1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
|
//===- Pattern.cpp - Conversion pattern to the LLVM dialect ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinAttributes.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// ConvertToLLVMPattern
//===----------------------------------------------------------------------===//
ConvertToLLVMPattern::ConvertToLLVMPattern(
StringRef rootOpName, MLIRContext *context,
const LLVMTypeConverter &typeConverter, PatternBenefit benefit)
: ConversionPattern(typeConverter, rootOpName, benefit, context) {}
const LLVMTypeConverter *ConvertToLLVMPattern::getTypeConverter() const {
return static_cast<const LLVMTypeConverter *>(
ConversionPattern::getTypeConverter());
}
LLVM::LLVMDialect &ConvertToLLVMPattern::getDialect() const {
return *getTypeConverter()->getDialect();
}
Type ConvertToLLVMPattern::getIndexType() const {
return getTypeConverter()->getIndexType();
}
Type ConvertToLLVMPattern::getIntPtrType(unsigned addressSpace) const {
return IntegerType::get(&getTypeConverter()->getContext(),
getTypeConverter()->getPointerBitwidth(addressSpace));
}
Type ConvertToLLVMPattern::getVoidType() const {
return LLVM::LLVMVoidType::get(&getTypeConverter()->getContext());
}
Type ConvertToLLVMPattern::getPtrType(unsigned addressSpace) const {
return LLVM::LLVMPointerType::get(&getTypeConverter()->getContext(),
addressSpace);
}
Type ConvertToLLVMPattern::getVoidPtrType() const { return getPtrType(); }
Value ConvertToLLVMPattern::createIndexAttrConstant(OpBuilder &builder,
Location loc,
Type resultType,
int64_t value) {
return LLVM::ConstantOp::create(builder, loc, resultType,
builder.getIndexAttr(value));
}
Value ConvertToLLVMPattern::getStridedElementPtr(
ConversionPatternRewriter &rewriter, Location loc, MemRefType type,
Value memRefDesc, ValueRange indices,
LLVM::GEPNoWrapFlags noWrapFlags) const {
return LLVM::getStridedElementPtr(rewriter, loc, *getTypeConverter(), type,
memRefDesc, indices, noWrapFlags);
}
// Check if the MemRefType `type` is supported by the lowering. We currently
// only support memrefs with identity maps.
bool ConvertToLLVMPattern::isConvertibleAndHasIdentityMaps(
MemRefType type) const {
if (!type.getLayout().isIdentity())
return false;
return static_cast<bool>(typeConverter->convertType(type));
}
Type ConvertToLLVMPattern::getElementPtrType(MemRefType type) const {
auto addressSpace = getTypeConverter()->getMemRefAddressSpace(type);
if (failed(addressSpace))
return {};
return LLVM::LLVMPointerType::get(type.getContext(), *addressSpace);
}
void ConvertToLLVMPattern::getMemRefDescriptorSizes(
Location loc, MemRefType memRefType, ValueRange dynamicSizes,
ConversionPatternRewriter &rewriter, SmallVectorImpl<Value> &sizes,
SmallVectorImpl<Value> &strides, Value &size, bool sizeInBytes) const {
assert(isConvertibleAndHasIdentityMaps(memRefType) &&
"layout maps must have been normalized away");
assert(count(memRefType.getShape(), ShapedType::kDynamic) ==
static_cast<ssize_t>(dynamicSizes.size()) &&
"dynamicSizes size doesn't match dynamic sizes count in memref shape");
sizes.reserve(memRefType.getRank());
unsigned dynamicIndex = 0;
Type indexType = getIndexType();
for (int64_t size : memRefType.getShape()) {
sizes.push_back(
size == ShapedType::kDynamic
? dynamicSizes[dynamicIndex++]
: createIndexAttrConstant(rewriter, loc, indexType, size));
}
// Strides: iterate sizes in reverse order and multiply.
int64_t stride = 1;
Value runningStride = createIndexAttrConstant(rewriter, loc, indexType, 1);
strides.resize(memRefType.getRank());
for (auto i = memRefType.getRank(); i-- > 0;) {
strides[i] = runningStride;
int64_t staticSize = memRefType.getShape()[i];
bool useSizeAsStride = stride == 1;
if (staticSize == ShapedType::kDynamic)
stride = ShapedType::kDynamic;
if (stride != ShapedType::kDynamic)
stride *= staticSize;
if (useSizeAsStride)
runningStride = sizes[i];
else if (stride == ShapedType::kDynamic)
runningStride =
LLVM::MulOp::create(rewriter, loc, runningStride, sizes[i]);
else
runningStride = createIndexAttrConstant(rewriter, loc, indexType, stride);
}
if (sizeInBytes) {
// Buffer size in bytes.
