aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Conversion/GPUCommon/GPUToLLVMConversion.cpp
blob: 3cfbd898e49e22e8d20d3ce0acf18d753beb487b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
//===- ConvertLaunchFuncToGpuRuntimeCalls.cpp - MLIR GPU lowering passes --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to convert gpu.launch_func op into a sequence of
// GPU runtime calls. As most of GPU runtimes does not have a stable published
// ABI, this pass uses a slim runtime layer that builds on top of the public
// API from GPU runtime headers.
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/GPUCommon/GPUCommonPass.h"

#include "mlir/Conversion/ArithToLLVM/ArithToLLVM.h"
#include "mlir/Conversion/AsyncToLLVM/AsyncToLLVM.h"
#include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h"
#include "mlir/Conversion/ConvertToLLVM/ToLLVMInterface.h"
#include "mlir/Conversion/ConvertToLLVM/ToLLVMPass.h"
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h"
#include "mlir/Conversion/GPUCommon/GPUToLLVM.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h"
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
#include "mlir/Dialect/Async/IR/Async.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/Transforms/Passes.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"

#include "llvm/ADT/STLExtras.h"

#define DEBUG_TYPE "gpu-to-llvm"

namespace mlir {
#define GEN_PASS_DEF_GPUTOLLVMCONVERSIONPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir

using namespace mlir;

namespace {
class GpuToLLVMConversionPass
    : public impl::GpuToLLVMConversionPassBase<GpuToLLVMConversionPass> {
public:
  using Base::Base;
  void getDependentDialects(DialectRegistry &registry) const final {
    Base::getDependentDialects(registry);
    registerConvertToLLVMDependentDialectLoading(registry);
  }
  // Run the dialect converter on the module.
  void runOnOperation() override;
};

template <typename OpTy>
class ConvertOpToGpuRuntimeCallPattern : public ConvertOpToLLVMPattern<OpTy> {
public:
  explicit ConvertOpToGpuRuntimeCallPattern(
      const LLVMTypeConverter &typeConverter)
      : ConvertOpToLLVMPattern<OpTy>(typeConverter) {}

protected:
  Value getNumElements(ConversionPatternRewriter &rewriter, Location loc,
                       MemRefType type, MemRefDescriptor desc) const {
    Type indexType = ConvertToLLVMPattern::getIndexType();
    if (type.hasStaticShape())
      return ConvertToLLVMPattern::createIndexAttrConstant(
          rewriter, loc, indexType, type.getNumElements());
    // Compute the number of elements by multiplying all the dim sizes.
    uint64_t rank = type.getRank();
    Value numElements = desc.size(rewriter, loc, /*pos=*/0);
    for (unsigned i = 1; i < rank; i++)
      numElements = LLVM::MulOp::create(rewriter, loc, numElements,
                                        desc.size(rewriter, loc, /*pos=*/i));
    return numElements;
  }

  MLIRContext *context = &this->getTypeConverter()->getContext();

  Type llvmVoidType = LLVM::LLVMVoidType::get(context);
  LLVM::LLVMPointerType llvmPointerType = LLVM::LLVMPointerType::get(context);
  Type llvmInt8Type = IntegerType::get(context, 8);
  Type llvmInt16Type = IntegerType::get(context, 16);
  Type llvmInt32Type = IntegerType::get(context, 32);
  Type llvmInt64Type = IntegerType::get(context, 64);
  Type llvmFloat32Type = Float32Type::get(context);
  Type llvmIntPtrType = IntegerType::get(
      context, this->getTypeConverter()->getPointerBitwidth(0));

  FunctionCallBuilder streamCreateCallBuilder = {
      "mgpuStreamCreate", llvmPointerType /* void *stream */, {}};
  FunctionCallBuilder streamDestroyCallBuilder = {
      "mgpuStreamDestroy", llvmVoidType, {llvmPointerType /* void *stream */}};
  FunctionCallBuilder streamSynchronizeCallBuilder = {
      "mgpuStreamSynchronize",
      llvmVoidType,
      {llvmPointerType /* void *stream */}};
  FunctionCallBuilder streamWaitEventCallBuilder = {
      "mgpuStreamWaitEvent",
      llvmVoidType,
      {llvmPointerType /* void *stream */, llvmPointerType /* void *event */}};
  FunctionCallBuilder eventCreateCallBuilder = {
      "mgpuEventCreate", llvmPointerType /* void *event */, {}};
  FunctionCallBuilder eventDestroyCallBuilder = {
      "mgpuEventDestroy", llvmVoidType, {llvmPointerType /* void *event */}};
  FunctionCallBuilder eventSynchronizeCallBuilder = {
      "mgpuEventSynchronize",
      llvmVoidType,
      {llvmPointerType /* void *event */}};
  FunctionCallBuilder eventRecordCallBuilder = {
      "mgpuEventRecord",
      llvmVoidType,
      {llvmPointerType /* void *event */, llvmPointerType /* void *stream */}};
  FunctionCallBuilder hostRegisterCallBuilder = {
      "mgpuMemHostRegisterMemRef",
      llvmVoidType,
      {llvmIntPtrType /* intptr_t rank */,
       llvmPointerType /* void *memrefDesc */,
       llvmIntPtrType /* intptr_t elementSizeBytes */}};
  FunctionCallBuilder hostUnregisterCallBuilder = {
      "mgpuMemHostUnregisterMemRef",
      llvmVoidType,
      {llvmIntPtrType /* intptr_t rank */,
       llvmPointerType /* void *memrefDesc */,
       llvmIntPtrType /* intptr_t elementSizeBytes */}};
  FunctionCallBuilder allocCallBuilder = {
      "mgpuMemAlloc",
      llvmPointerType /* void * */,
      {llvmIntPtrType /* intptr_t sizeBytes */,
       llvmPointerType /* void *stream */,
       llvmInt8Type /* bool isHostShared */}};
  FunctionCallBuilder deallocCallBuilder = {
      "mgpuMemFree",
      llvmVoidType,
      {llvmPointerType /* void *ptr */, llvmPointerType /* void *stream */}};
  FunctionCallBuilder memcpyCallBuilder = {
      "mgpuMemcpy",
      llvmVoidType,
      {llvmPointerType /* void *dst */, llvmPointerType /* void *src */,
       llvmIntPtrType /* intptr_t sizeBytes */,
       llvmPointerType /* void *stream */}};
  FunctionCallBuilder memset16CallBuilder = {
      "mgpuMemset16",
      llvmVoidType,
      {llvmPointerType /* void *dst */,
       llvmInt16Type /* unsigned short value */,
       llvmIntPtrType /* intptr_t sizeBytes */,
       llvmPointerType /* void *stream */}};
  FunctionCallBuilder memset32CallBuilder = {
      "mgpuMemset32",
      llvmVoidType,
      {llvmPointerType /* void *dst */, llvmInt32Type /* unsigned int value */,
       llvmIntPtrType /* intptr_t sizeBytes */,
       llvmPointerType /* void *stream */}};
  FunctionCallBuilder setDefaultDeviceCallBuilder = {
      "mgpuSetDefaultDevice",
      llvmVoidType,
      {llvmInt32Type /* uint32_t devIndex */}};
  FunctionCallBuilder createDnVecCallBuilder = {
      "mgpuCreateDnVec",
      llvmPointerType,
      {llvmIntPtrType, llvmPointerType, llvmInt32Type,
       llvmPointerType /* void *stream */}};
  FunctionCallBuilder destroyDnVecCallBuilder = {
      "mgpuDestroyDnVec",
      llvmVoidType,
      {llvmPointerType, llvmPointerType /* void *stream */}};
  FunctionCallBuilder createDnMatCallBuilder = {
      "mgpuCreateDnMat",
      llvmPointerType,
      {llvmIntPtrType, llvmIntPtrType, llvmPointerType, llvmInt32Type,
       llvmPointerType /* void *stream */}};
  FunctionCallBuilder destroyDnMatCallBuilder = {
      "mgpuDestroyDnMat",
      llvmVoidType,
      {llvmPointerType, llvmPointerType /* void *stream */}};
  FunctionCallBuilder createCooCallBuilder = {
      "mgpuCreateCoo",
      llvmPointerType,
      {llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, llvmPointerType,
       llvmPointerType, llvmPointerType, llvmInt32Type, llvmInt32Type,
       llvmPointerType /* void *stream */}};
  FunctionCallBuilder createCooAoSCallBuilder = {
      "mgpuCreateCooAoS", // deprecated in cuSPARSE 11.2
      llvmPointerType,
      {llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, llvmPointerType,
       llvmPointerType, llvmInt32Type, llvmInt32Type,
       llvmPointerType /* void *stream */}};
  FunctionCallBuilder createCsrCallBuilder = {
      "mgpuCreateCsr",
      llvmPointerType,
      {llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, llvmPointerType,
       llvmPointerType, llvmPointerType, llvmInt32Type, llvmInt32Type,
       llvmInt32Type, llvmPointerType /* void *stream */}};
  FunctionCallBuilder createCscCallBuilder = {
      "mgpuCreateCsc",
      llvmPointerType,
      {llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, llvmPointerType,
       llvmPointerType, llvmPointerType, llvmInt32Type, llvmInt32Type,
       llvmInt32Type, llvmPointerType /* void *stream */}};
  FunctionCallBuilder createBsrCallBuilder = {
      "mgpuCreateBsr",
      llvmPointerType,
      {llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, llvmIntPtrType,
       llvmIntPtrType, llvmPointerType, llvmPointerType, llvmPointerType,
       llvmInt32Type, llvmInt32Type, llvmInt32Type,
       llvmPointerType /* void *stream */}};
  FunctionCallBuilder destroySpMatCallBuilder = {
      "mgpuDestroySpMat",
      llvmVoidType,
      {llvmPointerType, llvmPointerType /* void *stream */}};
  FunctionCallBuilder spMVBufferSizeCallBuilder = {
      "mgpuSpMVBufferSize",
      llvmIntPtrType,
      {llvmInt32Type, llvmPointerType, llvmPointerType, llvmPointerType,
       llvmInt32Type, llvmPointerType /* void *stream */}};
  FunctionCallBuilder spMVCallBuilder = {
      "mgpuSpMV",
      llvmVoidType,
      {llvmInt32Type, llvmPointerType, llvmPointerType, llvmPointerType,
       llvmInt32Type, llvmPointerType, llvmPointerType /* void *stream */}};
  FunctionCallBuilder createSpMMBufferSizeCallBuilder = {
      "mgpuSpMMBufferSize",
      llvmIntPtrType,
      {llvmInt32Type, llvmInt32Type, llvmPointerType, llvmPointerType,
       llvmPointerType, llvmInt32Type, llvmPointerType /* void *stream */}};
  FunctionCallBuilder createSpMMCallBuilder = {
      "mgpuSpMM",
      llvmVoidType,
      {llvmInt32Type, llvmInt32Type, llvmPointerType, llvmPointerType,
       llvmPointerType, llvmInt32Type, llvmPointerType,
       llvmPointerType /* void *stream */}};
  FunctionCallBuilder createSDDMMBufferSizeCallBuilder = {
      "mgpuSDDMMBufferSize",
      llvmIntPtrType,
      {llvmInt32Type, llvmInt32Type, llvmPointerType, llvmPointerType,
       llvmPointerType, llvmInt32Type, llvmPointerType /* void *stream */}};
  FunctionCallBuilder createSDDMMCallBuilder = {
      "mgpuSDDMM",
      llvmVoidType,
      {llvmInt32Type, llvmInt32Type, llvmPointerType, llvmPointerType,
       llvmPointerType, llvmInt32Type, llvmPointerType,
       llvmPointerType /* void *stream */}};
  FunctionCallBuilder createLtDnMatCallBuilder = {
      "mgpuCreateCuSparseLtDnMat",
      llvmVoidType,
      {llvmPointerType, llvmIntPtrType, llvmIntPtrType, llvmPointerType,
       llvmInt32Type, llvmPointerType /* void *stream */}};
  FunctionCallBuilder destroyCuSparseLtSpMatBuilder = {
      "mgpuDestroyCuSparseLtSpMat",
      llvmVoidType,
      {llvmPointerType, llvmPointerType /* void *stream */}};
  FunctionCallBuilder destroyCuSparseLtDnMatBuilder = {
      "mgpuDestroyCuSparseLtDnMat",
      llvmVoidType,
      {llvmPointerType, llvmPointerType /* void *stream */}};
  FunctionCallBuilder create2To4SpMatCallBuilder = {
      "mgpuCusparseLtCreate2To4SpMat",
      llvmVoidType,
      {llvmPointerType, llvmIntPtrType, llvmIntPtrType, llvmPointerType,
       llvmInt32Type, llvmPointerType /* void *stream */}};
  FunctionCallBuilder createCuSparseLtSpMMBufferSizeBuilder = {
      "mgpuCuSparseLtSpMMBufferSize",
      llvmVoidType,
      {llvmPointerType, llvmInt32Type, llvmInt32Type, llvmPointerType,
       llvmPointerType, llvmPointerType, llvmInt32Type, llvmInt32Type,
       llvmPointerType /*void *stream*/}};
  FunctionCallBuilder createCuSparseLtSpMMBuilder = {
      "mgpuCuSparseLtSpMM",
      llvmVoidType,
      {llvmPointerType, llvmPointerType, llvmPointerType, llvmPointerType,
       llvmPointerType, llvmPointerType, llvmPointerType /*void *stream*/}};
  FunctionCallBuilder createSpGEMMCreateDescrBuilder = {
      "mgpuSpGEMMCreateDescr",
      llvmPointerType,
      {llvmPointerType /*void *stream*/}};
  FunctionCallBuilder createSpGEMMDestroyDescrBuilder = {
      "mgpuSpGEMMDestroyDescr",
      llvmVoidType,
      {llvmPointerType /*s*/, llvmPointerType /*void *stream*/}};
  FunctionCallBuilder createSpGEMMWorkEstimationBuilder = {
      "mgpuSpGEMMWorkEstimation",
      llvmIntPtrType,
      {llvmPointerType /*s*/, llvmInt32Type /*ma*/, llvmInt32Type /*mb*/,
       llvmPointerType /*a*/, llvmPointerType /*b*/, llvmPointerType /*c*/,
       llvmInt32Type /*ctp*/, llvmIntPtrType /*bs*/, llvmPointerType /*buf*/,
       llvmPointerType /*void *stream*/}};
  FunctionCallBuilder createSpGEMMComputeBuilder = {
      "mgpuSpGEMMCompute",
      llvmIntPtrType,
      {llvmPointerType /*s*/, llvmInt32Type /*ma*/, llvmInt32Type /*mb*/,
       llvmPointerType /*a*/, llvmPointerType /*b*/, llvmPointerType /*c*/,
       llvmInt32Type /*ctp*/, llvmIntPtrType /*bs*/, llvmPointerType /*buf*/,
       llvmPointerType /*void *stream*/}};
  FunctionCallBuilder createSpGEMMCopyBuilder = {
      "mgpuSpGEMMCopy",
      llvmVoidType,
      {llvmPointerType /*s*/, llvmInt32Type /*ma*/, llvmInt32Type /*mb*/,
       llvmPointerType /*a*/, llvmPointerType /*b*/, llvmPointerType /*c*/,
       llvmInt32Type /*ctp*/, llvmPointerType /*void *stream*/}};
  FunctionCallBuilder createSpMatGetSizeBuilder = {
      "mgpuSpMatGetSize",
      llvmVoidType,
      {llvmPointerType /*mc*/, llvmPointerType /*rc*/, llvmPointerType /*cc*/,
       llvmPointerType /*nc*/, llvmPointerType /*void *stream*/}};
  FunctionCallBuilder createSetCsrPointersBuilder = {
      "mgpuSetCsrPointers",
      llvmVoidType,
      {llvmPointerType /*spmat*/, llvmPointerType /*pos*/,
       llvmPointerType /*crd*/, llvmPointerType /*val*/,
       llvmPointerType /*void *stream*/}};
};

