattern<math::FPowIOp>(context), getFuncOpCallback(cb) {}

  /// Convert FPowI into a call to a local function implementing
  /// the power operation. The local function computes a scalar result,
  /// so vector forms of FPowI are linearized.
  LogicalResult matchAndRewrite(math::FPowIOp op,
                                PatternRewriter &rewriter) const final;

private:
  GetFuncCallbackTy getFuncOpCallback;
};

// Pattern to convert scalar ctlz into a call of outlined software
// implementation.
class CtlzOpLowering : public OpRewritePattern<math::CountLeadingZerosOp> {
public:
  CtlzOpLowering(MLIRContext *context, GetFuncCallbackTy cb)
      : OpRewritePattern<math::CountLeadingZerosOp>(context),
        getFuncOpCallback(cb) {}

  /// Convert ctlz into a call to a local function implementing
  /// the count leading zeros operation.
  LogicalResult matchAndRewrite(math::CountLeadingZerosOp op,
                                PatternRewriter &rewriter) const final;

private:
  GetFuncCallbackTy getFuncOpCallback;
};
} // namespace

template <typename Op>
LogicalResult
VecOpToScalarOp<Op>::matchAndRewrite(Op op, PatternRewriter &rewriter) const {
  Type opType = op.getType();
  Location loc = op.getLoc();
  auto vecType = dyn_cast<VectorType>(opType);

  if (!vecType)
    return rewriter.notifyMatchFailure(op, "not a vector operation");
  if (!vecType.hasRank())
    return rewriter.notifyMatchFailure(op, "unknown vector rank");
  ArrayRef<int64_t> shape = vecType.getShape();
  int64_t numElements = vecType.getNumElements();

  Type resultElementType = vecType.getElementType();
  Attribute initValueAttr;
  if (isa<FloatType>(resultElementType))
    initValueAttr = FloatAttr::get(resultElementType, 0.0);
  else
    initValueAttr = IntegerAttr::get(resultElementType, 0);
  Value result = arith::ConstantOp::create(
      rewriter, loc, DenseElementsAttr::get(vecType, initValueAttr));
  SmallVector<int64_t> strides = computeStrides(shape);
  for (int64_t linearIndex = 0; linearIndex < numElements; ++linearIndex) {
    SmallVector<int64_t> positions = delinearize(linearIndex, strides);
    SmallVector<Value> operands;
    for (Value input : op->getOperands())
      operands.push_back(
          vector::ExtractOp::create(rewriter, loc, input, positions));
    Value scalarOp =
        Op::create(rewriter, loc, vecType.getElementType(), operands);
    result =
        vector::InsertOp::create(rewriter, loc, scalarOp, result, positions);
  }
  rewriter.replaceOp(op, result);
  return success();
}

static FunctionType getElementalFuncTypeForOp(Operation *op) {
  SmallVector<Type, 1> resultTys(op->getNumResults());
  SmallVector<Type, 2> inputTys(op->getNumOperands());
  std::transform(op->result_type_begin(), op->result_type_end(),
                 resultTys.begin(),
                 [](Type ty) { return getElementTypeOrSelf(ty); });
  std::transform(op->operand_type_begin(), op->operand_type_end(),
                 inputTys.begin(),
                 [](Type ty) { return getElementTypeOrSelf(ty); });
  return FunctionType::get(op->getContext(), inputTys, resultTys);
}

/// Create linkonce_odr function to implement the power function with
/// the given \p elementType type inside \p module. The \p elementType
/// must be IntegerType, an the created function has
/// 'IntegerType (*)(IntegerType, IntegerType)' function type.
///
/// template <typename T>
/// T __mlir_math_ipowi_*(T b, T p) {
///   if (p == T(0))
///     return T(1);
///   if (p < T(0)) {
///     if (b == T(0))
///       return T(1) / T(0); // trigger div-by-zero
///     if (b == T(1))
///       return T(1);
///     if (b == T(-1)) {
///       if (p & T(1))
///         return T(-1);
///       return T(1);
///     }
///     return T(0);
///   }
///   T result = T(1);
///   while (true) {
///     if (p & T(1))
///       result *= b;
///     p >>= T(1);
///     if (p == T(0))
///       return result;
///     b *= b;
///   }
/// }
static func::FuncOp createElementIPowIFunc(ModuleOp *module, Type elementType) {
  assert(isa<IntegerType>(elementType) &&
         "non-integer element type for IPowIOp");