Type elementType = typeConverter->convertType(memRefType.getElementType());
auto elementPtrType = LLVM::LLVMPointerType::get(rewriter.getContext());
Value nullPtr = LLVM::ZeroOp::create(rewriter, loc, elementPtrType);
Value gepPtr = LLVM::GEPOp::create(rewriter, loc, elementPtrType,
elementType, nullPtr, runningStride);
size = LLVM::PtrToIntOp::create(rewriter, loc, getIndexType(), gepPtr);
} else {
size = runningStride;
}
}
Value ConvertToLLVMPattern::getSizeInBytes(
Location loc, Type type, ConversionPatternRewriter &rewriter) const {
// Compute the size of an individual element. This emits the MLIR equivalent
// of the following sizeof(...) implementation in LLVM IR:
// %0 = getelementptr %elementType* null, %indexType 1
// %1 = ptrtoint %elementType* %0 to %indexType
// which is a common pattern of getting the size of a type in bytes.
Type llvmType = typeConverter->convertType(type);
auto convertedPtrType = LLVM::LLVMPointerType::get(rewriter.getContext());
auto nullPtr = LLVM::ZeroOp::create(rewriter, loc, convertedPtrType);
auto gep = LLVM::GEPOp::create(rewriter, loc, convertedPtrType, llvmType,
nullPtr, ArrayRef<LLVM::GEPArg>{1});
return LLVM::PtrToIntOp::create(rewriter, loc, getIndexType(), gep);
}
Value ConvertToLLVMPattern::getNumElements(
Location loc, MemRefType memRefType, ValueRange dynamicSizes,
ConversionPatternRewriter &rewriter) const {
assert(count(memRefType.getShape(), ShapedType::kDynamic) ==
static_cast<ssize_t>(dynamicSizes.size()) &&
"dynamicSizes size doesn't match dynamic sizes count in memref shape");
Type indexType = getIndexType();
Value numElements = memRefType.getRank() == 0
? createIndexAttrConstant(rewriter, loc, indexType, 1)
: nullptr;
unsigned dynamicIndex = 0;
// Compute the total number of memref elements.
for (int64_t staticSize : memRefType.getShape()) {
if (numElements) {
Value size =
staticSize == ShapedType::kDynamic
? dynamicSizes[dynamicIndex++]
: createIndexAttrConstant(rewriter, loc, indexType, staticSize);
numElements = LLVM::MulOp::create(rewriter, loc, numElements, size);
} else {
numElements =
staticSize == ShapedType::kDynamic
? dynamicSizes[dynamicIndex++]
: createIndexAttrConstant(rewriter, loc, indexType, staticSize);
}
}
return numElements;
}
/// Creates and populates the memref descriptor struct given all its fields.
MemRefDescriptor ConvertToLLVMPattern::createMemRefDescriptor(
Location loc, MemRefType memRefType, Value allocatedPtr, Value alignedPtr,
ArrayRef<Value> sizes, ArrayRef<Value> strides,
ConversionPatternRewriter &rewriter) const {
auto structType = typeConverter->convertType(memRefType);
auto memRefDescriptor = MemRefDescriptor::poison(rewriter, loc, structType);
// Field 1: Allocated pointer, used for malloc/free.
memRefDescriptor.setAllocatedPtr(rewriter, loc, allocatedPtr);
// Field 2: Actual aligned pointer to payload.
memRefDescriptor.setAlignedPtr(rewriter, loc, alignedPtr);
// Field 3: Offset in aligned pointer.