/// A rewrite pattern to convert gpu.host_register operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertHostRegisterOpToGpuRuntimeCallPattern
    : public ConvertOpToGpuRuntimeCallPattern<gpu::HostRegisterOp> {
public:
  ConvertHostRegisterOpToGpuRuntimeCallPattern(
      const LLVMTypeConverter &typeConverter)
      : ConvertOpToGpuRuntimeCallPattern<gpu::HostRegisterOp>(typeConverter) {}

private:
  LogicalResult
  matchAndRewrite(gpu::HostRegisterOp hostRegisterOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

class ConvertHostUnregisterOpToGpuRuntimeCallPattern
    : public ConvertOpToGpuRuntimeCallPattern<gpu::HostUnregisterOp> {
public:
  ConvertHostUnregisterOpToGpuRuntimeCallPattern(
      const LLVMTypeConverter &typeConverter)
      : ConvertOpToGpuRuntimeCallPattern<gpu::HostUnregisterOp>(typeConverter) {
  }

private:
  LogicalResult
  matchAndRewrite(gpu::HostUnregisterOp hostUnregisterOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

/// A rewrite pattern to convert gpu.alloc operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertAllocOpToGpuRuntimeCallPattern
    : public ConvertOpToGpuRuntimeCallPattern<gpu::AllocOp> {
public:
  ConvertAllocOpToGpuRuntimeCallPattern(const LLVMTypeConverter &typeConverter)
      : ConvertOpToGpuRuntimeCallPattern<gpu::AllocOp>(typeConverter) {}

private:
  LogicalResult
  matchAndRewrite(gpu::AllocOp allocOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

/// A rewrite pattern to convert gpu.dealloc operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertDeallocOpToGpuRuntimeCallPattern
    : public ConvertOpToGpuRuntimeCallPattern<gpu::DeallocOp> {
public:
  ConvertDeallocOpToGpuRuntimeCallPattern(
      const LLVMTypeConverter &typeConverter)
      : ConvertOpToGpuRuntimeCallPattern<gpu::DeallocOp>(typeConverter) {}

private:
  LogicalResult
  matchAndRewrite(gpu::DeallocOp deallocOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

class ConvertAsyncYieldToGpuRuntimeCallPattern
    : public ConvertOpToGpuRuntimeCallPattern<async::YieldOp> {
public:
  ConvertAsyncYieldToGpuRuntimeCallPattern(
      const LLVMTypeConverter &typeConverter)
      : ConvertOpToGpuRuntimeCallPattern<async::YieldOp>(typeConverter) {}

private:
  LogicalResult
  matchAndRewrite(async::YieldOp yieldOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

/// A rewrite pattern to convert gpu.wait operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertWaitOpToGpuRuntimeCallPattern
    : public ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp> {
public:
  ConvertWaitOpToGpuRuntimeCallPattern(const LLVMTypeConverter &typeConverter)
      : ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp>(typeConverter) {}

private:
  LogicalResult
  matchAndRewrite(gpu::WaitOp waitOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

/// A rewrite pattern to convert gpu.wait async operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertWaitAsyncOpToGpuRuntimeCallPattern
    : public ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp> {
public:
  ConvertWaitAsyncOpToGpuRuntimeCallPattern(
      const LLVMTypeConverter &typeConverter)
      : ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp>(typeConverter) {}

private:
  LogicalResult
  matchAndRewrite(gpu::WaitOp waitOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

/// A rewrite patter to legalize gpu.launch_func with LLVM types.
class LegalizeLaunchFuncOpPattern
    : public ConvertOpToGpuRuntimeCallPattern<gpu::LaunchFuncOp> {
public:
  LegalizeLaunchFuncOpPattern(const LLVMTypeConverter &typeConverter,
                              bool kernelBarePtrCallConv,
                              bool kernelIntersperseSizeCallConv)
      : ConvertOpToGpuRuntimeCallPattern<gpu::LaunchFuncOp>(typeConverter),
        kernelBarePtrCallConv(kernelBarePtrCallConv),
        kernelIntersperseSizeCallConv(kernelIntersperseSizeCallConv) {}

private:
  LogicalResult
  matchAndRewrite(gpu::LaunchFuncOp launchOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;

  bool kernelBarePtrCallConv;
  bool kernelIntersperseSizeCallConv;
};