  ImplicitLocOpBuilder builder =
      ImplicitLocOpBuilder::atBlockEnd(module->getLoc(), module->getBody());

  std::string funcName("__mlir_math_ipowi");
  llvm::raw_string_ostream nameOS(funcName);
  nameOS << '_' << elementType;

  FunctionType funcType = FunctionType::get(
      builder.getContext(), {elementType, elementType}, elementType);
  auto funcOp = func::FuncOp::create(builder, funcName, funcType);
  LLVM::linkage::Linkage inlineLinkage = LLVM::linkage::Linkage::LinkonceODR;
  Attribute linkage =
      LLVM::LinkageAttr::get(builder.getContext(), inlineLinkage);
  funcOp->setAttr("llvm.linkage", linkage);
  funcOp.setPrivate();

  Block *entryBlock = funcOp.addEntryBlock();
  Region *funcBody = entryBlock->getParent();

  Value bArg = funcOp.getArgument(0);
  Value pArg = funcOp.getArgument(1);
  builder.setInsertionPointToEnd(entryBlock);
  Value zeroValue = arith::ConstantOp::create(
      builder, elementType, builder.getIntegerAttr(elementType, 0));
  Value oneValue = arith::ConstantOp::create(
      builder, elementType, builder.getIntegerAttr(elementType, 1));
  Value minusOneValue = arith::ConstantOp::create(
      builder, elementType,
      builder.getIntegerAttr(elementType,
                             APInt(elementType.getIntOrFloatBitWidth(), -1ULL,
                                   /*isSigned=*/true)));

  // if (p == T(0))
  //   return T(1);
  auto pIsZero =
      arith::CmpIOp::create(builder, arith::CmpIPredicate::eq, pArg, zeroValue);
  Block *thenBlock = builder.createBlock(funcBody);
  func::ReturnOp::create(builder, oneValue);
  Block *fallthroughBlock = builder.createBlock(funcBody);
  // Set up conditional branch for (p == T(0)).
  builder.setInsertionPointToEnd(pIsZero->getBlock());
  cf::CondBranchOp::create(builder, pIsZero, thenBlock, fallthroughBlock);

  // if (p < T(0)) {
  builder.setInsertionPointToEnd(fallthroughBlock);
  auto pIsNeg = arith::CmpIOp::create(builder, arith::CmpIPredicate::sle, pArg,
                                      zeroValue);
  //   if (b == T(0))
  builder.createBlock(funcBody);
  auto bIsZero =
      arith::CmpIOp::create(builder, arith::CmpIPredicate::eq, bArg, zeroValue);
  //     return T(1) / T(0);
  thenBlock = builder.createBlock(funcBody);
  func::ReturnOp::create(
      builder,
      arith::DivSIOp::create(builder, oneValue, zeroValue).getResult());
  fallthroughBlock = builder.createBlock(funcBody);
  // Set up conditional branch for (b == T(0)).
  builder.setInsertionPointToEnd(bIsZero->getBlock());
  cf::CondBranchOp::create(builder, bIsZero, thenBlock, fallthroughBlock);

  //   if (b == T(1))
  builder.setInsertionPointToEnd(fallthroughBlock);
  auto bIsOne =
      arith::CmpIOp::create(builder, arith::CmpIPredicate::eq, bArg, oneValue);
  //    return T(1);
  thenBlock = builder.createBlock(funcBody);
  func::ReturnOp::create(builder, oneValue);
  fallthroughBlock = builder.createBlock(funcBody);
  // Set up conditional branch for (b == T(1)).
  builder.setInsertionPointToEnd(bIsOne->getBlock());
  cf::CondBranchOp::create(builder, bIsOne, thenBlock, fallthroughBlock);

  //   if (b == T(-1)) {
  builder.setInsertionPointToEnd(fallthroughBlock);
  auto bIsMinusOne = arith::CmpIOp::create(builder, arith::CmpIPredicate::eq,
                                           bArg, minusOneValue);
  //     if (p & T(1))
  builder.createBlock(funcBody);
  auto pIsOdd = arith::CmpIOp::create(
      builder, arith::CmpIPredicate::ne,
      arith::AndIOp::create(builder, pArg, oneValue), zeroValue);
  //       return T(-1);
  thenBlock = builder.createBlock(funcBody);
  func::ReturnOp::create(builder, minusOneValue);
  fallthroughBlock = builder.createBlock(funcBody);
  // Set up conditional branch for (p & T(1)).
  builder.setInsertionPointToEnd(pIsOdd->getBlock());
  cf::CondBranchOp::create(builder, pIsOdd, thenBlock, fallthroughBlock);