Type indexType = getIndexType();
memRefDescriptor.setOffset(
rewriter, loc, createIndexAttrConstant(rewriter, loc, indexType, 0));
// Fields 4: Sizes.
for (const auto &en : llvm::enumerate(sizes))
memRefDescriptor.setSize(rewriter, loc, en.index(), en.value());
// Field 5: Strides.
for (const auto &en : llvm::enumerate(strides))
memRefDescriptor.setStride(rewriter, loc, en.index(), en.value());
return memRefDescriptor;
}
LogicalResult ConvertToLLVMPattern::copyUnrankedDescriptors(
OpBuilder &builder, Location loc, TypeRange origTypes,
SmallVectorImpl<Value> &operands, bool toDynamic) const {
assert(origTypes.size() == operands.size() &&
"expected as may original types as operands");
// Find operands of unranked memref type and store them.
SmallVector<UnrankedMemRefDescriptor> unrankedMemrefs;
SmallVector<unsigned> unrankedAddressSpaces;
for (unsigned i = 0, e = operands.size(); i < e; ++i) {
if (auto memRefType = dyn_cast<UnrankedMemRefType>(origTypes[i])) {
unrankedMemrefs.emplace_back(operands[i]);
FailureOr<unsigned> addressSpace =
getTypeConverter()->getMemRefAddressSpace(memRefType);
if (failed(addressSpace))
return failure();
unrankedAddressSpaces.emplace_back(*addressSpace);
}
}
if (unrankedMemrefs.empty())
return success();
// Compute allocation sizes.
SmallVector<Value> sizes;
UnrankedMemRefDescriptor::computeSizes(builder, loc, *getTypeConverter(),
unrankedMemrefs, unrankedAddressSpaces,
sizes);
// Get frequently used types.
Type indexType = getTypeConverter()->getIndexType();
// Find the malloc and free, or declare them if necessary.
auto module = builder.getInsertionPoint()->getParentOfType<ModuleOp>();
FailureOr<LLVM::LLVMFuncOp> freeFunc, mallocFunc;
if (toDynamic) {
mallocFunc = LLVM::lookupOrCreateMallocFn(builder, module, indexType);
if (failed(mallocFunc))
return failure();
}
if (!toDynamic) {
freeFunc = LLVM::lookupOrCreateFreeFn(builder, module);
if (failed(freeFunc))
return failure();
}
unsigned unrankedMemrefPos = 0;
for (unsigned i = 0, e = operands.size(); i < e; ++i) {
Type type = origTypes[i];
if (!isa<UnrankedMemRefType>(type))
continue;
Value allocationSize = sizes[unrankedMemrefPos++];
UnrankedMemRefDescriptor desc(operands[i]);
// Allocate memory, copy, and free the source if necessary.
Value memory =
toDynamic ? LLVM::CallOp::create(builder, loc, mallocFunc.value(),
allocationSize)
.getResult()
: LLVM::AllocaOp::create(builder, loc, getPtrType(),
IntegerType::get(getContext(), 8),
allocationSize,
/*alignment=*/0);
Value source = desc.memRefDescPtr(builder, loc);
LLVM::MemcpyOp::create(builder, loc, memory, source, allocationSize, false);
if (!toDynamic)
LLVM::CallOp::create(builder, loc, freeFunc.value(), source);
// Create a new descriptor. The same descriptor can be returned multiple
// times, attempting to modify its pointer can lead to memory leaks
// (allocated twice and overwritten) or double frees (the caller does not
// know if the descriptor points to the same memory).
Type descriptorType = getTypeConverter()->convertType(type);
if (!descriptorType)
return failure();
auto updatedDesc =
UnrankedMemRefDescriptor::poison(builder, loc, descriptorType);
Value rank = desc.rank(builder, loc);
updatedDesc.setRank(builder, loc, rank);
updatedDesc.setMemRefDescPtr(builder, loc, memory);
operands[i] = updatedDesc;
}
return success();
}
//===----------------------------------------------------------------------===//
// Detail methods
//===----------------------------------------------------------------------===//
void LLVM::detail::setNativeProperties(Operation *op,
IntegerOverflowFlags overflowFlags) {
if (auto iface = dyn_cast<IntegerOverflowFlagsInterface>(op))
iface.setOverflowFlags(overflowFlags);
}
/// Replaces the given operation "op" with a new operation of type "targetOp"
/// and given operands.
