1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
|
//===- GPUToLLVMSPV.cpp - Convert GPU operations to LLVM dialect ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/GPUToLLVMSPV/GPUToLLVMSPVPass.h"
#include "../GPUCommon/GPUOpsLowering.h"
#include "mlir/Conversion/GPUCommon/AttrToSPIRVConverter.h"
#include "mlir/Conversion/GPUCommon/GPUCommonPass.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/LoweringOptions.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/LLVMCommon/TypeConverter.h"
#include "mlir/Conversion/SPIRVCommon/AttrToLLVMConverter.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMAttrs.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVEnums.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/SymbolTable.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/FormatVariadic.h"
#define DEBUG_TYPE "gpu-to-llvm-spv"
using namespace mlir;
namespace mlir {
#define GEN_PASS_DEF_CONVERTGPUOPSTOLLVMSPVOPS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//
static LLVM::LLVMFuncOp lookupOrCreateSPIRVFn(Operation *symbolTable,
StringRef name,
ArrayRef<Type> paramTypes,
Type resultType, bool isMemNone,
bool isConvergent) {
auto func = dyn_cast_or_null<LLVM::LLVMFuncOp>(
SymbolTable::lookupSymbolIn(symbolTable, name));
if (!func) {
OpBuilder b(symbolTable->getRegion(0));
func = LLVM::LLVMFuncOp::create(
b, symbolTable->getLoc(), name,
LLVM::LLVMFunctionType::get(resultType, paramTypes));
func.setCConv(LLVM::cconv::CConv::SPIR_FUNC);
func.setNoUnwind(true);
func.setWillReturn(true);
if (isMemNone) {
// no externally observable effects
constexpr auto noModRef = mlir::LLVM::ModRefInfo::NoModRef;
auto memAttr = b.getAttr<LLVM::MemoryEffectsAttr>(
/*other=*/noModRef,
/*argMem=*/noModRef, /*inaccessibleMem=*/noModRef);
func.setMemoryEffectsAttr(memAttr);
}
func.setConvergent(isConvergent);
}
return func;
}
static LLVM::CallOp createSPIRVBuiltinCall(Location loc,
ConversionPatternRewriter &rewriter,
LLVM::LLVMFuncOp func,
ValueRange args) {
auto call = LLVM::CallOp::create(rewriter, loc, func, args);
call.setCConv(func.getCConv());
call.setConvergentAttr(func.getConvergentAttr());
call.setNoUnwindAttr(func.getNoUnwindAttr());
call.setWillReturnAttr(func.getWillReturnAttr());
call.setMemoryEffectsAttr(func.getMemoryEffectsAttr());
return call;
}
namespace {
//===----------------------------------------------------------------------===//
// Barriers
//===----------------------------------------------------------------------===//
/// Replace `gpu.barrier` with an `llvm.call` to `barrier` with
/// `CLK_LOCAL_MEM_FENCE` argument, indicating work-group memory scope:
/// ```
/// // gpu.barrier
/// %c1 = llvm.mlir.constant(1: i32) : i32
/// llvm.call spir_funccc @_Z7barrierj(%c1) : (i32) -> ()
/// ```
struct GPUBarrierConversion final : ConvertOpToLLVMPattern<gpu::BarrierOp> {
using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(gpu::BarrierOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
constexpr StringLiteral funcName = "_Z7barrierj";
Operation *moduleOp = op->getParentWithTrait<OpTrait::SymbolTable>();
assert(moduleOp && "Expecting module");
Type flagTy = rewriter.getI32Type();
Type voidTy = rewriter.getType<LLVM::LLVMVoidType>();
LLVM::LLVMFuncOp func =
lookupOrCreateSPIRVFn(moduleOp, funcName, flagTy, voidTy,
/*isMemNone=*/false, /*isConvergent=*/true);
// Value used by SPIR-V backend to represent `CLK_LOCAL_MEM_FENCE`.