  //     return T(1);
  //   } // b == T(-1)
  builder.setInsertionPointToEnd(fallthroughBlock);
  func::ReturnOp::create(builder, oneValue);
  fallthroughBlock = builder.createBlock(funcBody);
  // Set up conditional branch for (b == T(-1)).
  builder.setInsertionPointToEnd(bIsMinusOne->getBlock());
  cf::CondBranchOp::create(builder, bIsMinusOne, pIsOdd->getBlock(),
                           fallthroughBlock);

  //   return T(0);
  // } // (p < T(0))
  builder.setInsertionPointToEnd(fallthroughBlock);
  func::ReturnOp::create(builder, zeroValue);
  Block *loopHeader = builder.createBlock(
      funcBody, funcBody->end(), {elementType, elementType, elementType},
      {builder.getLoc(), builder.getLoc(), builder.getLoc()});
  // Set up conditional branch for (p < T(0)).
  builder.setInsertionPointToEnd(pIsNeg->getBlock());
  // Set initial values of 'result', 'b' and 'p' for the loop.
  cf::CondBranchOp::create(builder, pIsNeg, bIsZero->getBlock(), loopHeader,
                           ValueRange{oneValue, bArg, pArg});

  // T result = T(1);
  // while (true) {
  //   if (p & T(1))
  //     result *= b;
  //   p >>= T(1);
  //   if (p == T(0))
  //     return result;
  //   b *= b;
  // }
  Value resultTmp = loopHeader->getArgument(0);
  Value baseTmp = loopHeader->getArgument(1);
  Value powerTmp = loopHeader->getArgument(2);
  builder.setInsertionPointToEnd(loopHeader);

  //   if (p & T(1))
  auto powerTmpIsOdd = arith::CmpIOp::create(
      builder, arith::CmpIPredicate::ne,
      arith::AndIOp::create(builder, powerTmp, oneValue), zeroValue);
  thenBlock = builder.createBlock(funcBody);
  //     result *= b;
  Value newResultTmp = arith::MulIOp::create(builder, resultTmp, baseTmp);
  fallthroughBlock = builder.createBlock(funcBody, funcBody->end(), elementType,
                                         builder.getLoc());
  builder.setInsertionPointToEnd(thenBlock);
  cf::BranchOp::create(builder, newResultTmp, fallthroughBlock);
  // Set up conditional branch for (p & T(1)).
  builder.setInsertionPointToEnd(powerTmpIsOdd->getBlock());
  cf::CondBranchOp::create(builder, powerTmpIsOdd, thenBlock, fallthroughBlock,
                           resultTmp);
  // Merged 'result'.
  newResultTmp = fallthroughBlock->getArgument(0);

  //   p >>= T(1);
  builder.setInsertionPointToEnd(fallthroughBlock);
  Value newPowerTmp = arith::ShRUIOp::create(builder, powerTmp, oneValue);

  //   if (p == T(0))
  auto newPowerIsZero = arith::CmpIOp::create(builder, arith::CmpIPredicate::eq,
                                              newPowerTmp, zeroValue);
  //     return result;
  thenBlock = builder.createBlock(funcBody);
  func::ReturnOp::create(builder, newResultTmp);
  fallthroughBlock = builder.createBlock(funcBody);
  // Set up conditional branch for (p == T(0)).
  builder.setInsertionPointToEnd(newPowerIsZero->getBlock());
  cf::CondBranchOp::create(builder, newPowerIsZero, thenBlock,
                           fallthroughBlock);

  //   b *= b;
  // }
  builder.setInsertionPointToEnd(fallthroughBlock);
  Value newBaseTmp = arith::MulIOp::create(builder, baseTmp, baseTmp);
  // Pass new values for 'result', 'b' and 'p' to the loop header.
  cf::BranchOp::create(
      builder, ValueRange{newResultTmp, newBaseTmp, newPowerTmp}, loopHeader);
  return funcOp;
}

/// Convert IPowI into a call to a local function implementing
/// the power operation. The local function computes a scalar result,
/// so vector forms of IPowI are linearized.
LogicalResult
IPowIOpLowering::matchAndRewrite(math::IPowIOp op,
                                 PatternRewriter &rewriter) const {
  auto baseType = dyn_cast<IntegerType>(op.getOperands()[0].getType());

  if (!baseType)
    return rewriter.notifyMatchFailure(op, "non-integer base operand");

  // The outlined software implementation must have been already
  // generated.
  func::FuncOp elementFunc = getFuncOpCallback(op, baseType);
  if (!elementFunc)
    return rewriter.notifyMatchFailure(op, "missing software implementation");

  rewriter.replaceOpWithNewOp<func::CallOp>(op, elementFunc, op.getOperands());
  return success();
}