LogicalResult LLVM::detail::oneToOneRewrite(
Operation *op, StringRef targetOp, ValueRange operands,
ArrayRef<NamedAttribute> targetAttrs,
const LLVMTypeConverter &typeConverter, ConversionPatternRewriter &rewriter,
IntegerOverflowFlags overflowFlags) {
unsigned numResults = op->getNumResults();
SmallVector<Type> resultTypes;
if (numResults != 0) {
resultTypes.push_back(
typeConverter.packOperationResults(op->getResultTypes()));
if (!resultTypes.back())
return failure();
}
// Create the operation through state since we don't know its C++ type.
Operation *newOp =
rewriter.create(op->getLoc(), rewriter.getStringAttr(targetOp), operands,
resultTypes, targetAttrs);
setNativeProperties(newOp, overflowFlags);
// If the operation produced 0 or 1 result, return them immediately.
if (numResults == 0)
return rewriter.eraseOp(op), success();
if (numResults == 1)
return rewriter.replaceOp(op, newOp->getResult(0)), success();
// Otherwise, it had been converted to an operation producing a structure.
// Extract individual results from the structure and return them as list.
SmallVector<Value, 4> results;
results.reserve(numResults);
for (unsigned i = 0; i < numResults; ++i) {
results.push_back(LLVM::ExtractValueOp::create(rewriter, op->getLoc(),
newOp->getResult(0), i));
}
rewriter.replaceOp(op, results);
return success();
}
LogicalResult LLVM::detail::intrinsicRewrite(
Operation *op, StringRef intrinsic, ValueRange operands,
const LLVMTypeConverter &typeConverter, RewriterBase &rewriter) {
auto loc = op->getLoc();
if (!llvm::all_of(operands, [](Value value) {
return LLVM::isCompatibleType(value.getType());
}))
return failure();
unsigned numResults = op->getNumResults();
Type resType;
if (numResults != 0)
resType = typeConverter.packOperationResults(op->getResultTypes());
auto callIntrOp = LLVM::CallIntrinsicOp::create(
rewriter, loc, resType, rewriter.getStringAttr(intrinsic), operands);
// Propagate attributes.
callIntrOp->setAttrs(op->getAttrDictionary());
if (numResults <= 1) {
// Directly replace the original op.
rewriter.replaceOp(op, callIntrOp);
return success();
}
// Extract individual results from packed structure and use them as
// replacements.
SmallVector<Value, 4> results;
results.reserve(numResults);
Value intrRes = callIntrOp.getResults();
for (unsigned i = 0; i < numResults; ++i)
results.push_back(LLVM::ExtractValueOp::create(rewriter, loc, intrRes, i));
rewriter.replaceOp(op, results);
return success();
}
static unsigned getBitWidth(Type type) {
if (type.isIntOrFloat())
return type.getIntOrFloatBitWidth();
auto vec = cast<VectorType>(type);
assert(!vec.isScalable() && "scalable vectors are not supported");
return vec.getNumElements() * getBitWidth(vec.getElementType());
}
static Value createI32Constant(OpBuilder &builder, Location loc,
int32_t value) {
Type i32 = builder.getI32Type();
return LLVM::ConstantOp::create(builder, loc, i32, value);
}
SmallVector<Value> mlir::LLVM::decomposeValue(OpBuilder &builder, Location loc,
Value src, Type dstType) {
Type srcType = src.getType();
if (srcType == dstType)
return {src};
unsigned srcBitWidth = getBitWidth(srcType);
unsigned dstBitWidth = getBitWidth(dstType);
if (srcBitWidth == dstBitWidth) {
Value cast = LLVM::BitcastOp::create(builder, loc, dstType, src);
return {cast};
}
if (dstBitWidth > srcBitWidth) {
auto smallerInt = builder.getIntegerType(srcBitWidth);
if (srcType != smallerInt)
src = LLVM::BitcastOp::create(builder, loc, smallerInt, src);
auto largerInt = builder.getIntegerType(dstBitWidth);