// See `llvm/lib/Target/SPIRV/SPIRVBuiltins.td`.
constexpr int64_t localMemFenceFlag = 1;
Location loc = op->getLoc();
Value flag =
LLVM::ConstantOp::create(rewriter, loc, flagTy, localMemFenceFlag);
rewriter.replaceOp(op, createSPIRVBuiltinCall(loc, rewriter, func, flag));
return success();
}
};
//===----------------------------------------------------------------------===//
// SPIR-V Builtins
//===----------------------------------------------------------------------===//
/// Replace `gpu.*` with an `llvm.call` to the corresponding SPIR-V builtin with
/// a constant argument for the `dimension` attribute. Return type will depend
/// on index width option:
/// ```
/// // %thread_id_y = gpu.thread_id y
/// %c1 = llvm.mlir.constant(1: i32) : i32
/// %0 = llvm.call spir_funccc @_Z12get_local_idj(%c1) : (i32) -> i64
/// ```
struct LaunchConfigConversion : ConvertToLLVMPattern {
LaunchConfigConversion(StringRef funcName, StringRef rootOpName,
MLIRContext *context,
const LLVMTypeConverter &typeConverter,
PatternBenefit benefit)
: ConvertToLLVMPattern(rootOpName, context, typeConverter, benefit),
funcName(funcName) {}
virtual gpu::Dimension getDimension(Operation *op) const = 0;
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
Operation *moduleOp = op->getParentWithTrait<OpTrait::SymbolTable>();
assert(moduleOp && "Expecting module");
Type dimTy = rewriter.getI32Type();
Type indexTy = getTypeConverter()->getIndexType();
LLVM::LLVMFuncOp func = lookupOrCreateSPIRVFn(moduleOp, funcName, dimTy,
indexTy, /*isMemNone=*/true,
/*isConvergent=*/false);
Location loc = op->getLoc();
gpu::Dimension dim = getDimension(op);
Value dimVal = LLVM::ConstantOp::create(rewriter, loc, dimTy,
static_cast<int64_t>(dim));
rewriter.replaceOp(op, createSPIRVBuiltinCall(loc, rewriter, func, dimVal));
return success();
}
StringRef funcName;
};
template <typename SourceOp>
struct LaunchConfigOpConversion final : LaunchConfigConversion {
static StringRef getFuncName();
explicit LaunchConfigOpConversion(const LLVMTypeConverter &typeConverter,
PatternBenefit benefit = 1)
: LaunchConfigConversion(getFuncName(), SourceOp::getOperationName(),
&typeConverter.getContext(), typeConverter,
benefit) {}
gpu::Dimension getDimension(Operation *op) const final {
return cast<SourceOp>(op).getDimension();
}
};
template <>
StringRef LaunchConfigOpConversion<gpu::BlockIdOp>::getFuncName() {
return "_Z12get_group_idj";
}
template <>
StringRef LaunchConfigOpConversion<gpu::GridDimOp>::getFuncName() {
return "_Z14get_num_groupsj";
}
template <>
StringRef LaunchConfigOpConversion<gpu::BlockDimOp>::getFuncName() {
return "_Z14get_local_sizej";
}
template <>
StringRef LaunchConfigOpConversion<gpu::ThreadIdOp>::getFuncName() {
return "_Z12get_local_idj";
}
template <>
StringRef LaunchConfigOpConversion<gpu::GlobalIdOp>::getFuncName() {
return "_Z13get_global_idj";
}
//===----------------------------------------------------------------------===//
// Shuffles
//===----------------------------------------------------------------------===//
/// Replace `gpu.shuffle` with an `llvm.call` to the corresponding SPIR-V
/// builtin for `shuffleResult`, keeping `value` and `offset` arguments, and a
/// `true` constant for the `valid` result type. Conversion will only take place
/// if `width` is constant and equal to the `subgroup` pass option:
/// ```
/// // %0 = gpu.shuffle idx %value, %offset, %width : f64