/// Create linkonce_odr function to implement the power function with
/// the given \p funcType type inside \p module. The \p funcType must be
/// 'FloatType (*)(FloatType, IntegerType)' function type.
///
/// template <typename T>
/// Tb __mlir_math_fpowi_*(Tb b, Tp p) {
///   if (p == Tp{0})
///     return Tb{1};
///   bool isNegativePower{p < Tp{0}}
///   bool isMin{p == std::numeric_limits<Tp>::min()};
///   if (isMin) {
///     p = std::numeric_limits<Tp>::max();
///   } else if (isNegativePower) {
///     p = -p;
///   }
///   Tb result = Tb{1};
///   Tb origBase = Tb{b};
///   while (true) {
///     if (p & Tp{1})
///       result *= b;
///     p >>= Tp{1};
///     if (p == Tp{0})
///       break;
///     b *= b;
///   }
///   if (isMin) {
///     result *= origBase;
///   }
///   if (isNegativePower) {
///     result = Tb{1} / result;
///   }
///   return result;
/// }
static func::FuncOp createElementFPowIFunc(ModuleOp *module,
                                           FunctionType funcType) {
  auto baseType = cast<FloatType>(funcType.getInput(0));
  auto powType = cast<IntegerType>(funcType.getInput(1));
  ImplicitLocOpBuilder builder =
      ImplicitLocOpBuilder::atBlockEnd(module->getLoc(), module->getBody());

  std::string funcName("__mlir_math_fpowi");
  llvm::raw_string_ostream nameOS(funcName);
  nameOS << '_' << baseType;
  nameOS << '_' << powType;
  auto funcOp = func::FuncOp::create(builder, funcName, funcType);
  LLVM::linkage::Linkage inlineLinkage = LLVM::linkage::Linkage::LinkonceODR;
  Attribute linkage =
      LLVM::LinkageAttr::get(builder.getContext(), inlineLinkage);
  funcOp->setAttr("llvm.linkage", linkage);
  funcOp.setPrivate();

  Block *entryBlock = funcOp.addEntryBlock();
  Region *funcBody = entryBlock->getParent();

  Value bArg = funcOp.getArgument(0);
  Value pArg = funcOp.getArgument(1);
  builder.setInsertionPointToEnd(entryBlock);
  Value oneBValue = arith::ConstantOp::create(
      builder, baseType, builder.getFloatAttr(baseType, 1.0));
  Value zeroPValue = arith::ConstantOp::create(
      builder, powType, builder.getIntegerAttr(powType, 0));
  Value onePValue = arith::ConstantOp::create(
      builder, powType, builder.getIntegerAttr(powType, 1));
  Value minPValue = arith::ConstantOp::create(
      builder, powType,
      builder.getIntegerAttr(
          powType, llvm::APInt::getSignedMinValue(powType.getWidth())));
  Value maxPValue = arith::ConstantOp::create(
      builder, powType,
      builder.getIntegerAttr(
          powType, llvm::APInt::getSignedMaxValue(powType.getWidth())));

  // if (p == Tp{0})
  //   return Tb{1};
  auto pIsZero = arith::CmpIOp::create(builder, arith::CmpIPredicate::eq, pArg,
                                       zeroPValue);
  Block *thenBlock = builder.createBlock(funcBody);
  func::ReturnOp::create(builder, oneBValue);
  Block *fallthroughBlock = builder.createBlock(funcBody);
  // Set up conditional branch for (p == Tp{0}).
  builder.setInsertionPointToEnd(pIsZero->getBlock());
  cf::CondBranchOp::create(builder, pIsZero, thenBlock, fallthroughBlock);

  builder.setInsertionPointToEnd(fallthroughBlock);
  // bool isNegativePower{p < Tp{0}}
  auto pIsNeg = arith::CmpIOp::create(builder, arith::CmpIPredicate::sle, pArg,
                                      zeroPValue);
  // bool isMin{p == std::numeric_limits<Tp>::min()};
  auto pIsMin =
      arith::CmpIOp::create(builder, arith::CmpIPredicate::eq, pArg, minPValue);

  // if (isMin) {
  //   p = std::numeric_limits<Tp>::max();
  // } else if (isNegativePower) {
  //   p = -p;
  // }
  Value negP = arith::SubIOp::create(builder, zeroPValue, pArg);
  auto pInit = arith::SelectOp::create(builder, pIsNeg, negP, pArg);
  pInit = arith::SelectOp::create(builder, pIsMin, maxPValue, pInit);