Value res = LLVM::ZExtOp::create(builder, loc, largerInt, src);
return {res};
}
assert(srcBitWidth % dstBitWidth == 0 &&
"src bit width must be a multiple of dst bit width");
int64_t numElements = srcBitWidth / dstBitWidth;
auto vecType = VectorType::get(numElements, dstType);
src = LLVM::BitcastOp::create(builder, loc, vecType, src);
SmallVector<Value> res;
for (auto i : llvm::seq(numElements)) {
Value idx = createI32Constant(builder, loc, i);
Value elem = LLVM::ExtractElementOp::create(builder, loc, src, idx);
res.emplace_back(elem);
}
return res;
}
Value mlir::LLVM::composeValue(OpBuilder &builder, Location loc, ValueRange src,
Type dstType) {
assert(!src.empty() && "src range must not be empty");
if (src.size() == 1) {
Value res = src.front();
if (res.getType() == dstType)
return res;
unsigned srcBitWidth = getBitWidth(res.getType());
unsigned dstBitWidth = getBitWidth(dstType);
if (dstBitWidth < srcBitWidth) {
auto largerInt = builder.getIntegerType(srcBitWidth);
if (res.getType() != largerInt)
res = LLVM::BitcastOp::create(builder, loc, largerInt, res);
auto smallerInt = builder.getIntegerType(dstBitWidth);
res = LLVM::TruncOp::create(builder, loc, smallerInt, res);
}
if (res.getType() != dstType)
res = LLVM::BitcastOp::create(builder, loc, dstType, res);
return res;
}
int64_t numElements = src.size();
auto srcType = VectorType::get(numElements, src.front().getType());
Value res = LLVM::PoisonOp::create(builder, loc, srcType);
for (auto &&[i, elem] : llvm::enumerate(src)) {
Value idx = createI32Constant(builder, loc, i);
res = LLVM::InsertElementOp::create(builder, loc, srcType, res, elem, idx);
}
if (res.getType() != dstType)
res = LLVM::BitcastOp::create(builder, loc, dstType, res);
return res;
}
Value mlir::LLVM::getStridedElementPtr(OpBuilder &builder, Location loc,
const LLVMTypeConverter &converter,
MemRefType type, Value memRefDesc,
ValueRange indices,
LLVM::GEPNoWrapFlags noWrapFlags) {
auto [strides, offset] = type.getStridesAndOffset();
MemRefDescriptor memRefDescriptor(memRefDesc);
// Use a canonical representation of the start address so that later
// optimizations have a longer sequence of instructions to CSE.
// If we don't do that we would sprinkle the memref.offset in various
// position of the different address computations.
Value base = memRefDescriptor.bufferPtr(builder, loc, converter, type);
LLVM::IntegerOverflowFlags intOverflowFlags =
LLVM::IntegerOverflowFlags::none;
if (LLVM::bitEnumContainsAny(noWrapFlags, LLVM::GEPNoWrapFlags::nusw)) {
intOverflowFlags = intOverflowFlags | LLVM::IntegerOverflowFlags::nsw;
}
if (LLVM::bitEnumContainsAny(noWrapFlags, LLVM::GEPNoWrapFlags::nuw)) {
intOverflowFlags = intOverflowFlags | LLVM::IntegerOverflowFlags::nuw;
}
Type indexType = converter.getIndexType();
Value index;
for (int i = 0, e = indices.size(); i < e; ++i) {
Value increment = indices[i];
if (strides[i] != 1) { // Skip if stride is 1.
Value stride =
ShapedType::isDynamic(strides[i])
? memRefDescriptor.stride(builder, loc, i)
: LLVM::ConstantOp::create(builder, loc, indexType,
builder.getIndexAttr(strides[i]));
increment = LLVM::MulOp::create(builder, loc, increment, stride,
intOverflowFlags);
}
index = index ? LLVM::AddOp::create(builder, loc, index, increment,
intOverflowFlags)
: increment;
}
Type elementPtrType = memRefDescriptor.getElementPtrType();
return index
? LLVM::GEPOp::create(builder, loc, elementPtrType,
converter.convertType(type.getElementType()),
base, index, noWrapFlags)
: base;
}
|