/// A rewrite pattern to convert gpu.memcpy operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertMemcpyOpToGpuRuntimeCallPattern
    : public ConvertOpToGpuRuntimeCallPattern<gpu::MemcpyOp> {
public:
  ConvertMemcpyOpToGpuRuntimeCallPattern(const LLVMTypeConverter &typeConverter)
      : ConvertOpToGpuRuntimeCallPattern<gpu::MemcpyOp>(typeConverter) {}

private:
  LogicalResult
  matchAndRewrite(gpu::MemcpyOp memcpyOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

/// A rewrite pattern to convert gpu.memset operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertMemsetOpToGpuRuntimeCallPattern
    : public ConvertOpToGpuRuntimeCallPattern<gpu::MemsetOp> {
public:
  ConvertMemsetOpToGpuRuntimeCallPattern(const LLVMTypeConverter &typeConverter)
      : ConvertOpToGpuRuntimeCallPattern<gpu::MemsetOp>(typeConverter) {}

private:
  LogicalResult
  matchAndRewrite(gpu::MemsetOp memsetOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

/// A rewrite pattern to convert gpu.set_default_device to a GPU runtime call.
/// Currently supports CUDA and ROCm (HIP)
class ConvertSetDefaultDeviceOpToGpuRuntimeCallPattern
    : public ConvertOpToGpuRuntimeCallPattern<gpu::SetDefaultDeviceOp> {
public:
  ConvertSetDefaultDeviceOpToGpuRuntimeCallPattern(
      const LLVMTypeConverter &typeConverter)
      : ConvertOpToGpuRuntimeCallPattern<gpu::SetDefaultDeviceOp>(
            typeConverter) {}

  LogicalResult
  matchAndRewrite(gpu::SetDefaultDeviceOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

/// Generic rewriting rule for operation on sparse matrices.
/// Currently supports CUDA (by means of cuSparse and cuSparseLt).
#define DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(op_name)                \
  class Convert##op_name##ToGpuRuntimeCallPattern                              \
      : public ConvertOpToGpuRuntimeCallPattern<gpu::op_name> {                \
  public:                                                                      \
    Convert##op_name##ToGpuRuntimeCallPattern(                                 \
        const LLVMTypeConverter &typeConverter)                                \
        : ConvertOpToGpuRuntimeCallPattern<gpu::op_name>(typeConverter) {}     \
                                                                               \
  private:                                                                     \
    LogicalResult                                                              \
    matchAndRewrite(gpu::op_name op, OpAdaptor adaptor,                        \
                    ConversionPatternRewriter &rewriter) const override;       \
  };

DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(CreateDnTensorOp)
DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(DestroyDnTensorOp)
DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(CreateCooOp)
DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(CreateCooAoSOp)
DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(CreateCsrOp)
DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(CreateCscOp)
DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(CreateBsrOp)
DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(Create2To4SpMatOp)
DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(DestroySpMatOp)
DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(SpMVBufferSizeOp)
DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(SpMVOp)
DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(SpMMBufferSizeOp)
DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(SDDMMBufferSizeOp)
DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(SpMMOp)
DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(SDDMMOp)
DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(SpGEMMCreateDescrOp)
DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(SpGEMMDestroyDescrOp)
DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(SpGEMMWorkEstimationOrComputeOp)
DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(SpGEMMCopyOp)
DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(SpMatGetSizeOp)
DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(SetCsrPointersOp)

} // namespace

void GpuToLLVMConversionPass::runOnOperation() {
  MLIRContext *context = &getContext();

  // Perform progressive lowering of vector transfer operations.
  {
    RewritePatternSet patterns(&getContext());
    // Vector transfer ops with rank > 1 should be lowered with VectorToSCF.
    vector::populateVectorTransferLoweringPatterns(patterns,
                                                   /*maxTransferRank=*/1);
    if (failed(applyPatternsGreedily(getOperation(), std::move(patterns))))
      return signalPassFailure();
  }

  LowerToLLVMOptions options(context);
  options.useBarePtrCallConv = hostBarePtrCallConv;
  RewritePatternSet patterns(context);
  ConversionTarget target(*context);
  target.addLegalDialect<LLVM::LLVMDialect>();
  LLVMTypeConverter converter(context, options);

  // Populate all patterns from all dialects that implement the
  // `ConvertToLLVMPatternInterface` interface.
  for (Dialect *dialect : context->getLoadedDialects()) {
    auto iface = dyn_cast<ConvertToLLVMPatternInterface>(dialect);
    if (!iface)
      continue;
    iface->populateConvertToLLVMConversionPatterns(target, converter, patterns);
  }

  // Preserve GPU modules and binaries. Modules are preserved as they can be
  // converted later by `gpu-module-to-binary`.
  target.addLegalOp<gpu::GPUModuleOp, gpu::BinaryOp>();
  // Accept as legal LaunchFuncOps if the operands have been lowered.
  target.addDynamicallyLegalOp<gpu::LaunchFuncOp>(
      [&](gpu::LaunchFuncOp op) -> bool { return converter.isLegal(op); });

  // These aren't covered by the ConvertToLLVMPatternInterface right now.
  populateVectorToLLVMConversionPatterns(converter, patterns);
  populateFinalizeMemRefToLLVMConversionPatterns(converter, patterns);
  populateAsyncStructuralTypeConversionsAndLegality(converter, patterns,
                                                    target);
  populateGpuToLLVMConversionPatterns(converter, patterns,
                                      kernelBarePtrCallConv,
                                      kernelIntersperseSizeCallConv);

  if (failed(
          applyPartialConversion(getOperation(), target, std::move(patterns))))
    signalPassFailure();
}

LLVM::CallOp FunctionCallBuilder::create(Location loc, OpBuilder &builder,
                                         ArrayRef<Value> arguments) const {
  auto module = builder.getBlock()->getParent()->getParentOfType<ModuleOp>();
  auto function = [&] {
    if (auto function = module.lookupSymbol<LLVM::LLVMFuncOp>(functionName))
      return function;
    auto builder = OpBuilder::atBlockEnd(module.getBody());
    return LLVM::LLVMFuncOp::create(builder, loc, functionName, functionType);
  }();
  return LLVM::CallOp::create(builder, loc, function, arguments);
}

// Corresponding to cusparseIndexType_t defined in cusparse.h.
static int32_t getCuSparseIndexTypeFrom(Type type) {
  if (type.isInteger(16))
    return 1; // CUSPARSE_INDEX_16U
  if (type.isInteger(32))
    return 2; // CUSPARSE_INDEX_32I
  return 3;   // CUSPARSE_INDEX_64I
}

static int32_t getCuSparseLtDataTypeFrom(Type type) {
  if (type.isF16())
    return 0; // CUSPARSE_COMPUTE_16F,
  if (type.isInteger(32))
    return 1; // CUSPARSE_COMPUTE_32I
  llvm_unreachable("unsupported type");
  // TODO: add support to TF32
}

// Corresponding to cudaDataType_t defined in CUDA library_types.h.
static int32_t getCuSparseDataTypeFrom(Type type) {
  if (llvm::isa<ComplexType>(type)) {
    // get the element type
    auto elementType = cast<ComplexType>(type).getElementType();
    if (elementType.isBF16())
      return 15; // CUDA_C_16BF
    if (elementType.isF16())
      return 6; // CUDA_C_16F
    if (elementType.isF32())
      return 4; // CUDA_C_32F
    if (elementType.isF64())
      return 5; // CUDA_C_64F
    if (elementType.isInteger(8))
      return 7; // CUDA_C_8I
    if (elementType.isInteger(16))
      return 21; // CUDA_C_16I
    if (elementType.isInteger(32))
      return 11; // CUDA_C_32I
  }
  if (type.isBF16())
    return 14; // CUDA_R_16BF
  if (type.isF16())
    return 2; // CUDA_R_16F
  if (type.isF32())
    return 0; // CUDA_R_32F
  if (type.isF64())
    return 1; // CUDA_R_64F
  if (type.isInteger(8))
    return 3; // CUDA_R_8I
  if (type.isInteger(16))
    return 20; // CUDA_R_16I
  if (type.isInteger(32))
    return 10; // CUDA_R_32I

  llvm_unreachable("unsupported element type");
}

static gpu::Prune2To4SpMatFlag get2To4PruneFlag(Value spMat) {
  return spMat.getDefiningOp<gpu::Create2To4SpMatOp>().getPruneFlag();
}

// TODO:  We may want a run-time (of the mlir compiler) disablement/warning:
// cusparseLt currently won't work for cuda architecture <8.0 and will trigger a
// runtime (of the CUDA program) error , but it might be great if we could at
// least output a warning when we found the target architecture is <8.0 and the
// user still wants to use cusparseLt. to make sure when lowering gpu sparse
// dialect to llvm calls, the cusparselt calls are disabled for cuda
// architecture <8.0
static bool is2To4Sparsity(Value spMat) {
  if (auto op = spMat.getDefiningOp<gpu::Create2To4SpMatOp>())
    return true;
  if (auto op = spMat.getDefiningOp<gpu::CreateCooOp>())
    return false;
  if (auto op = spMat.getDefiningOp<gpu::CreateCooAoSOp>())
    return false;
  if (auto op = spMat.getDefiningOp<gpu::CreateCsrOp>())
    return false;
  if (auto op = spMat.getDefiningOp<gpu::CreateCscOp>())
    return false;
  if (auto op = spMat.getDefiningOp<gpu::CreateBsrOp>())
    return false;
  // Print the spMat defining op
  spMat.getDefiningOp()->print(llvm::errs());
  llvm_unreachable("cannot find spmat def");
}

static bool isSpMMCusparseLtOp(Value op) {
  for (Operation *user : op.getUsers()) {
    auto spmmOp = dyn_cast<gpu::SpMMOp>(user);
    // If the other operator is 50% sparsity then we should use cusparseLt
    if (!spmmOp)
      continue;
    if (is2To4Sparsity(spmmOp.getSpmatA()))
      return true;
  }
  return false;
}