/// %0 = llvm.call spir_funccc @_Z17sub_group_shuffledj(%value, %offset)
/// : (f64, i32) -> f64
/// ```
struct GPUShuffleConversion final : ConvertOpToLLVMPattern<gpu::ShuffleOp> {
using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
static StringRef getBaseName(gpu::ShuffleMode mode) {
switch (mode) {
case gpu::ShuffleMode::IDX:
return "sub_group_shuffle";
case gpu::ShuffleMode::XOR:
return "sub_group_shuffle_xor";
case gpu::ShuffleMode::UP:
return "sub_group_shuffle_up";
case gpu::ShuffleMode::DOWN:
return "sub_group_shuffle_down";
}
llvm_unreachable("Unhandled shuffle mode");
}
static std::optional<StringRef> getTypeMangling(Type type) {
return TypeSwitch<Type, std::optional<StringRef>>(type)
.Case<Float16Type>([](auto) { return "Dhj"; })
.Case<Float32Type>([](auto) { return "fj"; })
.Case<Float64Type>([](auto) { return "dj"; })
.Case<IntegerType>([](auto intTy) -> std::optional<StringRef> {
switch (intTy.getWidth()) {
case 8:
return "cj";
case 16:
return "sj";
case 32:
return "ij";
case 64:
return "lj";
}
return std::nullopt;
})
.Default([](auto) { return std::nullopt; });
}
static std::optional<std::string> getFuncName(gpu::ShuffleMode mode,
Type type) {
StringRef baseName = getBaseName(mode);
std::optional<StringRef> typeMangling = getTypeMangling(type);
if (!typeMangling)
return std::nullopt;
return llvm::formatv("_Z{}{}{}", baseName.size(), baseName,
typeMangling.value());
}
/// Get the subgroup size from the target or return a default.
static std::optional<int> getSubgroupSize(Operation *op) {
auto parentFunc = op->getParentOfType<LLVM::LLVMFuncOp>();
if (!parentFunc)
return std::nullopt;
return parentFunc.getIntelReqdSubGroupSize();
}
static bool hasValidWidth(gpu::ShuffleOp op) {
llvm::APInt val;
Value width = op.getWidth();
return matchPattern(width, m_ConstantInt(&val)) &&
val == getSubgroupSize(op);
}
static Value bitcastOrExtBeforeShuffle(Value oldVal, Location loc,
ConversionPatternRewriter &rewriter) {
return TypeSwitch<Type, Value>(oldVal.getType())
.Case([&](BFloat16Type) {
return LLVM::BitcastOp::create(rewriter, loc, rewriter.getI16Type(),
oldVal);
})
.Case([&](IntegerType intTy) -> Value {
if (intTy.getWidth() == 1)
return LLVM::ZExtOp::create(rewriter, loc, rewriter.getI8Type(),
oldVal);
return oldVal;
})
.Default(oldVal);
}
static Value bitcastOrTruncAfterShuffle(Value oldVal, Type newTy,
Location loc,
ConversionPatternRewriter &rewriter) {
return TypeSwitch<Type, Value>(newTy)
.Case([&](BFloat16Type) {
return LLVM::BitcastOp::create(rewriter, loc, newTy, oldVal);
})
.Case([&](IntegerType intTy) -> Value {
if (intTy.getWidth() == 1)
return LLVM::TruncOp::create(rewriter, loc, newTy, oldVal);
return oldVal;
})
.Default(oldVal);
}
LogicalResult
matchAndRewrite(gpu::ShuffleOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
if (!hasValidWidth(op))
return rewriter.notifyMatchFailure(
op, "shuffle width and subgroup size mismatch");
Location loc = op->getLoc();
Value inValue =
bitcastOrExtBeforeShuffle(adaptor.getValue(), loc, rewriter);
std::optional<std::string> funcName =
getFuncName(op.getMode(), inValue.getType());
if (!funcName)
return rewriter.notifyMatchFailure(op, "unsupported value type");
Operation *moduleOp = op->getParentWithTrait<OpTrait::SymbolTable>();
assert(moduleOp && "Expecting module");
Type valueType = inValue.getType();
Type offsetType = adaptor.getOffset().getType();
Type resultType = valueType;
LLVM::LLVMFuncOp func = lookupOrCreateSPIRVFn(