  // Tb result = Tb{1};
  // Tb origBase = Tb{b};
  // while (true) {
  //   if (p & Tp{1})
  //     result *= b;
  //   p >>= Tp{1};
  //   if (p == Tp{0})
  //     break;
  //   b *= b;
  // }
  Block *loopHeader = builder.createBlock(
      funcBody, funcBody->end(), {baseType, baseType, powType},
      {builder.getLoc(), builder.getLoc(), builder.getLoc()});
  // Set initial values of 'result', 'b' and 'p' for the loop.
  builder.setInsertionPointToEnd(pInit->getBlock());
  cf::BranchOp::create(builder, loopHeader, ValueRange{oneBValue, bArg, pInit});

  // Create loop body.
  Value resultTmp = loopHeader->getArgument(0);
  Value baseTmp = loopHeader->getArgument(1);
  Value powerTmp = loopHeader->getArgument(2);
  builder.setInsertionPointToEnd(loopHeader);

  //   if (p & Tp{1})
  auto powerTmpIsOdd = arith::CmpIOp::create(
      builder, arith::CmpIPredicate::ne,
      arith::AndIOp::create(builder, powerTmp, onePValue), zeroPValue);
  thenBlock = builder.createBlock(funcBody);
  //     result *= b;
  Value newResultTmp = arith::MulFOp::create(builder, resultTmp, baseTmp);
  fallthroughBlock = builder.createBlock(funcBody, funcBody->end(), baseType,
                                         builder.getLoc());
  builder.setInsertionPointToEnd(thenBlock);
  cf::BranchOp::create(builder, newResultTmp, fallthroughBlock);
  // Set up conditional branch for (p & Tp{1}).
  builder.setInsertionPointToEnd(powerTmpIsOdd->getBlock());
  cf::CondBranchOp::create(builder, powerTmpIsOdd, thenBlock, fallthroughBlock,
                           resultTmp);
  // Merged 'result'.
  newResultTmp = fallthroughBlock->getArgument(0);

  //   p >>= Tp{1};
  builder.setInsertionPointToEnd(fallthroughBlock);
  Value newPowerTmp = arith::ShRUIOp::create(builder, powerTmp, onePValue);

  //   if (p == Tp{0})
  auto newPowerIsZero = arith::CmpIOp::create(builder, arith::CmpIPredicate::eq,
                                              newPowerTmp, zeroPValue);
  //     break;
  //
  // The conditional branch is finalized below with a jump to
  // the loop exit block.
  fallthroughBlock = builder.createBlock(funcBody);

  //   b *= b;
  // }
  builder.setInsertionPointToEnd(fallthroughBlock);
  Value newBaseTmp = arith::MulFOp::create(builder, baseTmp, baseTmp);
  // Pass new values for 'result', 'b' and 'p' to the loop header.
  cf::BranchOp::create(
      builder, ValueRange{newResultTmp, newBaseTmp, newPowerTmp}, loopHeader);

  // Set up conditional branch for early loop exit:
  //   if (p == Tp{0})
  //     break;
  Block *loopExit = builder.createBlock(funcBody, funcBody->end(), baseType,
                                        builder.getLoc());
  builder.setInsertionPointToEnd(newPowerIsZero->getBlock());
  cf::CondBranchOp::create(builder, newPowerIsZero, loopExit, newResultTmp,
                           fallthroughBlock, ValueRange{});

  // if (isMin) {
  //   result *= origBase;
  // }
  newResultTmp = loopExit->getArgument(0);
  thenBlock = builder.createBlock(funcBody);
  fallthroughBlock = builder.createBlock(funcBody, funcBody->end(), baseType,
                                         builder.getLoc());
  builder.setInsertionPointToEnd(loopExit);
  cf::CondBranchOp::create(builder, pIsMin, thenBlock, fallthroughBlock,
                           newResultTmp);
  builder.setInsertionPointToEnd(thenBlock);
  newResultTmp = arith::MulFOp::create(builder, newResultTmp, bArg);
  cf::BranchOp::create(builder, newResultTmp, fallthroughBlock);

  /// if (isNegativePower) {
  ///   result = Tb{1} / result;
  /// }
  newResultTmp = fallthroughBlock->getArgument(0);
  thenBlock = builder.createBlock(funcBody);
  Block *returnBlock = builder.createBlock(funcBody, funcBody->end(), baseType,
                                           builder.getLoc());
  builder.setInsertionPointToEnd(fallthroughBlock);
  cf::CondBranchOp::create(builder, pIsNeg, thenBlock, returnBlock,
                           newResultTmp);
  builder.setInsertionPointToEnd(thenBlock);
  newResultTmp = arith::DivFOp::create(builder, oneBValue, newResultTmp);
  cf::BranchOp::create(builder, newResultTmp, returnBlock);