// Returns whether all operands are of LLVM type.
static LogicalResult areAllLLVMTypes(Operation *op, ValueRange operands,
                                     ConversionPatternRewriter &rewriter) {
  if (!llvm::all_of(operands, [](Value value) {
        return LLVM::isCompatibleType(value.getType());
      }))
    return rewriter.notifyMatchFailure(
        op, "Cannot convert if operands aren't of LLVM type.");
  return success();
}

static LogicalResult
isAsyncWithOneDependency(ConversionPatternRewriter &rewriter,
                         gpu::AsyncOpInterface op) {
  if (op.getAsyncDependencies().size() != 1)
    return rewriter.notifyMatchFailure(
        op, "Can only convert with exactly one async dependency.");

  if (!op.getAsyncToken())
    return rewriter.notifyMatchFailure(op, "Can convert only async version.");

  return success();
}

LogicalResult ConvertHostRegisterOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::HostRegisterOp hostRegisterOp, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  auto *op = hostRegisterOp.getOperation();
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)))
    return failure();

  Location loc = op->getLoc();

  auto memRefType = hostRegisterOp.getValue().getType();
  auto elementType = cast<UnrankedMemRefType>(memRefType).getElementType();
  auto elementSize = getSizeInBytes(loc, elementType, rewriter);

  auto arguments = getTypeConverter()->promoteOperands(
      loc, op->getOperands(), adaptor.getOperands(), rewriter);
  arguments.push_back(elementSize);
  hostRegisterCallBuilder.create(loc, rewriter, arguments);

  rewriter.eraseOp(op);
  return success();
}

LogicalResult ConvertHostUnregisterOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::HostUnregisterOp hostUnregisterOp, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  Operation *op = hostUnregisterOp.getOperation();
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)))
    return failure();

  Location loc = op->getLoc();

  auto memRefType = hostUnregisterOp.getValue().getType();
  auto elementType = cast<UnrankedMemRefType>(memRefType).getElementType();
  auto elementSize = getSizeInBytes(loc, elementType, rewriter);

  auto arguments = getTypeConverter()->promoteOperands(
      loc, op->getOperands(), adaptor.getOperands(), rewriter);
  arguments.push_back(elementSize);
  hostUnregisterCallBuilder.create(loc, rewriter, arguments);

  rewriter.eraseOp(op);
  return success();
}

LogicalResult ConvertAllocOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::AllocOp allocOp, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {

  MemRefType memRefType = allocOp.getType();

  if (failed(areAllLLVMTypes(allocOp, adaptor.getOperands(), rewriter)) ||
      !isConvertibleAndHasIdentityMaps(memRefType))
    return failure();

  auto loc = allocOp.getLoc();

  bool isShared = allocOp.getHostShared();

  if (isShared && allocOp.getAsyncToken())
    return rewriter.notifyMatchFailure(
        allocOp, "Host Shared allocation cannot be done async");
  if (!isShared && failed(isAsyncWithOneDependency(rewriter, allocOp)))
    return failure();

  // Get shape of the memref as values: static sizes are constant
  // values and dynamic sizes are passed to 'alloc' as operands.
  SmallVector<Value, 4> shape;
  SmallVector<Value, 4> strides;
  Value sizeBytes;
  getMemRefDescriptorSizes(loc, memRefType, adaptor.getDynamicSizes(), rewriter,
                           shape, strides, sizeBytes);

  // Allocate the underlying buffer and store a pointer to it in the MemRef
  // descriptor.
  auto nullPtr = mlir::LLVM::ZeroOp::create(rewriter, loc, llvmPointerType);
  Value stream = adaptor.getAsyncDependencies().empty()
                     ? nullPtr
                     : adaptor.getAsyncDependencies().front();

  auto isHostShared = mlir::LLVM::ConstantOp::create(
      rewriter, loc, llvmInt8Type, rewriter.getI8IntegerAttr(isShared));

  Value allocatedPtr =
      allocCallBuilder.create(loc, rewriter, {sizeBytes, stream, isHostShared})
          .getResult();

  // No alignment.
  Value alignedPtr = allocatedPtr;

  // Create the MemRef descriptor.
  auto memRefDescriptor = this->createMemRefDescriptor(
      loc, memRefType, allocatedPtr, alignedPtr, shape, strides, rewriter);

  if (allocOp.getAsyncToken()) {
    // Async alloc: make dependent ops use the same stream.
    rewriter.replaceOp(allocOp, {memRefDescriptor, stream});
  } else {
    rewriter.replaceOp(allocOp, {memRefDescriptor});
  }

  return success();
}

LogicalResult ConvertDeallocOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::DeallocOp deallocOp, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(deallocOp, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, deallocOp)))
    return failure();

  Location loc = deallocOp.getLoc();

  Value pointer =
      MemRefDescriptor(adaptor.getMemref()).allocatedPtr(rewriter, loc);
  Value stream = adaptor.getAsyncDependencies().front();
  deallocCallBuilder.create(loc, rewriter, {pointer, stream});

  rewriter.replaceOp(deallocOp, {stream});
  return success();
}

static bool isGpuAsyncTokenType(Value value) {
  return isa<gpu::AsyncTokenType>(value.getType());
}

// Converts !gpu.async.token operands of `async.yield` to runtime calls. The
// !gpu.async.token are lowered to stream within the async.execute region, but
// are passed as events between them. For each !gpu.async.token operand, we
// create an event and record it on the stream.
LogicalResult ConvertAsyncYieldToGpuRuntimeCallPattern::matchAndRewrite(
    async::YieldOp yieldOp, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (llvm::none_of(yieldOp.getOperands(), isGpuAsyncTokenType))
    return rewriter.notifyMatchFailure(yieldOp, "no gpu async token operand");

  Location loc = yieldOp.getLoc();
  SmallVector<Value, 4> newOperands(adaptor.getOperands());
  llvm::SmallDenseSet<Value> streams;
  for (auto &operand : yieldOp->getOpOperands()) {
    if (!isGpuAsyncTokenType(operand.get()))
      continue;
    auto idx = operand.getOperandNumber();
    auto stream = adaptor.getOperands()[idx];
    auto event = eventCreateCallBuilder.create(loc, rewriter, {}).getResult();
    eventRecordCallBuilder.create(loc, rewriter, {event, stream});
    newOperands[idx] = event;
    streams.insert(stream);
  }
  for (auto stream : streams)
    streamDestroyCallBuilder.create(loc, rewriter, {stream});

  rewriter.modifyOpInPlace(yieldOp, [&] { yieldOp->setOperands(newOperands); });
  return success();
}

// Returns whether `value` is the result of an LLVM::CallOp to `functionName`.
static bool isDefinedByCallTo(Value value, StringRef functionName) {
  assert(isa<LLVM::LLVMPointerType>(value.getType()));
  if (auto defOp = value.getDefiningOp<LLVM::CallOp>())
    return *defOp.getCallee() == functionName;
  return false;
}

// Converts `gpu.wait` to runtime calls. The converted op synchronizes the host
// with the stream/event operands. The operands are destroyed. That is, it
// assumes that it is not used afterwards or elsewhere. Otherwise we will get a
// runtime error. Eventually, we should guarantee this property.
LogicalResult ConvertWaitOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::WaitOp waitOp, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (waitOp.getAsyncToken())
    return rewriter.notifyMatchFailure(waitOp, "Cannot convert async op.");

  Location loc = waitOp.getLoc();

  for (auto operand : adaptor.getOperands()) {
    if (isDefinedByCallTo(operand, streamCreateCallBuilder.functionName)) {
      // The converted operand's definition created a stream.
      streamSynchronizeCallBuilder.create(loc, rewriter, {operand});
      streamDestroyCallBuilder.create(loc, rewriter, {operand});
    } else {
      // Otherwise the converted operand is an event. This assumes that we use
      // events in control flow code as well.
      eventSynchronizeCallBuilder.create(loc, rewriter, {operand});
      eventDestroyCallBuilder.create(loc, rewriter, {operand});
    }
  }

  rewriter.eraseOp(waitOp);
  return success();
}

// Converts `gpu.wait async` to runtime calls. The converted op creates a new
// stream that is synchronized with stream/event operands. The operands are
// destroyed. That is, it assumes that it is not used afterwards or elsewhere.
// Otherwise we will get a runtime error. Eventually, we should guarantee this
// property.
LogicalResult ConvertWaitAsyncOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::WaitOp waitOp, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (!waitOp.getAsyncToken())
    return rewriter.notifyMatchFailure(waitOp, "Can only convert async op.");

  Location loc = waitOp.getLoc();

  auto insertionPoint = rewriter.saveInsertionPoint();
  SmallVector<Value, 1> events;
  for (auto pair :
       llvm::zip(waitOp.getAsyncDependencies(), adaptor.getOperands())) {
    auto operand = std::get<1>(pair);
    if (isDefinedByCallTo(operand, streamCreateCallBuilder.functionName)) {
      // The converted operand's definition created a stream. Insert an event
      // into the stream just after the last use of the original token operand.
      auto *defOp = std::get<0>(pair).getDefiningOp();
      rewriter.setInsertionPointAfter(defOp);
      auto event = eventCreateCallBuilder.create(loc, rewriter, {}).getResult();
      eventRecordCallBuilder.create(loc, rewriter, {event, operand});
      events.push_back(event);
    } else {
      // Otherwise the converted operand is an event. This assumes that we use
      // events in control flow code as well.
      events.push_back(operand);
    }
  }
  rewriter.restoreInsertionPoint(insertionPoint);
  auto stream = streamCreateCallBuilder.create(loc, rewriter, {}).getResult();
  for (auto event : events)
    streamWaitEventCallBuilder.create(loc, rewriter, {stream, event});
  for (auto event : events)
    eventDestroyCallBuilder.create(loc, rewriter, {event});
  rewriter.replaceOp(waitOp, {stream});

  return success();
}

// Legalize the op's operands.
LogicalResult LegalizeLaunchFuncOpPattern::matchAndRewrite(
    gpu::LaunchFuncOp launchOp, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(launchOp, adaptor.getOperands(), rewriter)))
    return failure();

  if (launchOp.getAsyncDependencies().size() > 1)
    return rewriter.notifyMatchFailure(
        launchOp, "Cannot convert with more than one async dependency.");