moduleOp, funcName.value(), {valueType, offsetType}, resultType,
/*isMemNone=*/false, /*isConvergent=*/true);
std::array<Value, 2> args{inValue, adaptor.getOffset()};
Value result =
createSPIRVBuiltinCall(loc, rewriter, func, args).getResult();
Value resultOrConversion =
bitcastOrTruncAfterShuffle(result, op.getType(0), loc, rewriter);
Value trueVal =
LLVM::ConstantOp::create(rewriter, loc, rewriter.getI1Type(), true);
rewriter.replaceOp(op, {resultOrConversion, trueVal});
return success();
}
};
class MemorySpaceToOpenCLMemorySpaceConverter final : public TypeConverter {
public:
MemorySpaceToOpenCLMemorySpaceConverter(MLIRContext *ctx) {
addConversion([](Type t) { return t; });
addConversion([ctx](BaseMemRefType memRefType) -> std::optional<Type> {
// Attach global addr space attribute to memrefs with no addr space attr
Attribute memSpaceAttr = memRefType.getMemorySpace();
if (memSpaceAttr)
return std::nullopt;
unsigned globalAddrspace = storageClassToAddressSpace(
spirv::ClientAPI::OpenCL, spirv::StorageClass::CrossWorkgroup);
Attribute addrSpaceAttr =
IntegerAttr::get(IntegerType::get(ctx, 64), globalAddrspace);
if (auto rankedType = dyn_cast<MemRefType>(memRefType)) {
return MemRefType::get(memRefType.getShape(),
memRefType.getElementType(),
rankedType.getLayout(), addrSpaceAttr);
}
return UnrankedMemRefType::get(memRefType.getElementType(),
addrSpaceAttr);
});
addConversion([this](FunctionType type) {
auto inputs = llvm::map_to_vector(
type.getInputs(), [this](Type ty) { return convertType(ty); });
auto results = llvm::map_to_vector(
type.getResults(), [this](Type ty) { return convertType(ty); });
return FunctionType::get(type.getContext(), inputs, results);
});
}
};
//===----------------------------------------------------------------------===//
// Subgroup query ops.
//===----------------------------------------------------------------------===//
template <typename SubgroupOp>
struct GPUSubgroupOpConversion final : ConvertOpToLLVMPattern<SubgroupOp> {
using ConvertOpToLLVMPattern<SubgroupOp>::ConvertOpToLLVMPattern;
using ConvertToLLVMPattern::getTypeConverter;
LogicalResult
matchAndRewrite(SubgroupOp op, typename SubgroupOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
constexpr StringRef funcName = [] {
if constexpr (std::is_same_v<SubgroupOp, gpu::SubgroupIdOp>) {
return "_Z16get_sub_group_id";
} else if constexpr (std::is_same_v<SubgroupOp, gpu::LaneIdOp>) {
return "_Z22get_sub_group_local_id";
} else if constexpr (std::is_same_v<SubgroupOp, gpu::NumSubgroupsOp>) {
return "_Z18get_num_sub_groups";
} else if constexpr (std::is_same_v<SubgroupOp, gpu::SubgroupSizeOp>) {
return "_Z18get_sub_group_size";
}
}();
Operation *moduleOp =
op->template getParentWithTrait<OpTrait::SymbolTable>();
Type resultTy = rewriter.getI32Type();
LLVM::LLVMFuncOp func =
lookupOrCreateSPIRVFn(moduleOp, funcName, {}, resultTy,
/*isMemNone=*/false, /*isConvergent=*/false);
Location loc = op->getLoc();
Value result = createSPIRVBuiltinCall(loc, rewriter, func, {}).getResult();
Type indexTy = getTypeConverter()->getIndexType();
if (resultTy != indexTy) {
if (indexTy.getIntOrFloatBitWidth() < resultTy.getIntOrFloatBitWidth()) {
return failure();
}
result = LLVM::ZExtOp::create(rewriter, loc, indexTy, result);
}
rewriter.replaceOp(op, result);
return success();
}
};
//===----------------------------------------------------------------------===//
// GPU To LLVM-SPV Pass.