  // return result;
  builder.setInsertionPointToEnd(returnBlock);
  func::ReturnOp::create(builder, returnBlock->getArgument(0));

  return funcOp;
}

/// Convert FPowI into a call to a local function implementing
/// the power operation. The local function computes a scalar result,
/// so vector forms of FPowI are linearized.
LogicalResult
FPowIOpLowering::matchAndRewrite(math::FPowIOp op,
                                 PatternRewriter &rewriter) const {
  if (isa<VectorType>(op.getType()))
    return rewriter.notifyMatchFailure(op, "non-scalar operation");

  FunctionType funcType = getElementalFuncTypeForOp(op);

  // The outlined software implementation must have been already
  // generated.
  func::FuncOp elementFunc = getFuncOpCallback(op, funcType);
  if (!elementFunc)
    return rewriter.notifyMatchFailure(op, "missing software implementation");

  rewriter.replaceOpWithNewOp<func::CallOp>(op, elementFunc, op.getOperands());
  return success();
}

/// Create function to implement the ctlz function the given \p elementType type
/// inside \p module. The \p elementType must be IntegerType, an the created
/// function has 'IntegerType (*)(IntegerType)' function type.
///
/// template <typename T>
/// T __mlir_math_ctlz_*(T x) {
///     bits = sizeof(x) * 8;
///     if (x == 0)
///       return bits;
///
///     uint32_t n = 0;
///     for (int i = 1; i < bits; ++i) {
///         if (x < 0) continue;
///         n++;
///         x <<= 1;
///     }
///     return n;
/// }
///
/// Converts to (for i32):
///
/// func.func private @__mlir_math_ctlz_i32(%arg: i32) -> i32 {
///   %c_32 = arith.constant 32 : index
///   %c_0 = arith.constant 0 : i32
///   %arg_eq_zero = arith.cmpi eq, %arg, %c_0 : i1
///   %out = scf.if %arg_eq_zero {
///     scf.yield %c_32 : i32
///   } else {
///     %c_1index = arith.constant 1 : index
///     %c_1i32 = arith.constant 1 : i32
///     %n = arith.constant 0 : i32
///     %arg_out, %n_out = scf.for %i = %c_1index to %c_32 step %c_1index
///         iter_args(%arg_iter = %arg, %n_iter = %n) -> (i32, i32) {
///       %cond = arith.cmpi slt, %arg_iter, %c_0 : i32
///       %yield_val = scf.if %cond {
///         scf.yield %arg_iter, %n_iter : i32, i32
///       } else {
///         %arg_next = arith.shli %arg_iter, %c_1i32 : i32
///         %n_next = arith.addi %n_iter, %c_1i32 : i32
///         scf.yield %arg_next, %n_next : i32, i32
///       }
///       scf.yield %yield_val: i32, i32
///     }
///     scf.yield %n_out : i32
///   }
///   return %out: i32
/// }
static func::FuncOp createCtlzFunc(ModuleOp *module, Type elementType) {
  if (!isa<IntegerType>(elementType)) {
    LLVM_DEBUG({
      DBGS() << "non-integer element type for CtlzFunc; type was: ";
      elementType.print(llvm::dbgs());
    });
    llvm_unreachable("non-integer element type");
  }
  int64_t bitWidth = elementType.getIntOrFloatBitWidth();

  Location loc = module->getLoc();
  ImplicitLocOpBuilder builder =
      ImplicitLocOpBuilder::atBlockEnd(loc, module->getBody());

  std::string funcName("__mlir_math_ctlz");
  llvm::raw_string_ostream nameOS(funcName);
  nameOS << '_' << elementType;
  FunctionType funcType =
      FunctionType::get(builder.getContext(), {elementType}, elementType);
  auto funcOp = func::FuncOp::create(builder, funcName, funcType);

  // LinkonceODR ensures that there is only one implementation of this function
  // across all math.ctlz functions that are lowered in this way.
  LLVM::linkage::Linkage inlineLinkage = LLVM::linkage::Linkage::LinkonceODR;
  Attribute linkage =
      LLVM::LinkageAttr::get(builder.getContext(), inlineLinkage);
  funcOp->setAttr("llvm.linkage", linkage);
  funcOp.setPrivate();

  // set the insertion point to the start of the function
  Block *funcBody = funcOp.addEntryBlock();
  builder.setInsertionPointToStart(funcBody);