  // Fail when the synchronous version of the op has async dependencies. The
  // lowering destroys the stream, and we do not want to check that there is no
  // use of the stream after this op.
  if (!launchOp.getAsyncToken() && !launchOp.getAsyncDependencies().empty())
    return rewriter.notifyMatchFailure(
        launchOp, "Cannot convert non-async op with async dependencies.");

  Location loc = launchOp.getLoc();

  Value stream = Value();
  if (!adaptor.getAsyncDependencies().empty())
    stream = adaptor.getAsyncDependencies().front();
  // If the async keyword is present and there are no dependencies, then a
  // stream must be created to pass to subsequent operations.
  else if (launchOp.getAsyncToken())
    stream = streamCreateCallBuilder.create(loc, rewriter, {}).getResult();

  // Lower the kernel operands to match kernel parameters.
  // Note: If `useBarePtrCallConv` is set in the type converter's options,
  // the value of `kernelBarePtrCallConv` will be ignored.
  OperandRange origArguments = launchOp.getKernelOperands();
  SmallVector<Value, 8> llvmArguments = getTypeConverter()->promoteOperands(
      loc, origArguments, adaptor.getKernelOperands(), rewriter,
      /*useBarePtrCallConv=*/kernelBarePtrCallConv);
  SmallVector<Value, 8> llvmArgumentsWithSizes;

  // Intersperse size information if requested.
  if (kernelIntersperseSizeCallConv) {
    if (origArguments.size() != llvmArguments.size()) {
      // This shouldn't happen if the bare-pointer calling convention is used.
      return rewriter.notifyMatchFailure(
          launchOp,
          "Cannot add sizes to arguments with one-to-many LLVM IR expansion.");
    }

    llvmArgumentsWithSizes.reserve(llvmArguments.size() * 2);
    for (auto [llvmArg, origArg] : zip_equal(llvmArguments, origArguments)) {
      auto memrefTy = dyn_cast<MemRefType>(origArg.getType());
      if (!memrefTy) {
        return rewriter.notifyMatchFailure(
            launchOp, "Operand to launch op is not a memref.");
      }

      if (!memrefTy.hasStaticShape() ||
          !memrefTy.getElementType().isIntOrFloat()) {
        return rewriter.notifyMatchFailure(
            launchOp, "Operand to launch op is not a memref with a static "
                      "shape and an integer or float element type.");
      }

      unsigned bitwidth = memrefTy.getElementTypeBitWidth();
      if (bitwidth % 8 != 0) {
        return rewriter.notifyMatchFailure(
            launchOp, "Operand to launch op is not a memref with a "
                      "byte-aligned element type.");
      }

      uint64_t staticSize = static_cast<uint64_t>(bitwidth / 8) *
                            static_cast<uint64_t>(memrefTy.getNumElements());

      Value sizeArg = LLVM::ConstantOp::create(
          rewriter, loc, getIndexType(), rewriter.getIndexAttr(staticSize));
      llvmArgumentsWithSizes.push_back(llvmArg); // Presumably a bare pointer.
      llvmArgumentsWithSizes.push_back(sizeArg);
    }
  }

  std::optional<gpu::KernelDim3> clusterSize = std::nullopt;
  if (launchOp.hasClusterSize()) {
    clusterSize =
        gpu::KernelDim3{adaptor.getClusterSizeX(), adaptor.getClusterSizeY(),
                        adaptor.getClusterSizeZ()};
  }
  gpu::LaunchFuncOp::create(
      rewriter, launchOp.getLoc(), launchOp.getKernelAttr(),
      gpu::KernelDim3{adaptor.getGridSizeX(), adaptor.getGridSizeY(),
                      adaptor.getGridSizeZ()},
      gpu::KernelDim3{adaptor.getBlockSizeX(), adaptor.getBlockSizeY(),
                      adaptor.getBlockSizeZ()},
      adaptor.getDynamicSharedMemorySize(),
      llvmArgumentsWithSizes.empty() ? llvmArguments : llvmArgumentsWithSizes,
      stream, clusterSize);
  if (launchOp.getAsyncToken())
    rewriter.replaceOp(launchOp, {stream});
  else
    rewriter.eraseOp(launchOp);
  return success();
}

static Value bitAndAddrspaceCast(Location loc,
                                 ConversionPatternRewriter &rewriter,
                                 LLVM::LLVMPointerType destinationType,
                                 Value sourcePtr,
                                 const LLVMTypeConverter &typeConverter) {
  auto sourceTy = cast<LLVM::LLVMPointerType>(sourcePtr.getType());
  if (destinationType.getAddressSpace() != sourceTy.getAddressSpace())
    sourcePtr = LLVM::AddrSpaceCastOp::create(
        rewriter, loc,
        LLVM::LLVMPointerType::get(rewriter.getContext(),
                                   destinationType.getAddressSpace()),
        sourcePtr);
  return sourcePtr;
}

LogicalResult ConvertMemcpyOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::MemcpyOp memcpyOp, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  auto memRefType = cast<MemRefType>(memcpyOp.getSrc().getType());

  if (failed(areAllLLVMTypes(memcpyOp, adaptor.getOperands(), rewriter)) ||
      !isConvertibleAndHasIdentityMaps(memRefType) ||
      failed(isAsyncWithOneDependency(rewriter, memcpyOp)))
    return failure();

  auto loc = memcpyOp.getLoc();

  MemRefDescriptor srcDesc(adaptor.getSrc());
  Value numElements = getNumElements(rewriter, loc, memRefType, srcDesc);

  Type elementPtrType = getElementPtrType(memRefType);
  Value nullPtr = LLVM::ZeroOp::create(rewriter, loc, elementPtrType);
  Value gepPtr = LLVM::GEPOp::create(
      rewriter, loc, elementPtrType,
      typeConverter->convertType(memRefType.getElementType()), nullPtr,
      numElements);
  auto sizeBytes =
      LLVM::PtrToIntOp::create(rewriter, loc, getIndexType(), gepPtr);

  auto src = bitAndAddrspaceCast(loc, rewriter, llvmPointerType,
                                 srcDesc.alignedPtr(rewriter, loc),
                                 *getTypeConverter());
  auto dst = bitAndAddrspaceCast(
      loc, rewriter, llvmPointerType,
      MemRefDescriptor(adaptor.getDst()).alignedPtr(rewriter, loc),
      *getTypeConverter());

  auto stream = adaptor.getAsyncDependencies().front();
  memcpyCallBuilder.create(loc, rewriter, {dst, src, sizeBytes, stream});

  rewriter.replaceOp(memcpyOp, {stream});

  return success();
}

LogicalResult ConvertMemsetOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::MemsetOp memsetOp, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  auto memRefType = cast<MemRefType>(memsetOp.getDst().getType());

  if (failed(areAllLLVMTypes(memsetOp, adaptor.getOperands(), rewriter)) ||
      !isConvertibleAndHasIdentityMaps(memRefType) ||
      failed(isAsyncWithOneDependency(rewriter, memsetOp)))
    return failure();

  auto loc = memsetOp.getLoc();

  Type valueType = adaptor.getValue().getType();
  unsigned bitWidth = valueType.getIntOrFloatBitWidth();
  // Ints and floats of 16 or 32 bit width are allowed.
  if (!valueType.isIntOrFloat() || (bitWidth != 16 && bitWidth != 32)) {
    return rewriter.notifyMatchFailure(
        memsetOp, "value must be a 16 or 32 bit int or float");
  }

  unsigned valueTypeWidth = valueType.getIntOrFloatBitWidth();
  Type bitCastType = valueTypeWidth == 32 ? llvmInt32Type : llvmInt16Type;

  MemRefDescriptor dstDesc(adaptor.getDst());
  Value numElements = getNumElements(rewriter, loc, memRefType, dstDesc);

  auto value =
      LLVM::BitcastOp::create(rewriter, loc, bitCastType, adaptor.getValue());
  auto dst = bitAndAddrspaceCast(loc, rewriter, llvmPointerType,
                                 dstDesc.alignedPtr(rewriter, loc),
                                 *getTypeConverter());

  auto stream = adaptor.getAsyncDependencies().front();
  FunctionCallBuilder builder =
      valueTypeWidth == 32 ? memset32CallBuilder : memset16CallBuilder;
  builder.create(loc, rewriter, {dst, value, numElements, stream});

  rewriter.replaceOp(memsetOp, {stream});
  return success();
}

LogicalResult ConvertSetDefaultDeviceOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::SetDefaultDeviceOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  Location loc = op.getLoc();
  auto call = setDefaultDeviceCallBuilder.create(loc, rewriter,
                                                 {adaptor.getDevIndex()});
  rewriter.replaceOp(op, call);
  return success();
}

template <typename T>
static Value genConstInt32From(OpBuilder &builder, Location loc, T tValue) {
  Type llvmInt32Type = builder.getIntegerType(32);
  return LLVM::ConstantOp::create(builder, loc, llvmInt32Type,
                                  static_cast<int32_t>(tValue));
}

template <typename T>
static Value genConstFloat32From(OpBuilder &builder, Location loc, T tValue) {
  Type llvmFloat32Type = builder.getF32Type();
  return LLVM::ConstantOp::create(
      builder, loc, llvmFloat32Type,
      builder.getF32FloatAttr(static_cast<float>(tValue)));
}

LogicalResult ConvertCreateDnTensorOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::CreateDnTensorOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, op)))
    return failure();
  Location loc = op.getLoc();
  auto stream = adaptor.getAsyncDependencies().front();
  Value pTensor =
      MemRefDescriptor(adaptor.getMemref()).allocatedPtr(rewriter, loc);
  Type dType = op.getMemref().getType().getElementType();
  auto dtp = genConstInt32From(rewriter, loc, getCuSparseDataTypeFrom(dType));

  SmallVector<Value, 4> dims;
  for (Value dim : adaptor.getDims()) {
    dims.push_back(dim);
  }