//===----------------------------------------------------------------------===//
struct GPUToLLVMSPVConversionPass final
: impl::ConvertGpuOpsToLLVMSPVOpsBase<GPUToLLVMSPVConversionPass> {
using Base::Base;
void runOnOperation() final {
MLIRContext *context = &getContext();
RewritePatternSet patterns(context);
LowerToLLVMOptions options(context);
options.overrideIndexBitwidth(this->use64bitIndex ? 64 : 32);
LLVMTypeConverter converter(context, options);
LLVMConversionTarget target(*context);
// Force OpenCL address spaces when they are not present
{
MemorySpaceToOpenCLMemorySpaceConverter converter(context);
AttrTypeReplacer replacer;
replacer.addReplacement([&converter](BaseMemRefType origType)
-> std::optional<BaseMemRefType> {
return converter.convertType<BaseMemRefType>(origType);
});
replacer.recursivelyReplaceElementsIn(getOperation(),
/*replaceAttrs=*/true,
/*replaceLocs=*/false,
/*replaceTypes=*/true);
}
target.addIllegalOp<gpu::BarrierOp, gpu::BlockDimOp, gpu::BlockIdOp,
gpu::GPUFuncOp, gpu::GlobalIdOp, gpu::GridDimOp,
gpu::LaneIdOp, gpu::NumSubgroupsOp, gpu::ReturnOp,
gpu::ShuffleOp, gpu::SubgroupIdOp, gpu::SubgroupSizeOp,
gpu::ThreadIdOp>();
populateGpuToLLVMSPVConversionPatterns(converter, patterns);
populateGpuMemorySpaceAttributeConversions(converter);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// GPU To LLVM-SPV Patterns.
//===----------------------------------------------------------------------===//
namespace mlir {
namespace {
static unsigned
gpuAddressSpaceToOCLAddressSpace(gpu::AddressSpace addressSpace) {
constexpr spirv::ClientAPI clientAPI = spirv::ClientAPI::OpenCL;
return storageClassToAddressSpace(clientAPI,
addressSpaceToStorageClass(addressSpace));
}
} // namespace
void populateGpuToLLVMSPVConversionPatterns(
const LLVMTypeConverter &typeConverter, RewritePatternSet &patterns) {
patterns.add<GPUBarrierConversion, GPUReturnOpLowering, GPUShuffleConversion,
GPUSubgroupOpConversion<gpu::LaneIdOp>,
GPUSubgroupOpConversion<gpu::NumSubgroupsOp>,
GPUSubgroupOpConversion<gpu::SubgroupIdOp>,
GPUSubgroupOpConversion<gpu::SubgroupSizeOp>,
LaunchConfigOpConversion<gpu::BlockDimOp>,
LaunchConfigOpConversion<gpu::BlockIdOp>,
LaunchConfigOpConversion<gpu::GlobalIdOp>,
LaunchConfigOpConversion<gpu::GridDimOp>,
LaunchConfigOpConversion<gpu::ThreadIdOp>>(typeConverter);
MLIRContext *context = &typeConverter.getContext();
unsigned privateAddressSpace =
gpuAddressSpaceToOCLAddressSpace(gpu::AddressSpace::Private);
unsigned localAddressSpace =
gpuAddressSpaceToOCLAddressSpace(gpu::AddressSpace::Workgroup);
OperationName llvmFuncOpName(LLVM::LLVMFuncOp::getOperationName(), context);
StringAttr kernelBlockSizeAttributeName =
LLVM::LLVMFuncOp::getReqdWorkGroupSizeAttrName(llvmFuncOpName);
patterns.add<GPUFuncOpLowering>(
typeConverter,
GPUFuncOpLoweringOptions{
privateAddressSpace, localAddressSpace,
/*kernelAttributeName=*/{}, kernelBlockSizeAttributeName,
LLVM::CConv::SPIR_KERNEL, LLVM::CConv::SPIR_FUNC,
/*encodeWorkgroupAttributionsAsArguments=*/true});
}
void populateGpuMemorySpaceAttributeConversions(TypeConverter &typeConverter) {
populateGpuMemorySpaceAttributeConversions(typeConverter,
gpuAddressSpaceToOCLAddressSpace);
}
} // namespace mlir
|