  Value arg = funcOp.getArgument(0);
  Type indexType = builder.getIndexType();
  Value bitWidthValue = arith::ConstantOp::create(
      builder, elementType, builder.getIntegerAttr(elementType, bitWidth));
  Value zeroValue = arith::ConstantOp::create(
      builder, elementType, builder.getIntegerAttr(elementType, 0));

  Value inputEqZero =
      arith::CmpIOp::create(builder, arith::CmpIPredicate::eq, arg, zeroValue);

  // if input == 0, return bit width, else enter loop.
  scf::IfOp ifOp =
      scf::IfOp::create(builder, elementType, inputEqZero,
                        /*addThenBlock=*/true, /*addElseBlock=*/true);
  auto thenBuilder = ifOp.getThenBodyBuilder();
  scf::YieldOp::create(thenBuilder, loc, bitWidthValue);

  auto elseBuilder =
      ImplicitLocOpBuilder::atBlockEnd(loc, &ifOp.getElseRegion().front());

  Value oneIndex = arith::ConstantOp::create(elseBuilder, indexType,
                                             elseBuilder.getIndexAttr(1));
  Value oneValue = arith::ConstantOp::create(
      elseBuilder, elementType, elseBuilder.getIntegerAttr(elementType, 1));
  Value bitWidthIndex = arith::ConstantOp::create(
      elseBuilder, indexType, elseBuilder.getIndexAttr(bitWidth));
  Value nValue = arith::ConstantOp::create(
      elseBuilder, elementType, elseBuilder.getIntegerAttr(elementType, 0));

  auto loop = scf::ForOp::create(
      elseBuilder, oneIndex, bitWidthIndex, oneIndex,
      // Initial values for two loop induction variables, the arg which is being
      // shifted left in each iteration, and the n value which tracks the count
      // of leading zeros.
      ValueRange{arg, nValue},
      // Callback to build the body of the for loop
      //   if (arg < 0) {
      //     continue;
      //   } else {
      //     n++;
      //     arg <<= 1;
      //   }
      [&](OpBuilder &b, Location loc, Value iv, ValueRange args) {
        Value argIter = args[0];
        Value nIter = args[1];

        Value argIsNonNegative = arith::CmpIOp::create(
            b, loc, arith::CmpIPredicate::slt, argIter, zeroValue);
        scf::IfOp ifOp = scf::IfOp::create(
            b, loc, argIsNonNegative,
            [&](OpBuilder &b, Location loc) {
              // If arg is negative, continue (effectively, break)
              scf::YieldOp::create(b, loc, ValueRange{argIter, nIter});
            },
            [&](OpBuilder &b, Location loc) {
              // Otherwise, increment n and shift arg left.
              Value nNext = arith::AddIOp::create(b, loc, nIter, oneValue);
              Value argNext = arith::ShLIOp::create(b, loc, argIter, oneValue);
              scf::YieldOp::create(b, loc, ValueRange{argNext, nNext});
            });
        scf::YieldOp::create(b, loc, ifOp.getResults());
      });
  scf::YieldOp::create(elseBuilder, loop.getResult(1));

  func::ReturnOp::create(builder, ifOp.getResult(0));
  return funcOp;
}

/// Convert ctlz into a call to a local function implementing the ctlz
/// operation.
LogicalResult CtlzOpLowering::matchAndRewrite(math::CountLeadingZerosOp op,
                                              PatternRewriter &rewriter) const {
  if (isa<VectorType>(op.getType()))
    return rewriter.notifyMatchFailure(op, "non-scalar operation");

  Type type = getElementTypeOrSelf(op.getResult().getType());
  func::FuncOp elementFunc = getFuncOpCallback(op, type);
  if (!elementFunc)
    return rewriter.notifyMatchFailure(op, [&](::mlir::Diagnostic &diag) {
      diag << "Missing software implementation for op " << op->getName()
           << " and type " << type;
    });

  rewriter.replaceOpWithNewOp<func::CallOp>(op, elementFunc, op.getOperand());
  return success();
}

namespace {
struct ConvertMathToFuncsPass
    : public impl::ConvertMathToFuncsBase<ConvertMathToFuncsPass> {
  ConvertMathToFuncsPass() = default;
  ConvertMathToFuncsPass(const ConvertMathToFuncsOptions &options)
      : impl::ConvertMathToFuncsBase<ConvertMathToFuncsPass>(options) {}

  void runOnOperation() override;

private:
  // Return true, if this FPowI operation must be converted
  // because the width of its exponent's type is greater than
  // or equal to minWidthOfFPowIExponent option value.
  bool isFPowIConvertible(math::FPowIOp op);