  Value handle;
  // TODO: For now, we track the use of the handle and lower it to cusparse /
  // cusparseLt accordingly. If in a block, both cusparse and cusparseLt are
  // used, we require two separate Creation ops to be the correct logic. In
  // future, we may add support to using one handle in sparse tensor / GPU
  // dialect in both cusparse and cusparseLt. use the cusparseLt create call if
  // the dnmat is used with spmat with 2:4 sparsity
  if (dims.size() == 2) {
    if (isSpMMCusparseLtOp(op.getDnTensor())) {
      auto handleSz = LLVM::ConstantOp::create(rewriter, loc, getIndexType(),
                                               rewriter.getIndexAttr(11032));
      handle = LLVM::AllocaOp::create(rewriter, loc, llvmPointerType,
                                      llvmInt8Type, handleSz, /*alignment=*/16);
      handle = LLVM::BitcastOp::create(rewriter, loc, llvmPointerType, handle);

      createLtDnMatCallBuilder
          .create(loc, rewriter,
                  {handle, dims[0], dims[1], pTensor, dtp, stream})
          .getResult();
    } else {
      handle =
          createDnMatCallBuilder
              .create(loc, rewriter, {dims[0], dims[1], pTensor, dtp, stream})
              .getResult();
    }
  } else {
    assert(dims.size() == 1 && "Only 1D and 2D tensors are supported");
    handle = createDnVecCallBuilder
                 .create(loc, rewriter, {dims[0], pTensor, dtp, stream})
                 .getResult();
  }
  rewriter.replaceOp(op, {handle, stream});
  return success();
}

LogicalResult ConvertDestroyDnTensorOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::DestroyDnTensorOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, op)))
    return failure();
  Location loc = op.getLoc();
  auto stream = adaptor.getAsyncDependencies().front();
  auto definingOp = op.getDnTensor().getDefiningOp<gpu::CreateDnTensorOp>();
  SmallVector<Value, 4> dims;
  for (Value dim : definingOp.getDims()) {
    dims.push_back(dim);
  }
  if (dims.size() == 2) {
    // Use the cusparseLt destroy call if the dnmat is used with spmat with
    // 2:4 sparsity
    if (isSpMMCusparseLtOp(op.getDnTensor())) {
      destroyCuSparseLtDnMatBuilder.create(loc, rewriter,
                                           {adaptor.getDnTensor(), stream});
    } else {
      destroyDnMatCallBuilder.create(loc, rewriter,
                                     {adaptor.getDnTensor(), stream});
    }
  } else {
    assert(dims.size() == 1 && "Only 1D and 2D tensors are supported");
    destroyDnVecCallBuilder.create(loc, rewriter,
                                   {adaptor.getDnTensor(), stream});
  }
  rewriter.replaceOp(op, {stream});
  return success();
}

LogicalResult ConvertCreateCooOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::CreateCooOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, op)))
    return failure();
  Location loc = op.getLoc();
  auto stream = adaptor.getAsyncDependencies().front();
  Value pRowIdxs =
      MemRefDescriptor(adaptor.getRowIdxs()).allocatedPtr(rewriter, loc);
  Value pColIdxs =
      MemRefDescriptor(adaptor.getColIdxs()).allocatedPtr(rewriter, loc);
  Value pValues =
      MemRefDescriptor(adaptor.getValues()).allocatedPtr(rewriter, loc);
  Type iType =
      llvm::cast<MemRefType>(op.getColIdxs().getType()).getElementType();
  Type dType =
      llvm::cast<MemRefType>(op.getValues().getType()).getElementType();
  auto itp = genConstInt32From(rewriter, loc, getCuSparseIndexTypeFrom(iType));
  auto dtp = genConstInt32From(rewriter, loc, getCuSparseDataTypeFrom(dType));
  auto handle =
      createCooCallBuilder
          .create(loc, rewriter,
                  {adaptor.getRows(), adaptor.getCols(), adaptor.getNnz(),
                   pRowIdxs, pColIdxs, pValues, itp, dtp, stream})
          .getResult();
  rewriter.replaceOp(op, {handle, stream});
  return success();
}

LogicalResult ConvertCreateCooAoSOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::CreateCooAoSOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, op)))
    return failure();
  Location loc = op.getLoc();
  auto stream = adaptor.getAsyncDependencies().front();
  Value pIdxs = MemRefDescriptor(adaptor.getIdxs()).allocatedPtr(rewriter, loc);
  Value pValues =
      MemRefDescriptor(adaptor.getValues()).allocatedPtr(rewriter, loc);
  Type iType = llvm::cast<MemRefType>(op.getIdxs().getType()).getElementType();
  Type dType =
      llvm::cast<MemRefType>(op.getValues().getType()).getElementType();
  auto itp = genConstInt32From(rewriter, loc, getCuSparseIndexTypeFrom(iType));
  auto dtp = genConstInt32From(rewriter, loc, getCuSparseDataTypeFrom(dType));
  auto handle =
      createCooAoSCallBuilder
          .create(loc, rewriter,
                  {adaptor.getRows(), adaptor.getCols(), adaptor.getNnz(),
                   pIdxs, pValues, itp, dtp, stream})
          .getResult();
  rewriter.replaceOp(op, {handle, stream});
  return success();
}

LogicalResult ConvertCreateCsrOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::CreateCsrOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, op)))
    return failure();
  Location loc = op.getLoc();
  auto stream = adaptor.getAsyncDependencies().front();
  Value pRowPos =
      MemRefDescriptor(adaptor.getRowPos()).allocatedPtr(rewriter, loc);
  Value pColIdxs =
      MemRefDescriptor(adaptor.getColIdxs()).allocatedPtr(rewriter, loc);
  Value pValues =
      MemRefDescriptor(adaptor.getValues()).allocatedPtr(rewriter, loc);
  Type pType =
      llvm::cast<MemRefType>(op.getRowPos().getType()).getElementType();
  Type iType =
      llvm::cast<MemRefType>(op.getColIdxs().getType()).getElementType();
  Type dType =
      llvm::cast<MemRefType>(op.getValues().getType()).getElementType();
  auto ptp = genConstInt32From(rewriter, loc, getCuSparseIndexTypeFrom(pType));
  auto itp = genConstInt32From(rewriter, loc, getCuSparseIndexTypeFrom(iType));
  auto dtp = genConstInt32From(rewriter, loc, getCuSparseDataTypeFrom(dType));
  auto handle =
      createCsrCallBuilder
          .create(loc, rewriter,
                  {adaptor.getRows(), adaptor.getCols(), adaptor.getNnz(),
                   pRowPos, pColIdxs, pValues, ptp, itp, dtp, stream})
          .getResult();
  rewriter.replaceOp(op, {handle, stream});
  return success();
}

LogicalResult ConvertCreate2To4SpMatOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::Create2To4SpMatOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, op)))
    return failure();
  Location loc = op.getLoc();
  auto stream = adaptor.getAsyncDependencies().front();
  Value pMat =
      MemRefDescriptor(adaptor.getMemref()).allocatedPtr(rewriter, loc);
  Type dType =
      llvm::cast<MemRefType>(op.getMemref().getType()).getElementType();
  auto dtp = genConstInt32From(rewriter, loc, getCuSparseDataTypeFrom(dType));

  // CUDA runner asserts the size is 44104 bytes.
  auto handleSz = LLVM::ConstantOp::create(rewriter, loc, getIndexType(),
                                           rewriter.getIndexAttr(44104));
  Value handle = LLVM::AllocaOp::create(
      rewriter, loc, llvmPointerType, llvmInt8Type, handleSz, /*alignment=*/16);
  handle = LLVM::BitcastOp::create(rewriter, loc, llvmPointerType, handle);

  create2To4SpMatCallBuilder
      .create(loc, rewriter,
              {handle, adaptor.getRows(), adaptor.getCols(), pMat, dtp, stream})
      .getResult();
  rewriter.replaceOp(op, {handle, stream});
  return success();
}

LogicalResult ConvertDestroySpMatOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::DestroySpMatOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, op)))
    return failure();
  Location loc = op.getLoc();
  auto stream = adaptor.getAsyncDependencies().front();
  // Use the cusparseLt destroy call if the spmat is 2:4 sparsity
  if (is2To4Sparsity(op.getSpmat())) {
    destroyCuSparseLtSpMatBuilder.create(loc, rewriter,
                                         {adaptor.getSpmat(), stream});

  } else {
    destroySpMatCallBuilder.create(loc, rewriter, {adaptor.getSpmat(), stream});
  }
  rewriter.replaceOp(op, {stream});
  return success();
}

LogicalResult ConvertSpMVBufferSizeOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::SpMVBufferSizeOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, op)))
    return failure();
  Location loc = op.getLoc();
  auto modeA = genConstInt32From(rewriter, loc, op.getModeA());
  auto computeType = genConstInt32From(
      rewriter, loc, getCuSparseDataTypeFrom(adaptor.getComputeType()));
  auto stream = adaptor.getAsyncDependencies().front();
  auto bufferSize = spMVBufferSizeCallBuilder
                        .create(loc, rewriter,
                                {modeA, adaptor.getSpmatA(), adaptor.getDnX(),
                                 adaptor.getDnY(), computeType, stream})
                        .getResult();
  rewriter.replaceOp(op, {bufferSize, stream});
  return success();
}

LogicalResult ConvertSpMVOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::SpMVOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, op)))
    return failure();
  Location loc = op.getLoc();
  auto modeA = genConstInt32From(rewriter, loc, adaptor.getModeA());
  auto computeType = genConstInt32From(
      rewriter, loc, getCuSparseDataTypeFrom(adaptor.getComputeType()));
  auto stream = adaptor.getAsyncDependencies().front();
  Value pBuf =
      MemRefDescriptor(adaptor.getBuffer()).allocatedPtr(rewriter, loc);
  spMVCallBuilder.create(loc, rewriter,
                         {modeA, adaptor.getSpmatA(), adaptor.getDnX(),
                          adaptor.getDnY(), computeType, pBuf, stream});
  rewriter.replaceOp(op, {stream});
  return success();
}

LogicalResult ConvertSpMMBufferSizeOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::SpMMBufferSizeOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, op)))
    return failure();
  Location loc = op.getLoc();
  auto modeA = genConstInt32From(rewriter, loc, adaptor.getModeA());
  auto modeB = genConstInt32From(rewriter, loc, adaptor.getModeB());
  auto stream = adaptor.getAsyncDependencies().front();
  Value bufferSize;
  if (is2To4Sparsity(op.getSpmatA())) {
    auto pruneFlag =
        genConstInt32From(rewriter, loc, get2To4PruneFlag(op.getSpmatA()));
    auto computeType = genConstInt32From(
        rewriter, loc, getCuSparseLtDataTypeFrom(adaptor.getComputeType()));
    auto three = LLVM::ConstantOp::create(rewriter, loc, getIndexType(),
                                          rewriter.getIndexAttr(3));
    auto bufferSize =
        LLVM::AllocaOp::create(rewriter, loc, llvmPointerType, llvmPointerType,
                               three, /*alignment=*/16);
    createCuSparseLtSpMMBufferSizeBuilder
        .create(loc, rewriter,
                {bufferSize, modeA, modeB, adaptor.getSpmatA(),
                 adaptor.getDnmatB(), adaptor.getDnmatC(), computeType,
                 pruneFlag, stream})
        .getResult();

    auto bufferSizePtr1 = LLVM::GEPOp::create(
        rewriter, loc, llvmPointerType, llvmPointerType, bufferSize,
        ValueRange{LLVM::ConstantOp::create(rewriter, loc, getIndexType(),
                                            rewriter.getIndexAttr(1))});
    auto bufferSizePtr2 = LLVM::GEPOp::create(
        rewriter, loc, llvmPointerType, llvmPointerType, bufferSize,
        ValueRange{LLVM::ConstantOp::create(rewriter, loc, getIndexType(),
                                            rewriter.getIndexAttr(2))});
    auto bufferSize0 =
        LLVM::LoadOp::create(rewriter, loc, llvmInt64Type, bufferSize);
    auto bufferSize1 =
        LLVM::LoadOp::create(rewriter, loc, llvmInt64Type, bufferSizePtr1);
    auto bufferSize2 =
        LLVM::LoadOp::create(rewriter, loc, llvmInt64Type, bufferSizePtr2);

    rewriter.replaceOp(op, {bufferSize0, bufferSize1, bufferSize2, stream});
  } else {
    auto computeType = genConstInt32From(
        rewriter, loc, getCuSparseDataTypeFrom(adaptor.getComputeType()));
    bufferSize =
        createSpMMBufferSizeCallBuilder
            .create(loc, rewriter,
                    {modeA, modeB, adaptor.getSpmatA(), adaptor.getDnmatB(),
                     adaptor.getDnmatC(), computeType, stream})
            .getResult();
    rewriter.replaceOp(op, {bufferSize, stream});
  }
  return success();
}

LogicalResult ConvertSDDMMBufferSizeOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::SDDMMBufferSizeOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, op)))
    return failure();
  Location loc = op.getLoc();
  auto modeA = genConstInt32From(rewriter, loc, adaptor.getModeA());
  auto modeB = genConstInt32From(rewriter, loc, adaptor.getModeB());
  auto computeType = genConstInt32From(
      rewriter, loc, getCuSparseDataTypeFrom(adaptor.getComputeType()));
  auto stream = adaptor.getAsyncDependencies().front();
  auto bufferSize =
      createSDDMMBufferSizeCallBuilder
          .create(loc, rewriter,
                  {modeA, modeB, adaptor.getDnmatA(), adaptor.getDnmatB(),
                   adaptor.getSpmatC(), computeType, stream})
          .getResult();
  rewriter.replaceOp(op, {bufferSize, stream});
  return success();
}

LogicalResult ConvertSpMMOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::SpMMOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, op)))
    return failure();
  Location loc = op.getLoc();
  auto modeA = genConstInt32From(rewriter, loc, adaptor.getModeA());
  auto modeB = genConstInt32From(rewriter, loc, adaptor.getModeB());
  auto computeType = genConstInt32From(
      rewriter, loc, getCuSparseDataTypeFrom(adaptor.getComputeType()));

  auto stream = adaptor.getAsyncDependencies().front();

  // Lower to cusparseLt if applicable
  if (is2To4Sparsity(op.getSpmatA())) {
    SmallVector<Value> pBufs;
    for (Value buffer : adaptor.getBuffers()) {
      Value pBuf = MemRefDescriptor(buffer).allocatedPtr(rewriter, loc);
      pBufs.push_back(pBuf);
    }
    createCuSparseLtSpMMBuilder.create(
        loc, rewriter,
        {adaptor.getSpmatA(), adaptor.getDnmatB(), adaptor.getDnmatC(),
         pBufs[0], pBufs[1], pBufs[2], stream});
  } else {
    Value pBuf = MemRefDescriptor(adaptor.getBuffers().front())
                     .allocatedPtr(rewriter, loc);
    createSpMMCallBuilder.create(loc, rewriter,
                                 {modeA, modeB, adaptor.getSpmatA(),
                                  adaptor.getDnmatB(), adaptor.getDnmatC(),
                                  computeType, pBuf, stream});
  }
  rewriter.replaceOp(op, {stream});
  return success();
}

template <typename T>
static void addOpaquePointerConversion(LLVMTypeConverter &converter) {
  converter.addConversion([&converter](T) -> Type {
    return LLVM::LLVMPointerType::get(&converter.getContext());
  });
}

LogicalResult ConvertSDDMMOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::SDDMMOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, op)))
    return failure();
  Location loc = op.getLoc();
  auto computeType = genConstInt32From(
      rewriter, loc, getCuSparseDataTypeFrom(adaptor.getComputeType()));
  auto modeA = genConstInt32From(rewriter, loc, adaptor.getModeA());
  auto modeB = genConstInt32From(rewriter, loc, adaptor.getModeB());
  auto stream = adaptor.getAsyncDependencies().front();
  Value pBuf =
      MemRefDescriptor(adaptor.getBuffer()).allocatedPtr(rewriter, loc);
  createSDDMMCallBuilder.create(loc, rewriter,
                                {modeA, modeB, adaptor.getDnmatA(),
                                 adaptor.getDnmatB(), adaptor.getSpmatC(),
                                 computeType, pBuf, stream});
  rewriter.replaceOp(op, {stream});
  return success();
}

LogicalResult
ConvertSpGEMMCreateDescrOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::SpGEMMCreateDescrOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, op)))
    return failure();
  Location loc = op.getLoc();
  auto stream = adaptor.getAsyncDependencies().front();
  Value descr = createSpGEMMCreateDescrBuilder.create(loc, rewriter, {stream})
                    .getResult();
  rewriter.replaceOp(op, {descr, stream});
  return success();
}

LogicalResult
ConvertSpGEMMDestroyDescrOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::SpGEMMDestroyDescrOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, op)))
    return failure();
  Location loc = op.getLoc();
  auto stream = adaptor.getAsyncDependencies().front();
  createSpGEMMDestroyDescrBuilder.create(loc, rewriter,
                                         {adaptor.getDesc(), stream});
  rewriter.replaceOp(op, {stream});
  return success();
}

LogicalResult
ConvertSpGEMMWorkEstimationOrComputeOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::SpGEMMWorkEstimationOrComputeOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, op)))
    return failure();
  Location loc = op.getLoc();
  auto computeType = genConstInt32From(
      rewriter, loc, getCuSparseDataTypeFrom(adaptor.getComputeType()));
  auto modeA = genConstInt32From(rewriter, loc, adaptor.getModeA());
  auto modeB = genConstInt32From(rewriter, loc, adaptor.getModeB());
  auto stream = adaptor.getAsyncDependencies().front();

  Value pBuf =
      MemRefDescriptor(adaptor.getBuffer()).allocatedPtr(rewriter, loc);
  Value bufferSizeNew;

  if (adaptor.getKind() ==
      gpu::SpGEMMWorkEstimationOrComputeKind::WORK_ESTIMATION) {
    bufferSizeNew =
        createSpGEMMWorkEstimationBuilder
            .create(loc, rewriter,
                    {adaptor.getDesc(), modeA, modeB, adaptor.getSpmatA(),
                     adaptor.getSpmatB(), adaptor.getSpmatC(), computeType,
                     adaptor.getBufferSz(), pBuf, stream})
            .getResult();
  } else {
    bufferSizeNew =
        createSpGEMMComputeBuilder
            .create(loc, rewriter,
                    {adaptor.getDesc(), modeA, modeB, adaptor.getSpmatA(),
                     adaptor.getSpmatB(), adaptor.getSpmatC(), computeType,
                     adaptor.getBufferSz(), pBuf, stream})
            .getResult();
  }
  rewriter.replaceOp(op, {bufferSizeNew, stream});
  return success();
}

LogicalResult ConvertSpGEMMCopyOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::SpGEMMCopyOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, op)))
    return failure();
  Location loc = op.getLoc();
  auto computeType = genConstInt32From(
      rewriter, loc, getCuSparseDataTypeFrom(adaptor.getComputeType()));
  auto modeA = genConstInt32From(rewriter, loc, adaptor.getModeA());
  auto modeB = genConstInt32From(rewriter, loc, adaptor.getModeB());
  auto stream = adaptor.getAsyncDependencies().front();
  createSpGEMMCopyBuilder.create(loc, rewriter,
                                 {adaptor.getDesc(), modeA, modeB,
                                  adaptor.getSpmatA(), adaptor.getSpmatB(),
                                  adaptor.getSpmatC(), computeType, stream});
  rewriter.replaceOp(op, {stream});
  return success();
}

LogicalResult ConvertSpMatGetSizeOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::SpMatGetSizeOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, op)))
    return failure();
  Location loc = op.getLoc();
  auto stream = adaptor.getAsyncDependencies().front();

  auto three = LLVM::ConstantOp::create(rewriter, loc, getIndexType(),
                                        rewriter.getIndexAttr(3));
  auto buffer = LLVM::AllocaOp::create(rewriter, loc, llvmPointerType,
                                       llvmInt64Type, three, /*alignment=*/16);

  auto rowsPtr = LLVM::GEPOp::create(
      rewriter, loc, llvmPointerType, llvmPointerType, buffer,
      ValueRange{LLVM::ConstantOp::create(rewriter, loc, getIndexType(),
                                          rewriter.getIndexAttr(0))});
  auto colsPtr = LLVM::GEPOp::create(
      rewriter, loc, llvmPointerType, llvmPointerType, buffer,
      ValueRange{LLVM::ConstantOp::create(rewriter, loc, getIndexType(),
                                          rewriter.getIndexAttr(1))});
  auto nnzsPtr = LLVM::GEPOp::create(
      rewriter, loc, llvmPointerType, llvmPointerType, buffer,
      ValueRange{LLVM::ConstantOp::create(rewriter, loc, getIndexType(),
                                          rewriter.getIndexAttr(2))});
  createSpMatGetSizeBuilder.create(
      loc, rewriter, {adaptor.getSpmat(), rowsPtr, colsPtr, nnzsPtr, stream});
  auto rows = LLVM::LoadOp::create(rewriter, loc, llvmInt64Type, rowsPtr);
  auto cols = LLVM::LoadOp::create(rewriter, loc, llvmInt64Type, colsPtr);
  auto nnzs = LLVM::LoadOp::create(rewriter, loc, llvmInt64Type, nnzsPtr);

  rewriter.replaceOp(op, {rows, cols, nnzs, stream});
  return success();
}

LogicalResult ConvertSetCsrPointersOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::SetCsrPointersOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, op)))
    return failure();
  Location loc = op.getLoc();
  auto stream = adaptor.getAsyncDependencies().front();
  Value pPos =
      MemRefDescriptor(adaptor.getPositions()).allocatedPtr(rewriter, loc);
  Value pCrd =
      MemRefDescriptor(adaptor.getCoordinates()).allocatedPtr(rewriter, loc);
  Value pVal =
      MemRefDescriptor(adaptor.getValues()).allocatedPtr(rewriter, loc);
  createSetCsrPointersBuilder.create(
      loc, rewriter, {adaptor.getSpmat(), pPos, pCrd, pVal, stream});
  rewriter.replaceOp(op, {stream});
  return success();
}

LogicalResult ConvertCreateCscOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::CreateCscOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, op)))
    return failure();
  Location loc = op.getLoc();
  auto stream = adaptor.getAsyncDependencies().front();
  Value pColPos =
      MemRefDescriptor(adaptor.getColPos()).allocatedPtr(rewriter, loc);
  Value pRowIdxs =
      MemRefDescriptor(adaptor.getRowIdxs()).allocatedPtr(rewriter, loc);
  Value pValues =
      MemRefDescriptor(adaptor.getValues()).allocatedPtr(rewriter, loc);
  Type pType =
      llvm::cast<MemRefType>(op.getColPos().getType()).getElementType();
  Type iType =
      llvm::cast<MemRefType>(op.getRowIdxs().getType()).getElementType();
  Type dType =
      llvm::cast<MemRefType>(op.getValues().getType()).getElementType();
  auto ptp = genConstInt32From(rewriter, loc, getCuSparseIndexTypeFrom(pType));
  auto itp = genConstInt32From(rewriter, loc, getCuSparseIndexTypeFrom(iType));
  auto dtp = genConstInt32From(rewriter, loc, getCuSparseDataTypeFrom(dType));
  auto handle =
      createCscCallBuilder
          .create(loc, rewriter,
                  {adaptor.getRows(), adaptor.getCols(), adaptor.getNnz(),
                   pColPos, pRowIdxs, pValues, ptp, itp, dtp, stream})
          .getResult();
  rewriter.replaceOp(op, {handle, stream});
  return success();
}

LogicalResult ConvertCreateBsrOpToGpuRuntimeCallPattern::matchAndRewrite(
    gpu::CreateBsrOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
      failed(isAsyncWithOneDependency(rewriter, op)))
    return failure();
  Location loc = op.getLoc();
  auto stream = adaptor.getAsyncDependencies().front();
  Value pRowPos =
      MemRefDescriptor(adaptor.getBRowPos()).allocatedPtr(rewriter, loc);
  Value pColIdxs =
      MemRefDescriptor(adaptor.getBColIdxs()).allocatedPtr(rewriter, loc);
  Value pValues =
      MemRefDescriptor(adaptor.getValues()).allocatedPtr(rewriter, loc);
  Type pType =
      llvm::cast<MemRefType>(op.getBRowPos().getType()).getElementType();
  Type iType =
      llvm::cast<MemRefType>(op.getBColIdxs().getType()).getElementType();
  Type dType =
      llvm::cast<MemRefType>(op.getValues().getType()).getElementType();
  auto ptp = genConstInt32From(rewriter, loc, getCuSparseIndexTypeFrom(pType));
  auto itp = genConstInt32From(rewriter, loc, getCuSparseIndexTypeFrom(iType));
  auto dtp = genConstInt32From(rewriter, loc, getCuSparseDataTypeFrom(dType));
  auto handle =
      createBsrCallBuilder
          .create(loc, rewriter,
                  {adaptor.getBrows(), adaptor.getBcols(), adaptor.getBnnz(),
                   adaptor.getRBlockSize(), adaptor.getCBlockSize(), pRowPos,
                   pColIdxs, pValues, ptp, itp, dtp, stream})
          .getResult();
  rewriter.replaceOp(op, {handle, stream});
  return success();
}

void mlir::populateGpuToLLVMConversionPatterns(
    LLVMTypeConverter &converter, RewritePatternSet &patterns,
    bool kernelBarePtrCallConv, bool kernelIntersperseSizeCallConv) {
  addOpaquePointerConversion<gpu::AsyncTokenType>(converter);
  addOpaquePointerConversion<gpu::SparseDnTensorHandleType>(converter);
  addOpaquePointerConversion<gpu::SparseSpMatHandleType>(converter);
  addOpaquePointerConversion<gpu::SparseSpGEMMOpHandleType>(converter);

  patterns.add<ConvertAllocOpToGpuRuntimeCallPattern,
               ConvertDeallocOpToGpuRuntimeCallPattern,
               ConvertHostRegisterOpToGpuRuntimeCallPattern,
               ConvertHostUnregisterOpToGpuRuntimeCallPattern,
               ConvertMemcpyOpToGpuRuntimeCallPattern,
               ConvertMemsetOpToGpuRuntimeCallPattern,
               ConvertSetDefaultDeviceOpToGpuRuntimeCallPattern,
               ConvertWaitAsyncOpToGpuRuntimeCallPattern,
               ConvertWaitOpToGpuRuntimeCallPattern,
               ConvertAsyncYieldToGpuRuntimeCallPattern,
               ConvertCreateDnTensorOpToGpuRuntimeCallPattern,
               ConvertDestroyDnTensorOpToGpuRuntimeCallPattern,
               ConvertCreateCooOpToGpuRuntimeCallPattern,
               ConvertCreateCooAoSOpToGpuRuntimeCallPattern,
               ConvertCreateCsrOpToGpuRuntimeCallPattern,
               ConvertCreateCscOpToGpuRuntimeCallPattern,
               ConvertCreateBsrOpToGpuRuntimeCallPattern,
               ConvertCreate2To4SpMatOpToGpuRuntimeCallPattern,
               ConvertDestroySpMatOpToGpuRuntimeCallPattern,
               ConvertSpMVBufferSizeOpToGpuRuntimeCallPattern,
               ConvertSpMVOpToGpuRuntimeCallPattern,
               ConvertSpMMBufferSizeOpToGpuRuntimeCallPattern,
               ConvertSDDMMBufferSizeOpToGpuRuntimeCallPattern,
               ConvertSpMMOpToGpuRuntimeCallPattern,
               ConvertSDDMMOpToGpuRuntimeCallPattern,
               ConvertSpGEMMCreateDescrOpToGpuRuntimeCallPattern,
               ConvertSpGEMMDestroyDescrOpToGpuRuntimeCallPattern,
               ConvertSpGEMMWorkEstimationOrComputeOpToGpuRuntimeCallPattern,
               ConvertSpGEMMCopyOpToGpuRuntimeCallPattern,
               ConvertSpMatGetSizeOpToGpuRuntimeCallPattern,
               ConvertSetCsrPointersOpToGpuRuntimeCallPattern>(converter);
  patterns.add<LegalizeLaunchFuncOpPattern>(converter, kernelBarePtrCallConv,
                                            kernelIntersperseSizeCallConv);
}

//===----------------------------------------------------------------------===//
// GPUModuleOp convert to LLVM op interface
//===----------------------------------------------------------------------===//

namespace {
struct GPUModuleOpConvertToLLVMInterface
    : public ConvertToLLVMOpInterface::ExternalModel<
          GPUModuleOpConvertToLLVMInterface, gpu::GPUModuleOp> {
  /// Get the conversion patterns from the target attribute.
  void getConvertToLLVMConversionAttrs(
      Operation *op, SmallVectorImpl<ConvertToLLVMAttrInterface> &attrs) const;
};
} // namespace

void GPUModuleOpConvertToLLVMInterface::getConvertToLLVMConversionAttrs(
    Operation *op, SmallVectorImpl<ConvertToLLVMAttrInterface> &attrs) const {
  auto module = cast<gpu::GPUModuleOp>(op);
  ArrayAttr targetsAttr = module.getTargetsAttr();
  // Fail if there are no target attributes or there is more than one target.
  if (!targetsAttr || targetsAttr.size() != 1)
    return;
  if (auto patternAttr = dyn_cast<ConvertToLLVMAttrInterface>(targetsAttr[0]))
    attrs.push_back(patternAttr);
}

void mlir::gpu::registerConvertGpuToLLVMInterface(DialectRegistry &registry) {
  registry.addExtension(+[](MLIRContext *ctx, gpu::GPUDialect *dialect) {
    gpu::GPUModuleOp::attachInterface<GPUModuleOpConvertToLLVMInterface>(*ctx);
  });
}