  // Reture true, if operation is integer type.
  bool isConvertible(Operation *op);

  // Generate outlined implementations for power operations
  // and store them in funcImpls map.
  void generateOpImplementations();

  // A map between pairs of (operation, type) deduced from operations that this
  // pass will convert, and the corresponding outlined software implementations
  // of these operations for the given type.
  DenseMap<std::pair<OperationName, Type>, func::FuncOp> funcImpls;
};
} // namespace

bool ConvertMathToFuncsPass::isFPowIConvertible(math::FPowIOp op) {
  auto expTy =
      dyn_cast<IntegerType>(getElementTypeOrSelf(op.getRhs().getType()));
  return (expTy && expTy.getWidth() >= minWidthOfFPowIExponent);
}

bool ConvertMathToFuncsPass::isConvertible(Operation *op) {
  return isa<IntegerType>(getElementTypeOrSelf(op->getResult(0).getType()));
}

void ConvertMathToFuncsPass::generateOpImplementations() {
  ModuleOp module = getOperation();

  module.walk([&](Operation *op) {
    TypeSwitch<Operation *>(op)
        .Case<math::CountLeadingZerosOp>([&](math::CountLeadingZerosOp op) {
          if (!convertCtlz || !isConvertible(op))
            return;
          Type resultType = getElementTypeOrSelf(op.getResult().getType());

          // Generate the software implementation of this operation,
          // if it has not been generated yet.
          auto key = std::pair(op->getName(), resultType);
          auto entry = funcImpls.try_emplace(key, func::FuncOp{});
          if (entry.second)
            entry.first->second = createCtlzFunc(&module, resultType);
        })
        .Case<math::IPowIOp>([&](math::IPowIOp op) {
          if (!isConvertible(op))
            return;

          Type resultType = getElementTypeOrSelf(op.getResult().getType());

          // Generate the software implementation of this operation,
          // if it has not been generated yet.
          auto key = std::pair(op->getName(), resultType);
          auto entry = funcImpls.try_emplace(key, func::FuncOp{});
          if (entry.second)
            entry.first->second = createElementIPowIFunc(&module, resultType);
        })
        .Case<math::FPowIOp>([&](math::FPowIOp op) {
          if (!isFPowIConvertible(op))
            return;

          FunctionType funcType = getElementalFuncTypeForOp(op);

          // Generate the software implementation of this operation,
          // if it has not been generated yet.
          // FPowI implementations are mapped via the FunctionType
          // created from the operation's result and operands.
          auto key = std::pair(op->getName(), funcType);
          auto entry = funcImpls.try_emplace(key, func::FuncOp{});
          if (entry.second)
            entry.first->second = createElementFPowIFunc(&module, funcType);
        });
  });
}

void ConvertMathToFuncsPass::runOnOperation() {
  ModuleOp module = getOperation();

  // Create outlined implementations for power operations.
  generateOpImplementations();

  RewritePatternSet patterns(&getContext());
  patterns.add<VecOpToScalarOp<math::IPowIOp>, VecOpToScalarOp<math::FPowIOp>,
               VecOpToScalarOp<math::CountLeadingZerosOp>>(
      patterns.getContext());

  // For the given Type Returns FuncOp stored in funcImpls map.
  auto getFuncOpByType = [&](Operation *op, Type type) -> func::FuncOp {
    auto it = funcImpls.find(std::pair(op->getName(), type));
    if (it == funcImpls.end())
      return {};

    return it->second;
  };
  patterns.add<IPowIOpLowering, FPowIOpLowering>(patterns.getContext(),
                                                 getFuncOpByType);

  if (convertCtlz)
    patterns.add<CtlzOpLowering>(patterns.getContext(), getFuncOpByType);

  ConversionTarget target(getContext());
  target.addLegalDialect<arith::ArithDialect, cf::ControlFlowDialect,
                         func::FuncDialect, scf::SCFDialect,
                         vector::VectorDialect>();

  target.addDynamicallyLegalOp<math::IPowIOp>(
      [this](math::IPowIOp op) { return !isConvertible(op); });
  if (convertCtlz) {
    target.addDynamicallyLegalOp<math::CountLeadingZerosOp>(
        [this](math::CountLeadingZerosOp op) { return !isConvertible(op); });
  }
  target.addDynamicallyLegalOp<math::FPowIOp>(
      [this](math::FPowIOp op) { return !isFPowIConvertible(op); });
  if (failed(applyPartialConversion(module, target, std::move(patterns))))
    signalPassFailure();
}